Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Intervalo de año de publicación
1.
Inorg Chem ; 63(6): 3091-3098, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38295272

RESUMEN

Rechargeable magnesium-ion batteries (MIBs) hold significant promise as an alternative to conventional lithium-ion technology driven by their natural abundance and low-cost, high-energy density, and safety features. Spinel oxides, including MgCrVO4, have emerged as a prospective cathode material for MIBs due to their promising combination of capacity, operating potential, and cation mobility. However, the structural evolution, phase stability, and processes of Mg mobility in MgCrVO4 during electrochemical cycling are poorly understood. In this study, we synthesized a single-phase, solid solution of spinel oxide MgCrVO4 and employed operando X-ray diffraction to couple physical properties with structural changes during cycling. Our results revealed a two-phase reaction mechanism coupled with a solid-solution-like reaction, highlighting the complicated transformation between two distinct phases in the MgCrVO4 lattice during Mg (de)intercalation. Rietveld refinement of the operando data provided valuable insights into the mechanism of the Cr/V-based spinel oxide, shedding light on the transition between the two phases and their roles in Mg-ion (de)intercalation. This study contributes to a deeper understanding of the structural dynamics in multivalent cathode materials and sets the stage for the development of advanced Mg-ion cathodes with enhanced performance and stability.

2.
Phys Chem Chem Phys ; 25(5): 4243-4254, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36661750

RESUMEN

Understanding the physical and chemical processes occurring in concentrated electrolyte solutions is required to achieve redox flow batteries with high energy density. Highly concentrated electrolyte solutions are often studied in which collective crowded interactions between molecules and ions become predominant. Herein, experimental and computational methods were used to examine non-aqueous electrolyte solutions in two different states of charge as a function of redoxmer concentration. As the latter increases and the ionic association strengthens, the electric conductivity passes through a maximum and the solution increasingly gels, which is seen through a rapid non-linear increase in viscosity. We establish that the structural rigidity of ionic networks is closely connected with this loss of fluidity and show that charging generally yields softer ionic assemblies with weaker attractive forces and improved dynamical properties.

3.
J Synchrotron Radiat ; 29(Pt 6): 1429-1435, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36345751

RESUMEN

Brownian motion of Cowpea mosaic virus (CPMV) in water was measured using small-angle X-ray photon correlation spectroscopy (SA-XPCS) at 19.2 µs time resolution. It was found that the decorrelation time τ(Q) = 1/DQ2 up to Q = 0.091 nm-1. The hydrodynamic radius RH determined from XPCS using Stokes-Einstein diffusion D = kT/(6πηRH) is 43% larger than the geometric radius R0 determined from SAXS in the 0.007 M K3PO4 buffer solution, whereas it is 80% larger for CPMV in 0.5 M NaCl and 104% larger in 0.5 M (NH4)2SO4, a possible effect of aggregation as well as slight variation of the structures of the capsid resulting from the salt-protein interactions.


Asunto(s)
Comovirus , Comovirus/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Cápside
4.
Nano Lett ; 21(10): 4508-4515, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33998804

RESUMEN

Highly efficient noble-metal-free electrocatalysts for oxygen reduction reaction (ORR) are essential to reduce the costs of fuel cells and metal-air batteries. Herein, a single-atom Ce-N-C catalyst, constructed of atomically dispersed Ce anchored on N-doped porous carbon nanowires, is proposed to boost the ORR. This catalyst has a high Ce content of 8.55 wt % and a high activity with ORR half-wave potentials of 0.88 V in alkaline media and 0.75 V in acidic electrolytes, which are comparable to widely studied Fe-N-C catalysts. A Zn-air battery based on this material shows excellent performance and durability. Density functional theory calculations reveal that atomically dispersed Ce with adsorbed hydroxyl species (OH) can significantly reduce the energy barrier of the rate-determining step resulting in an improved ORR activity.

5.
Small ; 17(16): e2004454, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33306278

RESUMEN

Carbon-based single-atom catalysts (CSACs) have recently received extensive attention in catalysis research. However, the preparation process of CSACs involves a high-temperature treatment, during which metal atoms are mobile and aggregated into nanoparticles, detrimental to the catalytic performance. Herein, an ion-imprinting derived strategy is proposed to synthesize CSACs, in which isolated metal-nitrogen-carbon (Me-N4 -Cx ) moiety covalently binds oxygen atoms in Si-based molecular sieve frameworks. Such a feature makes Me-N4 -Cx moiety well protected/confined during the heat treatment, resulting in the final material enriched with single-atom metal active sites. As a proof of concept, a single-atom Fe-N-C catalyst is synthesized by using this ion-imprinting derived strategy. Experimental results and theoretical calculations demonstrate high concentration of single FeN4 active sites distributed in this catalyst, resulting in an outstanding oxygen reduction reaction (ORR) performance with a half-wave potential of 0.908 V in alkaline media.

6.
ACS Appl Mater Interfaces ; 12(52): 57932-57940, 2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33326233

RESUMEN

Neutralization of poly(acrylic acid) (PAA)-based binders using lithium hydroxide is a common strategy for fabricating silicon anode laminates, which improves rheological properties of slurries toward high-quality electrode laminates. However, the significantly increased basicity causes degradation of Si particles while the irreversible conversion of carboxylic acid groups to lithium carboxylates undermines the binding strength, collectively leading to adverse cycling performance of the fabricated Si anodes. Herein, a novel neutralization process for PAA binders is developed. A weak base, ammonia (NH3), was discovered as a neutralizing agent that still promotes rheological response of binder solutions but results in a reduced pH increase. Interestingly, the resulting ammonium carboxylate groups may cleave during the drying process to restore the neutralized PAA (PAA-NH3) binders to their pristine states. The best-performing composition of 50% neutralization (PAA-50%NH3) provides comparable rheological response as a PAA-Li binder as well as much improved cycling performance. The half-cells using the PAA-50%NH3 binder can deliver 60% capacity retention over 100 cycles at C/3 rate, affording a 23.8% increase compared to PAA-Li half-cells. This restorable neutralization process of PAA binders represents an innovative strategy of mitigating issues from slurry processing of Si particles to achieve concurrent improvements in high-quality lamination and cycling performance.

7.
J Phys Chem B ; 124(46): 10409-10418, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33158362

RESUMEN

Redoxmers are organic molecules that carry electric charge in flow batteries. In many instances, they consist of heteroaromatic moieties modified with appended groups to prevent stacking of the planar cores and increase solubility in liquid electrolytes. This higher solubility is desired as it potentially allows achieving greater energy density in the battery. However, the present synthetic strategies often yield bulky molecules with low molarity even when they are neat and still lower molarity in liquid solutions. Fortunately, there are exceptions to this rule. Here, we examine one well-studied redoxmer, 2,1,3-benzothiadiazole, which has solubility ∼5.7 M in acetonitrile at 25 °C. We show computationally and prove experimentally that the competition between two packing motifs, face-to-face π-stacking and random N-H bond piling, introduces frustration that confounds nucleation in crowded solutions. Our findings and examples from related systems suggest a complementary strategy for the molecular design of redoxmers for high energy density redox flow cells.

8.
J Phys Chem B ; 124(45): 10226-10236, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33119315

RESUMEN

Redoxmers are electrochemically active organic molecules storing charge and energy in electrolyte fluids circulating through redox flow batteries (RFBs). Such molecules typically have solvent-repelling cores and solvent-attracting pendant groups introduced to increase solubility in liquid electrolytes. These two features can facilitate nanoscale aggregation of the redoxmer molecules in crowded solutions. In some cases, this aggregation leads to the emergence of continuous networks of solute molecules in contact, and the solution becomes microscopically heterogeneous. Here, we use small-angle X-ray scattering (SAXS) and molecular dynamics modeling to demonstrate formation of such networks and examine structural factors controlling this self-assembly. We also show that salt ions become excluded from these solute aggregates into small pockets of electrolytes, where these ions strongly associate. This confinement by exclusion is also likely to occur to charged redoxmer molecules in a "sea" of neutral precursors coexisting in the same solution. Here, we demonstrate that the decay lifetime of the confined charged molecules in such solutions can increase several fold compared to dilute solutions. We attribute this behavior to a "microreactor effect" on reverse reactions of the confined species during their decomposition.

9.
ACS Nano ; 14(5): 5506-5516, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32330000

RESUMEN

Atomically dispersed metal and nitrogen co-doped carbon (M-N/C) catalysts hold great promise for electrochemical CO2 conversion. However, there is a lack of cost-effective synthesis approaches to meet the goal of economic mass production of single-atom M-N/C with desirable carbon support architecture for efficient CO2 reduction. Herein, we report facile transformation of commercial carbon nanotube (CNT) into isolated Fe-N4 sites anchored on carbon nanotube and graphene nanoribbon (GNR) networks (Fe-N/CNT@GNR). The oxidization-induced partial unzipping of CNT results in the generation of GNR nanolayers attached to the remaining fibrous CNT frameworks, which reticulates a hierarchically mesoporous complex and thus enables a high electrochemical active surface area and smooth mass transport. The Fe residues originating from CNT growth seeds serve as Fe sources to form isolated Fe-N4 moieties located at the CNT and GNR basal plane and edges with high intrinsic capability of activating CO2 and suppressing hydrogen evolution. The Fe-N/CNT@GNR delivers a stable CO Faradaic efficiency of 96% with a partial current density of 22.6 mA cm-2 at a low overpotential of 650 mV, making it one of the most active M-N/C catalysts reported. This work presents an effective strategy to fabricate advanced atomistic catalysts and highlights the key roles of support architecture in single-atom electrocatalysis.

10.
ACS Appl Mater Interfaces ; 11(43): 39820-39826, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31560188

RESUMEN

Recently, electrocatalysts based on anchored dispersive/isolated single metal atoms on conductive carbon supports have demonstrated great promise to substitute costly Pt for the oxygen reduction reaction (ORR) in the field of fuel cells or metal-air batteries. However, developments of cost-efficient single-atom Fe catalysts with high activities are still facing various hardships. Here, we developed a facile way to synthesize isolated iron atoms anchored on the carbon nanotube (CNT) involving a one-pot pyrrole polymerization on a self-degraded organic template and a subsequent pyrolysis. The as-obtained electrocatalyst possessed unique characteristics of abundant nanopores in the wall of conductive CNTs to host the abundant atomic Fe-Nx active sites, showing ultrahigh ORR activity (half-wave potential: 0.93 V, kinetic current density: 59.8 mA/cm2 at 0.8 V), better than that of commercial Pt/C (half-wave potential: 0.91 V; kinetic current density: 38.0 mA/cm2 at 0.8 V) in an alkaline electrolyte. Furthermore, good ORR activity has been proven in acidic solution with a half-wave-potential of 0.73 V.

11.
Nat Commun ; 10(1): 1394, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30918244

RESUMEN

Metal-oxide nanocrystals doped with aliovalent atoms can exhibit tunable infrared localized surface plasmon resonances (LSPRs). Yet, the range of dopant types and concentrations remains limited for many metal-oxide hosts, largely because of the difficulty in establishing reaction kinetics that favors dopant incorporation by using the co-thermolysis method. Here we develop cation-exchange reactions to introduce p-type dopants (Cu+, Ag+, etc.) into n-type metal-oxide nanocrystals, producing programmable LSPR redshifts due to dopant compensation. We further demonstrate that enhanced n-type doping can be realized via sequential cation-exchange reactions mediated by the Cu+ ions. Cation-exchange transformations add a new dimension to the design of plasmonic nanocrystals, allowing preformed nanocrystals to be used as templates to create compositionally diverse nanocrystals with well-defined LSPR characteristics. The ability to tailor the doping profile postsynthetically opens the door to a multitude of opportunities to deepen our understanding of the relationship between local structure and LSPR properties.

12.
ACS Appl Mater Interfaces ; 10(49): 43095-43103, 2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30427179

RESUMEN

The design and fabrication of novel mixed-matrix membranes (MMMs) with simultaneously enhanced gas permeability and selectivity are highly sought for the industrial deployment of membrane technology for large-scale CO2 capture and storage. Conventional isotropic bulky particle fillers often exhibit limited interfacial compatibility that eventually leads to significant selectivity loss in MMMs. Here, we report the incorporation of chemically stable metal-organic framework (MOF) nanosheets into a highly permeable polymer matrix to prepare defect-free MMMs. MOF nanosheets are homogeneously dispersed within the polymer matrix, owing to their high aspect ratios that improve the polymer-filler integration. The strong hydrogen bonding and π-π interactions between the two components not only enhance the interfacial compatibility but also favor the efficient polymer chain packing along the surface of MOF nanosheets, leading to enhanced polymer crystallinity as well as size-sieving capability of the membranes. The as-prepared MMMs demonstrate high CO2-selective separation performance, good antipressure, and antiaging abilities, thus offering new opportunities in developing advanced membranes for industrial gas separation applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA