Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nature ; 554(7691): 195-201, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29420478

RESUMEN

Tautomeric and anionic Watson-Crick-like mismatches have important roles in replication and translation errors through mechanisms that are not fully understood. Here, using NMR relaxation dispersion, we resolve a sequence-dependent kinetic network connecting G•T/U wobbles with three distinct Watson-Crick mismatches: two rapidly exchanging tautomeric species (Genol•T/UG•Tenol/Uenol; population less than 0.4%) and one anionic species (G•T-/U-; population around 0.001% at neutral pH). The sequence-dependent tautomerization or ionization step was inserted into a minimal kinetic mechanism for correct incorporation during replication after the initial binding of the nucleotide, leading to accurate predictions of the probability of dG•dT misincorporation across different polymerases and pH conditions and for a chemically modified nucleotide, and providing mechanisms for sequence-dependent misincorporation. Our results indicate that the energetic penalty for tautomerization and/or ionization accounts for an approximately 10-2 to 10-3-fold discrimination against misincorporation, which proceeds primarily via tautomeric dGenol•dT and dG•dTenol, with contributions from anionic dG•dT- dominant at pH 8.4 and above or for some mutagenic nucleotides.


Asunto(s)
Disparidad de Par Base , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/biosíntesis , ADN/química , Guanina/metabolismo , Mutagénesis , Timina/metabolismo , Animales , Aniones , Disparidad de Par Base/genética , ADN/genética , Guanina/química , Humanos , Concentración de Iones de Hidrógeno , Cinética , Espectroscopía de Resonancia Magnética , Probabilidad , Ratas , Timina/química
2.
J Am Chem Soc ; 145(28): 15370-15380, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37428641

RESUMEN

DNA G-quadruplexes are essential motifs in molecular biology performing a wide range of functions enabled by their unique and diverse structures. In this study, we focus on the conformational plasticity of the most abundant and biologically relevant parallel G-quadruplex topology. A multipronged approach of structure survey, solution-state NMR spectroscopy, and molecular dynamics simulations unravels subtle yet essential features of the parallel G-quadruplex topology. Stark differences in flexibility are observed for the nucleotides depending upon their positioning in the tetrad planes that are intricately correlated with the conformational sampling of the propeller loop. Importantly, the terminal nucleotides in the 5'-end versus the 3'-end of the parallel quadruplex display differential dynamics that manifests their ability to accommodate a duplex on either end of the G-quadruplex. The conformational plasticity characterized in this study provides essential cues toward biomolecular processes such as small molecular binding, intermolecular quadruplex stacking, and implications on how a duplex influences the structure of a neighboring quadruplex.


Asunto(s)
ADN , G-Cuádruplex , Conformación de Ácido Nucleico , ADN/química , Simulación de Dinámica Molecular , Nucleótidos
3.
RNA Biol ; 20(1): 495-509, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-37493593

RESUMEN

Maintaining a healthy protein folding environment is essential for cellular function. Recently, we found that nucleic acids, G-quadruplexes in particular, are potent chaperones for preventing protein aggregation. With the aid of structure-function and NMR analyses of two G-quadruplex forming sequences, PARP-I and LTR-III, we uncovered several contributing factors that affect G-quadruplexes in preventing protein aggregation. Notably, three factors emerged as vital in determining holdase activity of G-quadruplexes: their structural topology, G-quadruplex accessibility and dynamics, and oligomerization state. These factors together appear to largely dictate whether a G-quadruplex is able to prevent partially misfolded proteins from aggregating. Understanding the physical traits that govern the ability of G-quadruplexes to modulate protein aggregation will help elucidate their possible roles in neurodegenerative disease.


Asunto(s)
G-Cuádruplex , Enfermedades Neurodegenerativas , Humanos , Agregado de Proteínas , Proteínas
4.
Biochemistry ; 61(11): 1064-1076, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35584037

RESUMEN

G-Quadruplex (G4) structures play a pivotal role in diverse biological functions, including essential processes, such as telomere maintenance and gene regulation. G4 structures formed in functional regions of genomes are actively pursued toward therapeutics and are targeted by small-molecule ligands that alter their structure and/or stability. Herein, we report the synthesis of bisindolylmaleimide-based (BIM) ligands, which preferentially stabilize parallel G4 structures of c-MYC and c-KIT oncogenes over the telomeric h-RAS1 G4 and duplex DNAs. The preferential stabilization of parallel G4s with BIM ligands is further validated by the DNA polymerase stop assay, where stop products were only observed for templates containing the c-MYC G4 sequence. Nuclear magnetic resonance (NMR) titration studies indicate that the lead ligand BIM-Pr1 forms a 2:1 complex with c-MYC G4 DNA with a KD of 38 ± 5 µM. The BIM ligand stacks at the 5' and 3' quartets, with molecular modeling and dynamics studies supporting the proposed binding mode. The ligand is cytotoxic to HeLa cells and downregulates c-MYC gene expression. Collectively, the results present bisindolylmaleimide scaffolds as novel and powerful G4 targeting agents.


Asunto(s)
G-Cuádruplex , ADN/química , ADN/genética , Expresión Génica , Células HeLa , Humanos , Indoles , Ligandos , Maleimidas , Telómero
5.
Phys Chem Chem Phys ; 25(1): 241-254, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36511891

RESUMEN

DNA epigenetic modifications such as 5-methyl (5mC), 5-hydroxymethyl (5hmC), 5-formyl (5fC) and 5-carboxyl (5caC) cytosine have unique and specific biological roles. Crystallographic studies of 5mC containing duplexes were conducted in the A-, B- or the intermediate E-DNA polymorphic forms. 5fC-modified duplexes initially observed in the disputed F-DNA architecture were subsequently crystallized in the A-form, suggesting that epigenetic modifications enable DNA sequences to adopt diverse conformational states that plausibly contribute to their function. Solution-state studies of these modifications were found in the B-DNA form, with marked differences in the conformational flexibility of 5fC containing duplexes in comparison to C/5mC containing duplexes, compromising the DNA duplex's stability. Herein, we systematically evaluate sensitive and commonly inaccessible NMR parameters to map the subtle differences between C, 5mC, and their oxidized (5hmC/5fC) counterparts. We observe that 15N/1H chemical shifts effectively report on the weakening of 5fC-G Watson-Crick base-pair H-bonding, extending the instability beyond any achievable within the sequence-specific changes in DNA. Triple 5fC containing sequences propagate the destabilization farther from the site of modifications, explaining reduced duplex stability upon multiple modifications. Additionally, scalar and residual dipolar coupling measurements unravel local sugar pucker fluctuations. One-bond 13C-1H scalar coupling measurements point towards a significant deviation away from the anticipated C2'-endo pucker for the 5fC modified nucleotide. Structural models obtained employing 13C-1H residual dipolar couplings and inter-proton distances corroborate the sugar pucker's deviation for 5fC modified DNA duplexes. The changes in the sugar pucker equilibria remain local to the 5fC modified nucleotide sans additive/long-range effects arising from multiple contiguous modifications. These observations highlight the impact of a major groove modification that alters the physical properties of DNA duplex without disturbing the Watson-Crick face. The changes observed in our studies for the 5fC containing DNA contrast with the perturbations induced by damage/lesion highlight the varied conformational preferences that modified nucleobases impart to the DNA duplex. As sequence-specific DNA transactions are rooted in the base-pair stability and pucker deviations, the observed structural perturbations for 5fC-modified DNA potentially play critical functional roles, such as protein-DNA recognition and interactions.


Asunto(s)
Citosina , ADN , Conformación de Ácido Nucleico , ADN/química , Citosina/química , Nucleótidos , Azúcares
6.
Nature ; 519(7543): 315-20, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25762137

RESUMEN

Rare tautomeric and anionic nucleobases are believed to have fundamental biological roles, but their prevalence and functional importance has remained elusive because they exist transiently, in low abundance, and involve subtle movements of protons that are difficult to visualize. Using NMR relaxation dispersion, we show here that wobble dG•dT and rG•rU mispairs in DNA and RNA duplexes exist in dynamic equilibrium with short-lived, low-populated Watson-Crick-like mispairs that are stabilized by rare enolic or anionic bases. These mispairs can evade Watson-Crick fidelity checkpoints and form with probabilities (10(-3) to 10(-5)) that strongly imply a universal role in replication and translation errors. Our results indicate that rare tautomeric and anionic bases are widespread in nucleic acids, expanding their structural and functional complexity beyond that attainable with canonical bases.


Asunto(s)
Emparejamiento Base , ADN/química , Ácidos Nucleicos Heterodúplex/química , ARN/química , Secuencia de Bases , Dermatoglifia del ADN , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Mutación/genética , Probabilidad
7.
Biochemistry ; 58(15): 1963-1974, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30950607

RESUMEN

A( syn)-T and G( syn)-C+ Hoogsteen base pairs in protein-bound DNA duplexes can be difficult to resolve by X-ray crystallography due to ambiguous electron density and by nuclear magnetic resonance (NMR) spectroscopy due to poor chemical shift dispersion and size limitations with solution-state NMR spectroscopy. Here we describe an NMR strategy for characterizing Hoogsteen base pairs in protein-DNA complexes, which relies on site-specifically incorporating 13C- and 15N-labeled nucleotides into DNA duplexes for unambiguous resonance assignment and to improve spectral resolution. The approach was used to resolve the conformation of an A-T base pair in a crystal structure of an ∼43 kDa complex between a 34 bp duplex DNA and the integration host factor (IHF) protein. In the crystal structure (Protein Data Bank entry 1IHF ), this base pair adopts an unusual Hoogsteen conformation with a distorted sugar backbone that is accommodated by a nearby nick used to aid in crystallization. The NMR chemical shifts and interproton nuclear Overhauser effects indicate that this base pair predominantly adopts a Watson-Crick conformation in the intact DNA-IHF complex under solution conditions. Consistent with these NMR findings, substitution of 7-deazaadenine at this base pair resulted in only a small (∼2-fold) decrease in the IHF-DNA binding affinity. The NMR strategy provides a new approach for resolving crystallographic ambiguity and more generally for studying the structure and dynamics of protein-DNA complexes in solution.


Asunto(s)
Emparejamiento Base , Proteínas de Unión al ADN/química , ADN/química , Sustancias Macromoleculares/química , Espectroscopía de Resonancia Magnética/métodos , Conformación de Ácido Nucleico , Secuencia de Bases , Isótopos de Carbono/metabolismo , Cristalografía por Rayos X , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Sustancias Macromoleculares/metabolismo , Modelos Moleculares , Estructura Molecular , Isótopos de Nitrógeno/metabolismo , Nucleótidos/química , Nucleótidos/genética , Nucleótidos/metabolismo , Dominios Proteicos
8.
Nucleic Acids Res ; 45(9): 5586-5601, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28369571

RESUMEN

In the canonical DNA double helix, Watson-Crick (WC) base pairs (bps) exist in dynamic equilibrium with sparsely populated (∼0.02-0.4%) and short-lived (lifetimes ∼0.2-2.5 ms) Hoogsteen (HG) bps. To gain insights into transient HG bps, we used solution-state nuclear magnetic resonance spectroscopy, including measurements of residual dipolar couplings and molecular dynamics simulations, to examine how a single HG bp trapped using the N1-methylated adenine (m1A) lesion affects the structural and dynamic properties of two duplexes. The solution structure and dynamic ensembles of the duplexes reveals that in both cases, m1A forms a m1A•T HG bp, which is accompanied by local and global structural and dynamic perturbations in the double helix. These include a bias toward the BI backbone conformation; sugar repuckering, major-groove directed kinking (∼9°); and local melting of neighboring WC bps. These results provide atomic insights into WC/HG breathing dynamics in unmodified DNA duplexes as well as identify structural and dynamic signatures that could play roles in m1A recognition and repair.


Asunto(s)
Adenina/química , Emparejamiento Base , Reparación del ADN , ADN/química , Conformación de Ácido Nucleico , Espectroscopía de Resonancia Magnética , Metilación , Soluciones , Termodinámica , Factores de Tiempo
9.
J Biomol NMR ; 70(4): 229-244, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29675775

RESUMEN

NMR relaxation dispersion studies indicate that in canonical duplex DNA, Watson-Crick base pairs (bps) exist in dynamic equilibrium with short-lived low abundance excited state Hoogsteen bps. N1-methylated adenine (m1A) and guanine (m1G) are naturally occurring forms of damage that stabilize Hoogsteen bps in duplex DNA. NMR dynamic ensembles of DNA duplexes with m1A-T Hoogsteen bps reveal significant changes in sugar pucker and backbone angles in and around the Hoogsteen bp, as well as kinking of the duplex towards the major groove. Whether these structural changes also occur upon forming excited state Hoogsteen bps in unmodified duplexes remains to be established because prior relaxation dispersion probes provided limited information regarding the sugar-backbone conformation. Here, we demonstrate measurements of C3' and C4' spin relaxation in the rotating frame (R1ρ) in uniformly 13C/15N labeled DNA as sensitive probes of the sugar-backbone conformation in DNA excited states. The chemical shifts, combined with structure-based predictions using an automated fragmentation quantum mechanics/molecular mechanics method, show that the dynamic ensemble of DNA duplexes containing m1A-T Hoogsteen bps accurately model the excited state Hoogsteen conformation in two different sequence contexts. Formation of excited state A-T Hoogsteen bps is accompanied by changes in sugar-backbone conformation that allow the flipped syn adenine to form hydrogen-bonds with its partner thymine and this in turn results in overall kinking of the DNA toward the major groove. Results support the assignment of Hoogsteen bps as the excited state observed in canonical duplex DNA, provide an atomic view of DNA dynamics linked to formation of Hoogsteen bps, and lay the groundwork for a potentially general strategy for solving structures of nucleic acid excited states.


Asunto(s)
Adenina/química , Emparejamiento Base , Resonancia Magnética Nuclear Biomolecular/métodos , Timina/química , ADN/química , Enlace de Hidrógeno , Estructura Molecular , Mutagénesis , Conformación de Ácido Nucleico
10.
Nucleic Acids Res ; 43(7): 3420-33, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25813047

RESUMEN

Hoogsteen (HG) base pairs (bps) provide an alternative pairing geometry to Watson-Crick (WC) bps and can play unique functional roles in duplex DNA. Here, we use structural features unique to HG bps (syn purine base, HG hydrogen bonds and constricted C1'-C1' distance across the bp) to search for HG bps in X-ray structures of DNA duplexes in the Protein Data Bank. The survey identifies 106 A•T and 34 G•C HG bps in DNA duplexes, many of which are undocumented in the literature. It also uncovers HG-like bps with syn purines lacking HG hydrogen bonds or constricted C1'-C1' distances that are analogous to conformations that have been proposed to populate the WC-to-HG transition pathway. The survey reveals HG preferences similar to those observed for transient HG bps in solution by nuclear magnetic resonance, including stronger preferences for A•T versus G•C bps, TA versus GG steps, and also suggests enrichment at terminal ends with a preference for 5'-purine. HG bps induce small local perturbations in neighboring bps and, surprisingly, a small but significant degree of DNA bending (∼14°) directed toward the major groove. The survey provides insights into the preferences and structural consequences of HG bps in duplex DNA.


Asunto(s)
Emparejamiento Base , ADN/química , Conformación de Ácido Nucleico , Cristalografía por Rayos X
11.
J Am Chem Soc ; 137(18): 5879-82, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25909625

RESUMEN

Unlike the precise structural control typical of closed assemblies, curbing the stacking of disc- and ring-shaped molecules is quite challenging. Here we report the discrete stacking of rigid aromatic oligoamide macrocycles 1. With increasing concentration, the aggregation of 1 quickly plateaus, forming a discrete oligomer, as suggested by 1D (1)H, 2D nuclear Overhauser effect, and diffusion-ordered NMR spectroscopy. Quantum-chemical calculations indicate that the tetramer of 1 is the most stable among oligomeric stacks. X-ray crystallography revealed a tetrameric stack containing identical molecules adopting two different conformations. With a defined length and an inner pore capable of accommodating distinctly different guests, the tetramers of 1 densely pack into 2D layers. Besides being a rare system of conformation-regulated supramolecular oligomerization, the discrete stacks of 1, along with their higher-order assemblies, may offer new nanotechnological applications.


Asunto(s)
Amidas/química , Compuestos Macrocíclicos/química , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Estructura Molecular , Teoría Cuántica
12.
J Biomol NMR ; 60(2-3): 77-83, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25186910

RESUMEN

Higher sensitivity of NMR spectrometers and novel isotopic labeling schemes have ushered the development of rapid data acquisition methodologies, improving the time resolution with which NMR data can be acquired. For nucleic acids, longitudinal relaxation optimization in conjunction with Ernst angle excitation (SOFAST-HMQC) for imino protons, in addition to rendering rapid pulsing, has been demonstrated to yield significant improvements in sensitivity per unit time. Extending such methodology to other spins offers a viable prospect to measure additional chemical shifts, thereby broadening their utilization for various applications. Here, we introduce the 2D [(13)C, (1)H] aromatic SOFAST-HMQC that results in overall sensitivity gain of 1.4- to 1.7-fold relative to the conventional HMQC and can also be extended to yield long-range heteronuclear chemical shifts such as the adenine imino nitrogens N1, N3, N7 and N9. The applications of these experiments range from monitoring real-time biochemical processes, drug/ligand screening, and to collecting data at very low sample concentration and/or in cases where isotopic enrichment cannot be achieved.


Asunto(s)
Espectroscopía de Resonancia Magnética con Carbono-13/métodos , Resonancia Magnética Nuclear Biomolecular , Ácidos Nucleicos/química , Espectroscopía de Protones por Resonancia Magnética/métodos
13.
Chemphyschem ; 15(9): 1872-9, 2014 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-24789578

RESUMEN

Spatially selective heteronuclear multiple-quantum coherence (SS HMQC) NMR spectroscopy is developed for solution studies of proteins. Due to "time-staggered" acquisitioning of free induction decays (FIDs) in different slices, SS HMQC allows one to use long delays for longitudinal nuclear spin relaxation at high repetition rates. To also achieve high intrinsic sensitivity, SS HMQC is implemented by combining a single spatially selective (1)H excitation pulse with nonselective (1) H 180° pulses. High-quality spectra were obtained within 66 s for a 7.6 kDa uniformly (13) C,(15) N-labeled protein, and within 45 and 90 s for, respectively, two proteins with molecular weights of 7.5 and 43 kDa, which were uniformly (2)H,(13) C,(15) N-labeled, except for having protonated methyl groups of isoleucine, leucine and valine residues.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Isoleucina/química , Isótopos/química , Leucina/química , Peso Molecular , Soluciones/química , Valina/química
14.
Chembiochem ; 14(6): 684-8, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23494854

RESUMEN

The use of aromatic (13) C-(1) H residual dipolar couplings (RDCs) to probe the conformational space populated in solution is demonstrated for the protein BPTI. RDCs allow one to assess accuracy of atomic resolution structures and potentially to characterize low-populated subspaces corresponding to "excited states" in conformationally labile systems. They also allow one to assess sampling accuracy of molecular dynamics simulations.


Asunto(s)
Aprotinina/química , Resonancia Magnética Nuclear Biomolecular , Animales , Bovinos , Simulación de Dinámica Molecular , Conformación Proteica , Soluciones
15.
J Am Chem Soc ; 134(51): 20589-92, 2012 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-23215000

RESUMEN

A new method is presented for measuring kinetic isotope effects (KIEs) by (1)H-detected 2D [(13)C,(1)H]-heteronuclear single quantum coherence (HSQC) NMR spectroscopy. The high accuracy of this approach was exemplified for the reaction catalyzed by glucose-6-phosphate dehydrogenase by comparing the 1-(13)C KIE with the published value obtained using isotope ratio mass spectrometry. High precision was demonstrated for the reaction catalyzed by 1-deoxy-D-xylulose-5-phosphate reductoisomerase from Mycobacterium tuberculosis. 2-, 3-, and 4-(13)C KIEs were found to be 1.0031(4), 1.0303(12), and 1.0148(2), respectively. These KIEs provide evidence for a cleanly rate-limiting retroaldol step during isomerization. The high intrinsic sensitivity and signal dispersion of 2D [(13)C,(1)H]-HSQC offer new avenues to study challenging systems where low substrate concentration and/or signal overlap impedes 1D (13)C NMR data acquisition. Moreover, this approach can take advantage of highest-field spectrometers, which are commonly equipped for (1)H detection with cryogenic probes.

16.
J Biomol NMR ; 54(4): 337-42, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23192291

RESUMEN

A newly implemented G-matrix Fourier transform (GFT) (4,3)D HC(C)CH experiment is presented in conjunction with (4,3)D HCCH to efficiently identify (1)H/(13)C sugar spin systems in (13)C labeled nucleic acids. This experiment enables rapid collection of highly resolved relay 4D HC(C)CH spectral information, that is, shift correlations of (13)C-(1)H groups separated by two carbon bonds. For RNA, (4,3)D HC(C)CH takes advantage of the comparably favorable 1'- and 3'-CH signal dispersion for complete spin system identification including 5'-CH. The (4,3)D HC(C)CH/HCCH based strategy is exemplified for the 30-nucleotide 3'-untranslated region of the pre-mRNA of human U1A protein.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Ácidos Nucleicos/química , Precursores del ARN/química , Isótopos de Carbono , Deuterio , Análisis de Fourier , Humanos , Ribonucleoproteína Nuclear Pequeña U1/química
17.
Tuberculosis (Edinb) ; 126: 102046, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33421909

RESUMEN

RNASeq analysis of PBMCs from treatment naïve TB patients and healthy controls revealed that M. tuberculosis (Mtb) infection dysregulates several metabolic pathways and upregulates BNIP3L/NIX receptor mediated mitophagy. Analysis of publicly available transcriptomic data from the NCBI-GEO database indicated that M. bovis (BCG) infection also induces similar rewiring of metabolic and mitophagy pathways. Mtb chronic infection and BCG in-vitro infection both downregulated oxidative phosphorylation and upregulated glycolysis and mitophagy; therefore, we used non-pathogenic mycobacterial species BCG as a model for Mtb infection to gain molecular insights and outcomes of this phenomenon. BCG infection in PBMCs and THP-1 macrophages induce mitophagy and glycolysis, leading to differentiation of naïve macrophage to M1 phenotype. Glucose consumption and lactate production were quantified by NMR, while the mitochondrial mass assessment was performed by mitotracker red uptake assay. Infected macrophages predominantly exhibit M1-phenotype, which is indicated by an increase in M1 specific cytokines (IL-6, TNF-α, and IL-1ß) and increased NOS2/ARG1, CD86/CD206 ratio. NIX knockdown abrogates this upregulation of glycolysis, mitophagy, and secretion of pro-inflammatory cytokines in BCG infected cells, indicating that mycobacterial infection-induced immunometabolic changes are executed via NIX mediated mitophagy and are essential for macrophage differentiation and resolution of infection.


Asunto(s)
Regulación de la Expresión Génica , Macrófagos/metabolismo , Proteínas de la Membrana/genética , Mitofagia/genética , Mycobacterium tuberculosis/aislamiento & purificación , Proteínas Proto-Oncogénicas/genética , Tuberculosis/genética , Proteínas Supresoras de Tumor/genética , Apoptosis , Diferenciación Celular , Células Cultivadas , ADN/genética , ADN/metabolismo , Humanos , Macrófagos/patología , Proteínas de la Membrana/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Tuberculosis/metabolismo , Tuberculosis/microbiología , Proteínas Supresoras de Tumor/metabolismo
18.
Food Res Int ; 128: 108679, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31955779

RESUMEN

Gut microbiota have been shown to affect various cellular and host response elements such as immunological, neurological, energy, storage, etc. In recent years, this has led to rapid expansion in dietary products containing probiotics, prebiotics and combination thereof in synbiotics. While benefits of consuming functional foods derived from probiotics strains have been demonstrated for various metabolites, a detailed analysis of the biochemical footprints and their benefits remain under-studied. Herein, using a combination of NMR metabolomics, microbial techniques and cell-culture assays, we have characterized metabolite profiles of probiotic viz. Lactobacillus delbruekii ATCC 9649, Lactobacillus casei ATCC 335, Lactobacillus plantarum NRC 716 and Bacillus coagulans ATCC 12425 cultures in fermented milk. We identified predominance of sugars, small chain fatty acids, organic acids and branched chain amino acids from natural abundance 13C NMR studies. Additionally, we identified myriad metabolites and their respective pathways using 1H NMR spectroscopy. Based on our findings, synbiotic fermented dairy products were customized with co-cultures and complemented with pro- and pre- biotics. Furthermore, we demonstrate epithelial cell interaction and anti-microbial activity of L. plantarum based ferment against a range of bacterial pathogens highlighting possible biochemical mechanisms for anti-microbial activity, quorum sensing, gut colonization and other beneficial factors that may be crucial. Furthermore, we propose plausible explanation against non-communicable diseases such as tumor-inhibitory, anti-proliferative and pro-apoptotic effects which has direct implications for dietary therapeutics.


Asunto(s)
Enfermedades Transmisibles/dietoterapia , Productos Lácteos Cultivados/análisis , Análisis de los Alimentos/métodos , Alimentos Funcionales/análisis , Enfermedades no Transmisibles/terapia , Probióticos/química , Dietoterapia , Humanos
19.
J Phys Chem Lett ; 11(23): 10016-10022, 2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33179931

RESUMEN

G-quadruplexes are nucleic acid motifs formed by stacking of guanosine-tetrad pseudoplanes. They perform varied biological roles, and their distinctive structural features enable diverse applications. High-resolution structural characterization of G-quadruplexes is often time-consuming and expensive, calling for effective methods. Herein, we develop NMR chemical shifts and machine learning-based methodology that allows direct, rapid, and reliable analysis of canonical three-plane DNA G-quadruplexes sans isotopic enrichment. We show, for the first time, that each unique topology enforces a specific distribution of glycosidic torsion angles. Newly acquired carbon chemical shifts are exquisite probes for the dihedral angle distribution and provide immediate and unambiguous backbone topology assignment. The support vector machine learning methodology aids resonance assignment by providing plane indices for tetrad-forming guanosines. We further demonstrate the robustness by successful application of the methodology to a sequence that folds in two dissimilar topologies under different ionic conditions, providing its first atomic-level characterization.


Asunto(s)
ADN/química , Resonancia Magnética Nuclear Biomolecular , G-Cuádruplex
20.
Nat Struct Mol Biol ; 27(6): 604, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32376863

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA