Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Pathol ; 193(9): 1156-1169, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37263345

RESUMEN

Organoids are novel in vitro models to study intercellular cross talk between the different types of cells in disease pathophysiology. To better understand the underlying mechanisms driving the progression of primary sclerosing cholangitis (PSC), scaffold-free multicellular three-dimensional cholangiocyte organoids (3D-CHOs) were developed using primary liver cells derived from normal subjects and patients with PSC. Human liver samples from healthy donors and patients with PSC were used to isolate primary cholangiocytes [epithelial cell adhesion molecule (EpCam)+/ cytokeratin-19+], liver endothelial cells (CD31+), and hepatic stellate cells (HSCs; CD31-/CD68-/desmin+/vitamin A+). 3D-CHOs were formed using cholangiocytes, HSCs, and liver endothelial cells, and kept viable for up to 1 month. Isolated primary cell lines and 3D-CHOs were further characterized by immunofluorescence, quantitative RT-PCR, and transmission electron microscopy. Transcription profiles for cholangiocytes (SOX9, CFTR, EpCAM, AE, SCT, and SCTR), fibrosis (ACTA2, COL1A1, DESMIN, and TGFß1), angiogenesis (PECAM, VEGF, CDH5, and vWF), and inflammation (IL-6 and TNF-α) confirmed PSC phenotypes of 3D-CHOs. Because cholangiocytes develop a neuroendocrine phenotype and express neuromodulators, confocal immunofluorescence was used to demonstrate localization of the neurokinin-1 receptor within cytokeratin-19+ cholangiocytes and desmin+ HSCs. Moreover, 3D-CHOs from patients with PSC confirmed PSC phenotypes with up-regulated neurokinin-1 receptor, tachykinin precursor 1, and down-regulated membrane metalloendopeptidase. Scaffold-free multicellular 3D-CHOs showed superiority as an in vitro model in mimicking PSC in vivo phenotypes compared with two-dimensional cell culture, which can be used in PSC disease-related research.


Asunto(s)
Colangitis Esclerosante , Humanos , Colangitis Esclerosante/metabolismo , Queratina-19 , Molécula de Adhesión Celular Epitelial , Células Endoteliales/metabolismo , Desmina , Receptores de Neuroquinina-1 , Organoides/metabolismo
2.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38999940

RESUMEN

Hepatocellular carcinoma (HCC) is the sixth most prevalent cancer and a significant global health burden, with increasing incidence rates and limited treatment options. Immunotherapy has become a promising approach due to its ability to affect the immune microenvironment and promote antitumor responses. The immune microenvironment performs an essential role in both the progression and the development of HCC, with different characteristics based on specific immune cells and etiological factors. Immune checkpoint inhibitors, including programmed death-1/programmed death-ligand 1 inhibitors (pembrolizumab, nivolumab, and durvalumab) and cytotoxic T lymphocyte antigen-4 inhibitors (tremelimumab and ipilimumab), have the potential to treat advanced HCC and overcome adverse effects, such as liver failure and chemoresistance. Phase II and phase III clinical trials highlight the efficacy of pembrolizumab and nivolumab, respectively, in advanced HCC patients, as demonstrated by their positive effects on overall survival and progression-free survival. Tremelimumab has exhibited modest response rates, though it does possess antiviral activity. Thus, it is still being investigated in ongoing clinical trials. Combination therapies with multiple drugs have demonstrated potential benefits in terms of survival and tumor response rates, improving patient outcomes compared to monotherapy, especially for advanced-stage HCC. This review addresses the clinical trials of immunotherapies for early-, intermediate-, and advanced-stage HCC. Additionally, it highlights how combination therapy can significantly enhance overall survival, progression-free survival, and objective response rate in advanced-stage HCC, where treatment options are limited.


Asunto(s)
Carcinoma Hepatocelular , Inmunoterapia , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/tratamiento farmacológico , Inmunoterapia/métodos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Terapia Combinada , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
3.
Semin Liver Dis ; 43(1): 24-30, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36652958

RESUMEN

Growth hormone (GH) and downstream insulin-like growth factor 1 (IGF1) signaling mediate growth and metabolism. GH deficiency causes short stature or dwarfism, and excess GH causes acromegaly. Although the association of GH/IGF1 signaling with liver diseases has been suggested previously, current studies are controversial and the functional roles of GH/IGF1 signaling are still undefined. GH supplementation therapy showed promising therapeutic effects in some patients, such as non-alcoholic fatty liver disease, but inhibition of GH signaling may be beneficial for other liver diseases, such as hepatocellular carcinoma. The functional roles of GH/IGF1 signaling and the effects of agonists/antagonists targeting this signaling may differ depending on the liver injury or animal models. This review summarizes current controversial studies of GH/IGF1 signaling in liver diseases and discusses therapeutic potentials of GH therapy.


Asunto(s)
Acromegalia , Hormona de Crecimiento Humana , Hepatopatías , Animales , Humanos , Acromegalia/tratamiento farmacológico , Acromegalia/metabolismo , Hormona del Crecimiento/metabolismo , Hormona del Crecimiento/uso terapéutico , Hormona de Crecimiento Humana/uso terapéutico
4.
Am J Pathol ; 192(6): 826-836, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35337836

RESUMEN

Primary liver cancer includes hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Incidence of liver cancer has been increasing in recent years, and the 5-year survival is <20%. HCC and CCA are often accompanied with a dense stroma coupled with infiltrated immune cells, which is referred to as the tumor microenvironment. Populations of specific immune cells, such as high density of CD163+ macrophages and low density of CD8+ T cells, are associated with prognosis and survival rates in both HCC and CCA. Immune cells in the tumor microenvironment can be a therapeutic target for liver cancer treatments. Previous studies have introduced immunotherapy using immune checkpoint inhibitors, pulsed dendritic cells, or transduced T cells, to enhance cytotoxicity of immune cells and inhibit tumor growth. This review summarizes current understanding of the roles of immune cells in primary liver cancer covering HCC and CCA.


Asunto(s)
Neoplasias de los Conductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Linfocitos T CD8-positivos/patología , Carcinoma Hepatocelular/patología , Colangiocarcinoma/patología , Humanos , Neoplasias Hepáticas/patología , Microambiente Tumoral
5.
Hepatology ; 75(4): 797-813, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34743371

RESUMEN

BACKGROUND AND AIMS: Melatonin reduces biliary damage and liver fibrosis in cholestatic models by interaction with melatonin receptors 1A (MT1) and 1B (MT2). MT1 and MT2 can form heterodimers and homodimers, but MT1 and MT2 can heterodimerize with the orphan receptor G protein-coupled receptor 50 (GPR50). MT1/GPR50 dimerization blocks melatonin binding, but MT2/GPR50 dimerization does not affect melatonin binding. GPR50 can dimerize with TGFß receptor type I (TGFßRI) to activate this receptor. We aimed to determine the differential roles of MT1 and MT2 during cholestasis. APPROACH AND RESULTS: Wild-type (WT), MT1 knockout (KO), MT2KO, and MT1/MT2 double KO (DKO) mice underwent sham or bile duct ligation (BDL); these mice were also treated with melatonin. BDL WT and multidrug resistance 2 KO (Mdr2-/- ) mice received mismatch, MT1, or MT2 Vivo-Morpholino. Biliary expression of MT1 and GPR50 increases in cholestatic rodents and human primary sclerosing cholangitis (PSC) samples. Loss of MT1 in BDL and Mdr2-/- mice ameliorated biliary and liver damage, whereas these parameters were enhanced following loss of MT2 and in DKO mice. Interestingly, melatonin treatment alleviated BDL-induced biliary and liver injury in BDL WT and BDL MT2KO mice but not in BDL MT1KO or BDL DKO mice, demonstrating melatonin's interaction with MT1. Loss of MT2 or DKO mice exhibited enhanced GPR50/TGFßR1 signaling, which was reduced by loss of MT1. CONCLUSIONS: Melatonin ameliorates liver phenotypes through MT1, whereas down-regulation of MT2 promotes liver damage through GPR50/TGFßR1 activation. Blocking GPR50/TGFßR1 binding through modulation of melatonin signaling may be a therapeutic approach for PSC.


Asunto(s)
Colestasis , Melatonina , Animales , Colestasis/complicaciones , Colestasis/tratamiento farmacológico , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/etiología , Melatonina/metabolismo , Melatonina/farmacología , Melatonina/uso terapéutico , Ratones , Ratones Noqueados , Receptor de Melatonina MT1/genética , Receptor de Melatonina MT1/metabolismo , Receptor de Melatonina MT2/genética , Receptor de Melatonina MT2/metabolismo
6.
Semin Liver Dis ; 42(4): 423-433, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36044928

RESUMEN

Despite the rising prevalence of nonalcoholic fatty liver disease (NAFLD), the underlying disease pathophysiology remains unclear. There is a great need for an efficient and reliable "human" in vitro model to study NAFLD and the progression to nonalcoholic steatohepatitis (NASH), which will soon become the leading indication for liver transplantation. Here, we review the recent developments in the use of three-dimensional (3D) liver organoids as a model to study NAFLD and NASH pathophysiology and possible treatments. Various techniques that are currently used to make liver organoids are discussed, such as the use of induced pluripotent stem cells versus primary cell lines and human versus murine cells. Moreover, methods for inducing lipid droplet accumulation and fibrosis to model NAFLD are explored. Finally, the limitations specific to the 3D organoid model for NAFLD/NASH are reviewed, highlighting the need for further development of multilineage models to include hepatic nonparenchymal cells and immune cells. The ultimate goal is to be able to accurately recapitulate the complex liver microenvironment in which NAFLD develops and progresses to NASH.


Asunto(s)
Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Organoides/metabolismo , Progresión de la Enfermedad , Hígado/metabolismo , Microambiente Tumoral
7.
Hepatology ; 74(1): 491-502, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33222247

RESUMEN

Cholangiopathies, such as primary sclerosing cholangitis, biliary atresia, and cholangiocarcinoma, have limited experimental models. Not only cholangiocytes but also other hepatic cells including hepatic stellate cells and macrophages are involved in the pathophysiology of cholangiopathies, and these hepatic cells orchestrate the coordinated response against diseased conditions. Classic two-dimensional monolayer cell cultures do not resemble intercellular cell-to-cell interaction and communication; however, three-dimensional cell culture systems, such as organoids and spheroids, can mimic cellular interaction and architecture between hepatic cells. Previous studies have demonstrated the generation of hepatic or biliary organoids/spheroids using various cell sources including pluripotent stem cells, hepatic progenitor cells, primary cells from liver biopsies, and immortalized cell lines. Gene manipulation, such as transfection and transduction can be performed in organoids, and established organoids have functional characteristics which can be suitable for drug screening. This review summarizes current methodologies for organoid/spheroid formation and a potential for three-dimensional hepatic cell cultures as in vitro models of cholangiopathies.


Asunto(s)
Neoplasias de los Conductos Biliares/patología , Atresia Biliar/patología , Colangiocarcinoma/patología , Colangitis Esclerosante/patología , Cultivo Primario de Células/métodos , Conductos Biliares Intrahepáticos/citología , Conductos Biliares Intrahepáticos/patología , Comunicación Celular , Línea Celular , Células Estrelladas Hepáticas , Hepatocitos , Humanos , Hígado/citología , Hígado/patología , Macrófagos , Organoides/patología , Células Madre Pluripotentes , Esferoides Celulares/patología
8.
Am J Pathol ; 190(11): 2185-2193, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32919978

RESUMEN

Chronic alcohol consumption is linked to the development of alcohol-associated liver disease (ALD). This disease is characterized by a clinical spectrum ranging from steatosis to hepatocellular carcinoma. Several cell types are involved in ALD progression, including hepatic macrophages. Kupffer cells (KCs) are the resident macrophages of the liver involved in the progression of ALD by activating pathways that lead to the production of cytokines and chemokines. In addition, KCs are involved in the production of reactive oxygen species. Reactive oxygen species are linked to the induction of oxidative stress and inflammation in the liver. These events are activated by the bacterial endotoxin, lipopolysaccharide, that is released from the gastrointestinal tract through the portal vein to the liver. Lipopolysaccharide is recognized by receptors on KCs that are responsible for triggering several pathways that activate proinflammatory cytokines involved in alcohol-induced liver injury. In addition, KCs activate hepatic stellate cells that are involved in liver fibrosis. Novel strategies to treat ALD aim at targeting Kupffer cells. These interventions modulate Kupffer cell activation or macrophage polarization. Evidence from mouse models and early clinical studies in patients with ALD injury supports the notion that pathogenic macrophage subsets can be successfully translated into novel treatment options for patients with this disease.


Asunto(s)
Comunicación Celular , Células Estrelladas Hepáticas/metabolismo , Macrófagos del Hígado/metabolismo , Hepatopatías Alcohólicas/metabolismo , Hígado/metabolismo , Animales , Quimiocinas/metabolismo , Modelos Animales de Enfermedad , Células Estrelladas Hepáticas/patología , Humanos , Macrófagos del Hígado/patología , Hígado/patología , Hepatopatías Alcohólicas/patología , Ratones , Especies Reactivas de Oxígeno/metabolismo
9.
J Pineal Res ; 70(2): e12699, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33020940

RESUMEN

Our daily rhythmicity is controlled by a circadian clock with a specific set of genes located in the suprachiasmatic nucleus in the hypothalamus. Mast cells (MCs) are major effector cells that play a protective role against pathogens and inflammation. MC distribution and activation are associated with the circadian rhythm via two major pathways, IgE/FcεRI- and IL-33/ST2-mediated signaling. Furthermore, there is a robust oscillation between clock genes and MC-specific genes. Melatonin is a hormone derived from the amino acid tryptophan and is produced primarily in the pineal gland near the center of the brain, and histamine is a biologically active amine synthesized from the decarboxylation of the amino acid histidine by the L-histidine decarboxylase enzyme. Melatonin and histamine are previously reported to modulate circadian rhythms by pathways incorporating various modulators in which the nuclear factor-binding near the κ light-chain gene in B cells, NF-κB, is the common key factor. NF-κB interacts with the core clock genes and disrupts the production of pro-inflammatory cytokine mediators such as IL-6, IL-13, and TNF-α. Currently, there has been no study evaluating the interdependence between melatonin and histamine with respect to circadian oscillations in MCs. Accumulating evidence suggests that restoring circadian rhythms in MCs by targeting melatonin and histamine via NF-κB may be promising therapeutic strategy for MC-mediated inflammatory diseases. This review summarizes recent findings for circadian-mediated MC functional roles and activation paradigms, as well as the therapeutic potentials of targeting circadian-mediated melatonin and histamine signaling in MC-dependent inflammatory diseases.


Asunto(s)
Histamina/metabolismo , Mastocitos/metabolismo , Melatonina/metabolismo , Glándula Pineal/metabolismo , Animales , Ritmo Circadiano/fisiología , Histidina Descarboxilasa/metabolismo , Humanos , Interleucina-13/metabolismo , Interleucina-6/metabolismo , Mastocitos/inmunología , Glándula Pineal/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
10.
Hepatology ; 69(1): 420-430, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30070383

RESUMEN

Ductular reaction (DR) is characterized by the proliferation of reactive bile ducts induced by liver injuries. DR is pathologically recognized as bile duct hyperplasia and is commonly observed in biliary disorders. It can also be identified in various liver disorders including nonalcoholic fatty liver disease. DR is associated with liver fibrosis and damage, and the extent of DR parallels to patient mortality. DR raises scientific interests because it is associated with transdifferentiation of liver cells and may play an important role in hepatic regeneration. The origin of active cells during DR can be cholangiocytes, hepatocytes, or hepatic progenitor cells, and associated signaling pathways could differ depending on the specific liver injury or animal models used in the study. Although further studies are needed to elucidate detailed mechanisms and the functional roles in liver diseases, DR can be a therapeutic target to inhibit liver fibrosis and to promote liver regeneration. This review summarizes previous studies of DR identified in patients and animal models as well as currently understood mechanisms of DR.


Asunto(s)
Conductos Biliares/patología , Hepatopatías/complicaciones , Proliferación Celular , Hepatocitos/patología , Humanos , Hiperplasia/etiología , Investigación Biomédica Traslacional
11.
Hepatology ; 69(6): 2562-2578, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30723922

RESUMEN

Cholangiopathies are diseases that affect cholangiocytes, the cells lining the biliary tract. Liver stem cells (LSCs) are able to differentiate into all cells of the liver and possibly influence the surrounding liver tissue by secretion of signaling molecules. One way in which cells can interact is through secretion of extracellular vesicles (EVs), which are small membrane-bound vesicles that contain proteins, microRNAs (miRNAs), and cytokines. We evaluated the contents of liver stem cell-derived EVs (LSCEVs), compared their miRNA contents to those of EVs isolated from hepatocytes, and evaluated the downstream targets of these miRNAs. We finally evaluated the crosstalk among LSCs, cholangiocytes, and human hepatic stellate cells (HSCs). We showed that LSCEVs were able to reduce ductular reaction and biliary fibrosis in multidrug resistance protein 2 (MDR2)-/- mice. Additionally, we showed that cholangiocyte growth was reduced and HSCs were deactivated in LSCEV-treated mice. Evaluation of LSCEV contents compared with EVs derived from hepatocytes showed a large increase in the miRNA, lethal-7 (let-7). Further evaluation of let-7 in MDR2-/- mice and human primary sclerosing cholangitis samples showed reduced levels of let-7 compared with controls. In liver tissues and isolated cholangiocytes, downstream targets of let-7 (identified by ingenuity pathway analysis), Lin28a (Lin28 homolog A), Lin28b (Lin28 homolog B), IL-13 (interleukin 13), NR1H4 (nuclear receptor subfamily 1 group H member 4) and NF-κB (nuclear factor kappa B), are elevated in MDR2-/- mice, but treatment with LSCEVs reduced levels of these mediators of ductular reaction and biliary fibrosis through the inhibition of NF-κB and IL-13 signaling pathways. Evaluation of crosstalk using cholangiocyte supernatants from LSCEV-treated cells on cultured HSCs showed that HSCs had reduced levels of fibrosis and increased senescence. Conclusion: Our studies indicate that LSCEVs could be a possible treatment for cholangiopathies or could be used for target validation for future therapies.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Diferenciación Celular/fisiología , Hepatocitos/citología , Cirrosis Hepática/metabolismo , MicroARNs/metabolismo , Células Madre/citología , Animales , Células Cultivadas/citología , Células Cultivadas/metabolismo , Colangitis Esclerosante/metabolismo , Colangitis Esclerosante/patología , Modelos Animales de Enfermedad , Femenino , Hepatocitos/fisiología , Humanos , Cirrosis Hepática/patología , Ratones , Ratones Noqueados , Distribución Aleatoria , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Factores de Riesgo , Sensibilidad y Especificidad , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
12.
J Pineal Res ; 68(3): e12639, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32061110

RESUMEN

Circadian rhythms and clock gene expressions are regulated by the suprachiasmatic nucleus in the hypothalamus, and melatonin is produced in the pineal gland. Although the brain detects the light through retinas and regulates rhythms and melatonin secretion throughout the body, the liver has independent circadian rhythms and expressions as well as melatonin production. Previous studies indicate the association between circadian rhythms with various liver diseases, and disruption of rhythms or clock gene expression may promote liver steatosis, inflammation, or cancer development. It is well known that melatonin has strong antioxidant effects. Alcohol drinking or excess fatty acid accumulation produces reactive oxygen species and oxidative stress in the liver leading to liver injuries. Melatonin administration protects these oxidative stress-induced liver damage and improves liver conditions. Recent studies have demonstrated that melatonin administration is not limited to antioxidant effects and it has various other effects contributing to the management of liver conditions. Accumulating evidence suggests that restoring circadian rhythms or expressions as well as melatonin supplementation may be promising therapeutic strategies for liver diseases. This review summarizes recent findings for the functional roles and therapeutic potentials of circadian rhythms and melatonin in liver diseases.


Asunto(s)
Ritmo Circadiano/fisiología , Hepatopatías , Melatonina/metabolismo , Animales , Humanos
13.
Int J Mol Sci ; 20(9)2019 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-31052525

RESUMEN

Liver diseases are perpetuated by the orchestration of hepatocytes and other hepatic non-parenchymal cells. These cells communicate and regulate with each other by secreting mediators such as peptides, hormones, and cytokines. Extracellular vesicles (EVs), small particles secreted from cells, contain proteins, DNAs, and RNAs as cargos. EVs have attracted recent research interests since they can communicate information from donor cells to recipient cells thereby regulating physiological events via delivering of specific cargo mediators. Previous studies have demonstrated that liver cells secrete elevated numbers of EVs during diseased conditions, and those EVs are internalized into other liver cells inducing disease-related reactions such as inflammation, angiogenesis, and fibrogenesis. Reactions in recipient cells are caused by proteins and RNAs carried in disease-derived EVs. This review summarizes cell-to-cell communication especially via EVs in the pathogenesis of liver diseases and their potential as a novel therapeutic target.


Asunto(s)
Comunicación Celular , Vesículas Extracelulares/patología , Hepatocitos/patología , Hepatopatías/patología , Animales , Vesículas Extracelulares/metabolismo , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/terapia , Hepatopatías/metabolismo , Hepatopatías/terapia , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Neovascularización Patológica/terapia
14.
J Biol Chem ; 292(27): 11336-11347, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28536261

RESUMEN

The let-7/Lin28 axis is associated with the regulation of key cellular regulatory genes known as microRNAs in various human disorders and cancer development. This study evaluated the role of the let-7/Lin28 axis in regulating a mesenchymal phenotype of hepatic stellate cells in alcoholic liver injury. We identified that ethanol feeding significantly down-regulated several members of the let-7 family in mouse liver, including let-7a and let-7b. Similarly, the treatment of human hepatic stellate cells (HSCs) with lipopolysaccharide (LPS) and transforming growth factor-ß (TGF-ß) significantly decreased the expressions of let-7a and let-7b. Conversely, overexpression of let-7a and let-7b suppressed the myofibroblastic activation of cultured human HSCs induced by LPS and TGF-ß, as evidenced by repressed ACTA2 (α-actin 2), COL1A1 (collagen 1A1), TIMP1 (TIMP metallopeptidase inhibitor 1), and FN1 (fibronectin 1); this supports the notion that HSC activation is controlled by let-7. A combination of bioinformatics, dual-luciferase reporter assay, and Western blot analysis revealed that Lin28B and high-mobility group AT-hook (HMGA2) were the direct targets of let-7a and let-7b. Furthermore, Lin28B deficiency increased the expression of let-7a/let-7b as well as reduced HSC activation and liver fibrosis in mice with alcoholic liver injury. This feedback regulation of let-7 by Lin28B is verified in hepatic stellate cells isolated by laser capture microdissection from the model. The identification of the let-7/Lin28 axis as an important regulator of HSC activation as well as its upstream modulators and down-stream targets will provide insights into the involvement of altered microRNA expression in contributing to the pathogenesis of alcoholic liver fibrosis and novel therapeutic approaches for human alcoholic liver diseases.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Células Estrelladas Hepáticas/metabolismo , Hepatopatías Alcohólicas/metabolismo , Hígado/metabolismo , MicroARNs/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Actinas/genética , Actinas/metabolismo , Animales , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Proteínas de Unión al ADN/genética , Células Estrelladas Hepáticas/patología , Humanos , Lipopolisacáridos/toxicidad , Hígado/patología , Hepatopatías Alcohólicas/genética , Hepatopatías Alcohólicas/patología , Ratones , MicroARNs/genética , Proteínas de Unión al ARN/genética , Factor de Crecimiento Transformador beta/farmacología
15.
Biochim Biophys Acta Mol Basis Dis ; 1864(4 Pt B): 1262-1269, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28648950

RESUMEN

Cholangiocytes, epithelial cells that line the biliary epithelium, are the primary target cells for cholangiopathies including primary sclerosing cholangitis and primary biliary cholangitis. Quiescent cholangiocytes respond to biliary damage and acquire an activated neuroendocrine phenotype to maintain the homeostasis of the liver. The typical response of cholangiocytes is proliferation leading to bile duct hyperplasia, which is a characteristic of cholestatic liver diseases. Current studies have identified various signaling pathways that are associated with cholangiocyte proliferation/loss and liver fibrosis in cholangiopathies using human samples and rodent models. Although recent studies have demonstrated that extracellular vesicles and microRNAs could be mediators that regulate these messenger/receptor axes, further studies are required to confirm their roles. This review summarizes current studies of biliary response and cholangiocyte proliferation during cholestatic liver injury with particular emphasis on the secretin/secretin receptor axis. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.


Asunto(s)
Conductos Biliares/patología , Proliferación Celular , Colestasis/etiología , Células Epiteliales/patología , Cirrosis Hepática/etiología , Animales , Conductos Biliares/citología , Conductos Biliares/metabolismo , Colestasis/patología , Células Epiteliales/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patología , Humanos , Hiperplasia/etiología , Hiperplasia/patología , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/patología , MicroARNs/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de la Hormona Gastrointestinal/metabolismo , Secretina/metabolismo , Transducción de Señal/genética
16.
Am J Pathol ; 187(12): 2788-2798, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29128099

RESUMEN

Alcoholic liver disease remains a major cause of liver-related morbidity and mortality, which ranges from alcoholic steatohepatitis to fibrosis/cirrhosis and hepatocellular carcinoma, and the related mechanisms are understood poorly. In this study, we aimed to investigate the role of miR-34a in alcohol-induced cellular senescence and liver fibrosis. We found that hepatic miR-34a expression was upregulated in ethanol-fed mice and heavy drinkers with steatohepatitis compared with respective controls. Mice treated with miR-34a Vivo-Morpholino developed less severe liver fibrosis than wild-type mice after 5 weeks of ethanol feeding. Further mechanism exploration showed that inhibition of miR-34a increased cellular senescence of hepatic stellate cells (HSCs) in ethanol-fed mice, although it decreased senescence in total liver and hepatocytes, which was verified by the changes of senescence-associated ß-galactosidase and gene expression. Furthermore, enhanced cellular senescence was observed in liver tissues from steatohepatitis patients compared with healthy controls. In addition, the expression of transforming growth factor-ß1, drosophila mothers against decapentaplegic protein 2 (Smad2), and Smad3 was decreased after inhibition of miR-34a in ethanol-fed mice. Our in vitro experiments showed that silencing of miR-34a partially blocked activation of HSCs by lipopolysaccharide and enhanced senescence of HSCs. Furthermore, inhibition of miR-34a decreased lipopolysaccharide-induced fibrotic gene expression in cultured hepatocytes. In conclusion, our data suggest that miR-34a functions as a profibrotic factor that promotes alcohol-induced liver fibrosis by reducing HSC senescence and increasing the senescence of hepatocytes.


Asunto(s)
Senescencia Celular/genética , Células Estrelladas Hepáticas/patología , Hepatocitos/patología , Cirrosis Hepática/patología , Hepatopatías Alcohólicas/patología , MicroARNs/metabolismo , Animales , Humanos , Cirrosis Hepática/etiología , Cirrosis Hepática/genética , Hepatopatías Alcohólicas/complicaciones , Hepatopatías Alcohólicas/genética , Ratones
18.
Hepatology ; 65(2): 544-559, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27639079

RESUMEN

Biliary-committed progenitor cells (small mouse cholangiocytes; SMCCs) from small bile ducts are more resistant to hepatobiliary injury than large mouse cholangiocytes (LGCCs) from large bile ducts. The definitive endoderm marker, forkhead box A2 (FoxA2), is the key transcriptional factor that regulates cell differentiation and tissue regeneration. Our aim was to characterize the translational role of FoxA2 during cholestatic liver injury. Messenger RNA expression in SMCCs and LGCCs was assessed by polymerase chain reaction (PCR) array analysis. Liver tissues and hepatic stellate cells (HSCs) from primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC) patients were tested by real-time PCR for methylation, senescence, and fibrosis markers. Bile duct ligation (BDL) and multidrug resistance protein 2 (MDR2) knockout mice (MDR2-/- ) were used as animal models of cholestatic liver injury with or without healthy transplanted large or small cholangiocytes. We demonstrated that FoxA2 was notably enhanced in murine liver progenitor cells and SMCCs and was silenced in human PSC and PBC liver tissues relative to respective controls that are correlated with the epigenetic methylation enzymes, DNA methyltransferase (DNMT) 1 and DNMT3B. Serum alanine aminotransferase and aspartate aminotransferase levels in nonobese diabetic/severe combined immunodeficiency mice engrafted with SMCCs post-BDL showed significant changes compared to vehicle-treated mice, along with improved liver fibrosis. Enhanced expression of FoxA2 was observed in BDL mouse liver after SMCC cell therapy. Furthermore, activation of fibrosis signaling pathways were observed in BDL/MDR2-/- mouse liver as well as in isolated HSCs by laser capture microdissection, and these signals were recovered along with reduced hepatic senescence and enhanced hepatic stellate cellular senescence after SMCC engraft. CONCLUSION: The definitive endoderm marker and the positive regulator of biliary development, FoxA2, mediates the therapeutic effect of biliary-committed progenitor cells during cholestatic liver injury. (Hepatology 2017;65:544-559).


Asunto(s)
Colestasis/patología , Heterogeneidad Genética , Factor Nuclear 3-beta del Hepatocito/genética , Hígado/lesiones , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento , Animales , Conductos Biliares/patología , Comunicación Celular/genética , Colestasis/genética , Modelos Animales de Enfermedad , Regulación hacia Abajo , Regulación de la Expresión Génica , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Hígado/patología , Ratones , Ratones Noqueados , Persona de Mediana Edad , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Muestreo
19.
Am J Pathol ; 186(9): 2238-47, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27452297

RESUMEN

Kupffer cells are the resident macrophages in the liver. They are located in hepatic sinusoid, which allows them to remove foreign materials, pathogens, and apoptotic cells efficiently. Activated Kupffer cells secrete various mediators, including cytokines and chemokines, to initiate immune responses, inflammation, or recruitment of other liver cells. Bile duct ligation (BDL) surgery in rodents is often studied as an animal model of cholestatic liver disease, characterized by obstruction of bile flow. BDL mice show altered functional activities of Kupffer cells compared with sham-operated mice, including elevated cytokine secretion and impaired bacterial clearance. Various mediators produced by other liver cells can regulate Kupffer cell activation, which suggest that Kupffer cells orchestrate with other liver cells to relay inflammatory signals and to maintain liver homeostasis during BDL-induced liver injury. Blocking or depletion of Kupffer cells, an approach for the treatment of liver diseases, has shown controversial implications. Procedures in Kupffer cell research have limitations and may produce various results in Kupffer cell research. It is important, however, to reveal underlying mechanisms of activation and functions of Kupffer cells, followed by hepatic inflammation and fibrosis. This review summarizes present Kupffer cell studies in cholestatic liver injury.


Asunto(s)
Colestasis/fisiopatología , Macrófagos del Hígado/metabolismo , Macrófagos del Hígado/patología , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA