Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Cell ; 180(4): 717-728.e19, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-32084341

RESUMEN

Consumption of glucosinolates, pro-drug-like metabolites abundant in Brassica vegetables, has been associated with decreased risk of certain cancers. Gut microbiota have the ability to metabolize glucosinolates, generating chemopreventive isothiocyanates. Here, we identify a genetic and biochemical basis for activation of glucosinolates to isothiocyanates by Bacteroides thetaiotaomicron, a prominent gut commensal species. Using a genome-wide transposon insertion screen, we identified an operon required for glucosinolate metabolism in B. thetaiotaomicron. Expression of BT2159-BT2156 in a non-metabolizing relative, Bacteroides fragilis, resulted in gain of glucosinolate metabolism. We show that isothiocyanate formation requires the action of BT2158 and either BT2156 or BT2157 in vitro. Monocolonization of mice with mutant BtΔ2157 showed reduced isothiocyanate production in the gastrointestinal tract. These data provide insight into the mechanisms by which a common gut bacterium processes an important dietary nutrient.


Asunto(s)
Bacteroides thetaiotaomicron/metabolismo , Carbohidratos de la Dieta/metabolismo , Glucosinolatos/metabolismo , Intestinos/microbiología , Animales , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/patogenicidad , Regulación Bacteriana de la Expresión Génica , Humanos , Masculino , Ratones , Operón , Simbiosis
2.
Nature ; 624(7990): 182-191, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37938780

RESUMEN

Plants synthesize numerous alkaloids that mimic animal neurotransmitters1. The diversity of alkaloid structures is achieved through the generation and tailoring of unique carbon scaffolds2,3, yet many neuroactive alkaloids belong to a scaffold class for which no biosynthetic route or enzyme catalyst is known. By studying highly coordinated, tissue-specific gene expression in plants that produce neuroactive Lycopodium alkaloids4, we identified an unexpected enzyme class for alkaloid biosynthesis: neofunctionalized α-carbonic anhydrases (CAHs). We show that three CAH-like (CAL) proteins are required in the biosynthetic route to a key precursor of the Lycopodium alkaloids by catalysing a stereospecific Mannich-like condensation and subsequent bicyclic scaffold generation. Also, we describe a series of scaffold tailoring steps that generate the optimized acetylcholinesterase inhibition activity of huperzine A5. Our findings suggest a broader involvement of CAH-like enzymes in specialized metabolism and demonstrate how successive scaffold tailoring can drive potency against a neurological protein target.


Asunto(s)
Alcaloides , Anhidrasas Carbónicas , Modelos Neurológicos , Plantas , Animales , Acetilcolinesterasa/metabolismo , Alcaloides/biosíntesis , Alcaloides/síntesis química , Alcaloides/metabolismo , Alcaloides/farmacología , Anhidrasas Carbónicas/genética , Anhidrasas Carbónicas/metabolismo , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Regulación de la Expresión Génica de las Plantas , Neurotransmisores/metabolismo , Plantas/enzimología , Plantas/genética , Plantas/metabolismo , Sesquiterpenos/síntesis química , Sesquiterpenos/química , Sesquiterpenos/farmacología , Lycopodium/química , Lycopodium/metabolismo
3.
Nature ; 621(7977): 162-170, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37587342

RESUMEN

Certain bacterial strains from the microbiome induce a potent, antigen-specific T cell response1-5. However, the specificity of microbiome-induced T cells has not been explored at the strain level across the gut community. Here, we colonize germ-free mice with complex defined communities (roughly 100 bacterial strains) and profile T cell responses to each strain. The pattern of responses suggests that many T cells in the gut repertoire recognize several bacterial strains from the community. We constructed T cell hybridomas from 92 T cell receptor (TCR) clonotypes; by screening every strain in the community against each hybridoma, we find that nearly all the bacteria-specific TCRs show a one-to-many TCR-to-strain relationship, including 13 abundant TCR clonotypes that each recognize 18 Firmicutes. By screening three pooled bacterial genomic libraries, we discover that these 13 clonotypes share a single target: a conserved substrate-binding protein from an ATP-binding cassette transport system. Peripheral regulatory T cells and T helper 17 cells specific for an epitope from this protein are abundant in community-colonized and specific pathogen-free mice. Our work reveals that T cell recognition of commensals is focused on widely conserved, highly expressed cell-surface antigens, opening the door to new therapeutic strategies in which colonist-specific immune responses are rationally altered or redirected.


Asunto(s)
Bacterias , Microbioma Gastrointestinal , Linfocitos T , Animales , Ratones , Antígenos de Superficie/inmunología , Bacterias/clasificación , Bacterias/inmunología , Firmicutes/inmunología , Microbioma Gastrointestinal/inmunología , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Linfocitos T/inmunología , Simbiosis/inmunología , Vida Libre de Gérmenes , Receptores de Antígenos de Linfocitos T/inmunología , Hibridomas/citología , Hibridomas/inmunología , Separación Celular
4.
Nature ; 584(7819): 148-153, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32699417

RESUMEN

Few complete pathways have been established for the biosynthesis of medicinal compounds from plants. Accordingly, many plant-derived therapeutics are isolated directly from medicinal plants or plant cell culture1. A lead example is colchicine, a US Food and Drug Administration (FDA)-approved treatment for inflammatory disorders that is sourced from Colchicum and Gloriosa species2-5. Here we use a combination of transcriptomics, metabolic logic and pathway reconstitution to elucidate a near-complete biosynthetic pathway to colchicine without prior knowledge of biosynthetic genes, a sequenced genome or genetic tools in the native host. We uncovered eight genes from Gloriosa superba for the biosynthesis of N-formyldemecolcine, a colchicine precursor that contains the characteristic tropolone ring and pharmacophore of colchicine6. Notably, we identified a non-canonical cytochrome P450 that catalyses the remarkable ring expansion reaction that is required to produce the distinct carbon scaffold of colchicine. We further used the newly identified genes to engineer a biosynthetic pathway (comprising 16 enzymes in total) to N-formyldemecolcine in Nicotiana benthamiana starting from the amino acids phenylalanine and tyrosine. This study establishes a metabolic route to tropolone-containing colchicine alkaloids and provides insights into the unique chemistry that plants use to generate complex, bioactive metabolites from simple amino acids.


Asunto(s)
Vías Biosintéticas , Colchicina/biosíntesis , Ingeniería Metabólica , Vías Biosintéticas/genética , Colchicaceae/enzimología , Colchicaceae/genética , Colchicaceae/metabolismo , Colchicina/química , Colchicina/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación de la Expresión Génica de las Plantas , Metabolómica , Fenilalanina/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Transcriptoma , Tirosina/metabolismo
5.
Nature ; 584(7821): E35, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32728219

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Plant Cell ; 33(3): 750-765, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33955491

RESUMEN

Systemic acquired resistance (SAR) is a mechanism that plants utilize to connect a local pathogen infection to global defense responses. N-hydroxy-pipecolic acid (NHP) and a glycosylated derivative are produced during SAR, yet their individual roles in this process are currently unclear. Here, we report that Arabidopsis thaliana UGT76B1 generated glycosylated NHP (NHP-Glc) in vitro and when transiently expressed alongside Arabidopsis NHP biosynthetic genes in two Solanaceous plants. During infection, Arabidopsis ugt76b1 mutants did not accumulate NHP-Glc and accumulated less glycosylated salicylic acid (SA-Glc) than wild-type plants. The metabolic changes in ugt76b1 plants were accompanied by enhanced defense to the bacterial pathogen Pseudomonas syringae, suggesting that glycosylation of the SAR molecules NHP and salicylic acid by UGT76B1 plays an important role in modulating defense responses. Transient expression of Arabidopsis UGT76B1 with the Arabidopsis NHP biosynthesis genes ALD1 and FMO1 in tomato (Solanum lycopersicum) increased NHP-Glc production and reduced NHP accumulation in local tissue and abolished the systemic resistance seen when expressing NHP-biosynthetic genes alone. These findings reveal that the glycosylation of NHP by UGT76B1 alters defense priming in systemic tissue and provide further evidence for the role of the NHP aglycone as the active metabolite in SAR signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiología , Ácidos Pipecólicos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Inmunidad Innata/fisiología , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/fisiología , Pseudomonas syringae/patogenicidad
7.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34112718

RESUMEN

Plants synthesize many diverse small molecules that affect function of the mammalian central nervous system, making them crucial sources of therapeutics for neurological disorders. A notable portion of neuroactive phytochemicals are lysine-derived alkaloids, but the mechanisms by which plants produce these compounds have remained largely unexplored. To better understand how plants synthesize these metabolites, we focused on biosynthesis of the Lycopodium alkaloids that are produced by club mosses, a clade of plants used traditionally as herbal medicines. Hundreds of Lycopodium alkaloids have been described, including huperzine A (HupA), an acetylcholine esterase inhibitor that has generated interest as a treatment for the symptoms of Alzheimer's disease. Through combined metabolomic profiling and transcriptomics, we have identified a developmentally controlled set of biosynthetic genes, or potential regulon, for the Lycopodium alkaloids. The discovery of this putative regulon facilitated the biosynthetic reconstitution and functional characterization of six enzymes that act in the initiation and conclusion of HupA biosynthesis. This includes a type III polyketide synthase that catalyzes a crucial imine-polyketide condensation, as well as three Fe(II)/2-oxoglutarate-dependent dioxygenase (2OGD) enzymes that catalyze transformations (pyridone ring-forming desaturation, piperidine ring cleavage, and redox-neutral isomerization) within downstream HupA biosynthesis. Our results expand the diversity of known chemical transformations catalyzed by 2OGDs and provide mechanistic insight into the function of noncanonical type III PKS enzymes that generate plant alkaloid scaffolds. These data offer insight into the chemical logic of Lys-derived alkaloid biosynthesis and demonstrate the tightly coordinated coexpression of secondary metabolic genes for the biosynthesis of medicinal alkaloids.


Asunto(s)
Alcaloides/biosíntesis , Lycopodium/enzimología , Lycopodium/metabolismo , Regulón/genética , Alcaloides/química , Vías Biosintéticas , Metabolómica , Oxigenasas de Función Mixta/metabolismo , Oxidación-Reducción , Piperidinas/metabolismo , Sesquiterpenos/química , Transcriptoma/genética
8.
Anal Chem ; 95(2): 935-945, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36598332

RESUMEN

Microfluidic droplet assays enable single-cell polymerase chain reaction (PCR) and sequencing analyses at unprecedented scales, with most methods encapsulating cells within nanoliter-sized single emulsion droplets (water-in-oil). Encapsulating cells within picoliter double emulsion (DE) (water-in-oil-in-water) allows sorting droplets with commercially available fluorescence-activated cell sorter (FACS) machines, making it possible to isolate single cells based on phenotypes of interest for downstream analyses. However, sorting DE droplets with standard cytometers requires small droplets that can pass FACS nozzles. This poses challenges for molecular biology, as prior reports suggest that reverse transcription (RT) and PCR amplification cannot proceed efficiently at volumes below 1 nL due to cell lysate-induced inhibition. To overcome this limitation, we used a plate-based RT-PCR assay designed to mimic reactions in picoliter droplets to systematically quantify and ameliorate the inhibition. We find that RT-PCR is blocked by lysate-induced cleavage of nucleic acid probes and primers, which can be efficiently alleviated through heat lysis. We further show that the magnitude of inhibition depends on the cell type, but that RT-PCR can proceed in low-picoscale reaction volumes for most mouse and human cell lines tested. Finally, we demonstrate one-step RT-PCR from single cells in 20 pL DE droplets with fluorescence quantifiable via FACS. These results open up new avenues for improving picoscale droplet RT-PCR reactions and expanding microfluidic droplet-based single-cell analysis technologies.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Ratones , Animales , Humanos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Emulsiones , Reacción en Cadena de la Polimerasa/métodos , Microfluídica/métodos , Cartilla de ADN
9.
Nat Chem Biol ; 17(2): 205-212, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33106662

RESUMEN

Momilactones from rice have allelopathic activity, the ability to inhibit growth of competing plants. Transferring momilactone production to other crops is a potential approach to combat weeds, yet a complete momilactone biosynthetic pathway remains elusive. Here, we address this challenge through rapid gene screening in Nicotiana benthamiana, a heterologous plant host. This required us to solve a central problem: diminishing intermediate and product yields remain a bottleneck for multistep diterpene pathways. We increased intermediate and product titers by rerouting diterpene biosynthesis from the chloroplast to the cytosolic, high-flux mevalonate pathway. This enabled the discovery and reconstitution of a complete route to momilactones (>10-fold yield improvement in production versus rice). Pure momilactone B isolated from N. benthamiana inhibited germination and root growth in Arabidopsis thaliana, validating allelopathic activity. We demonstrated the broad utility of this approach by applying it to forskolin, a Hedgehog inhibitor, and taxadiene, an intermediate in taxol biosynthesis (~10-fold improvement in production versus chloroplast expression).


Asunto(s)
Diterpenos/metabolismo , Lactonas/metabolismo , Plantas/metabolismo , Transducción de Señal/genética , Alquenos/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Cloroplastos/genética , Colforsina/farmacología , Citosol/metabolismo , Diterpenos/farmacología , Ácido Mevalónico/metabolismo , Oryza/genética , Paclitaxel/biosíntesis , Hojas de la Planta/química , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Nicotiana/metabolismo
10.
Proc Natl Acad Sci U S A ; 116(25): 12558-12565, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31152139

RESUMEN

The factors that contribute to the composition of the root microbiome and, in turn, affect plant fitness are not well understood. Recent work has highlighted a major contribution of the soil inoculum in determining the composition of the root microbiome. However, plants are known to conditionally exude a diverse array of unique secondary metabolites, that vary among species and environmental conditions and can interact with the surrounding biota. Here, we explore the role of specialized metabolites in dictating which bacteria reside in the rhizosphere. We employed a reduced synthetic community (SynCom) of Arabidopsis thaliana root-isolated bacteria to detect community shifts that occur in the absence of the secreted small-molecule phytoalexins, flavonoids, and coumarins. We find that lack of coumarin biosynthesis in f6'h1 mutant plant lines causes a shift in the root microbial community specifically under iron deficiency. We demonstrate a potential role for iron-mobilizing coumarins in sculpting the A. thaliana root bacterial community by inhibiting the proliferation of a relatively abundant Pseudomonas species via a redox-mediated mechanism. This work establishes a systematic approach enabling elucidation of specific mechanisms by which plant-derived molecules mediate microbial community composition. Our findings expand on the function of conditionally exuded specialized metabolites and suggest avenues to effectively engineer the rhizosphere with the aim of improving crop growth in iron-limited alkaline soils, which make up a third of the world's arable soils.


Asunto(s)
Arabidopsis/microbiología , Cumarinas/metabolismo , Microbiota , Raíces de Plantas/microbiología , Arabidopsis/metabolismo , Arabidopsis/fisiología , Fotosíntesis , Raíces de Plantas/metabolismo , Pseudomonas/metabolismo , Rizosfera
11.
Proc Natl Acad Sci U S A ; 116(34): 17096-17104, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31371503

RESUMEN

Limonoids are natural products made by plants belonging to the Meliaceae (Mahogany) and Rutaceae (Citrus) families. They are well known for their insecticidal activity, contribution to bitterness in citrus fruits, and potential pharmaceutical properties. The best known limonoid insecticide is azadirachtin, produced by the neem tree (Azadirachta indica). Despite intensive investigation of limonoids over the last half century, the route of limonoid biosynthesis remains unknown. Limonoids are classified as tetranortriterpenes because the prototypical 26-carbon limonoid scaffold is postulated to be formed from a 30-carbon triterpene scaffold by loss of 4 carbons with associated furan ring formation, by an as yet unknown mechanism. Here we have mined genome and transcriptome sequence resources for 3 diverse limonoid-producing species (A. indica, Melia azedarach, and Citrus sinensis) to elucidate the early steps in limonoid biosynthesis. We identify an oxidosqualene cyclase able to produce the potential 30-carbon triterpene scaffold precursor tirucalla-7,24-dien-3ß-ol from each of the 3 species. We further identify coexpressed cytochrome P450 enzymes from M. azedarach (MaCYP71CD2 and MaCYP71BQ5) and C. sinensis (CsCYP71CD1 and CsCYP71BQ4) that are capable of 3 oxidations of tirucalla-7,24-dien-3ß-ol, resulting in spontaneous hemiacetal ring formation and the production of the protolimonoid melianol. Our work reports the characterization of protolimonoid biosynthetic enzymes from different plant species and supports the notion of pathway conservation between both plant families. It further paves the way for engineering crop plants with enhanced insect resistance and producing high-value limonoids for pharmaceutical and other applications by expression in heterologous hosts.


Asunto(s)
Azadirachta , Citrus sinensis , Sistema Enzimático del Citocromo P-450 , Genoma de Planta , Limoninas , Proteínas de Plantas , Azadirachta/enzimología , Azadirachta/genética , Citrus sinensis/enzimología , Citrus sinensis/genética , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Limoninas/biosíntesis , Limoninas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
J Am Chem Soc ; 143(46): 19454-19465, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34780686

RESUMEN

Colchicine (1) is a bioactive plant alkaloid from Colchicum and Gloriosa species that is used as a pharmaceutical treatment for inflammatory diseases, including gouty arthritis and familial Mediterranean fever. The activity of this alkaloid is attributed to its ability to bind tubulin dimers and inhibit microtubule assembly, which not only promotes anti-inflammatory effects, but also makes colchicine a potent mitotic poison. The biochemical origins of colchicine biosynthesis have been investigated for over 50 years, but only recently has the underlying enzymatic machinery become clear. Here, we report the discovery of multiple pathway enzymes from Gloriosa superba that allows for the reconstitution of a complete metabolic route to 1. This includes three enzymes that process a previously established tropolone-containing intermediate into 1 via tailoring of the nitrogen atom. We further demonstrate the total biosynthesis of enantiopure (-)-1 from primary metabolites via heterologous production in a model plant, thus enabling future efforts for the metabolic engineering of this medicinal alkaloid. Additionally, our results provide insight into the timing and tissue specificity for the late stage modifications required in colchicine biosynthesis, which are likely connected to the biological functions for this class of medicinal alkaloids in native producing plants.


Asunto(s)
Colchicina , Colchicina/biosíntesis , Colchicina/química , Colchicum/química , Modelos Moleculares , Estructura Molecular
13.
J Am Chem Soc ; 143(13): 5011-5021, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33780244

RESUMEN

Phenylpropanoids are a class of abundant building blocks found in plants and derived from phenylalanine and tyrosine. Phenylpropanoid polymerization leads to the second most abundant biopolymer lignin while stereo- and site-selective coupling generates an array of lignan natural products with potent biological activity, including the topoisomerase inhibitor and chemotherapeutic etoposide. A key step in etoposide biosynthesis involves a plant dirigent protein that promotes selective dimerization of coniferyl alcohol, a common phenylpropanoid, to form (+)-pinoresinol, a critical C2 symmetric pathway intermediate. Despite the power of this coupling reaction for the elegant and rapid assembly of the etoposide scaffold, dirigent proteins have not been utilized to generate other complex lignan natural products. Here, we demonstrate that dirigent proteins from Podophyllum hexandrum in combination with a laccase guide the heterocoupling of natural and synthetic coniferyl alcohol analogues for the enantioselective synthesis of pinoresinol analogues. This route for complexity generation is remarkably direct and efficient: three new bonds and four stereocenters are produced from two different achiral monomers in a single step. We anticipate our results will enable biocatalytic routes to difficult-to-access non-natural lignan analogues and etoposide derivatives. Furthermore, these dirigent protein and laccase-promoted reactions of coniferyl alcohol analogues represent new regio- and enantioselective oxidative heterocouplings for which no other chemical methods have been reported.


Asunto(s)
Productos Biológicos/síntesis química , Proteínas/química , Productos Biológicos/química , Lignanos/química , Oxidación-Reducción , Fenoles/química , Proteínas de Plantas/química , Podophyllum/química , Estereoisomerismo
14.
Nature ; 525(7569): 376-9, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26352477

RESUMEN

Thousands of putative biosynthetic genes in Arabidopsis thaliana have no known function, which suggests that there are numerous molecules contributing to plant fitness that have not yet been discovered. Prime among these uncharacterized genes are cytochromes P450 upregulated in response to pathogens. Here we start with a single pathogen-induced P450 (ref. 5), CYP82C2, and use a combination of untargeted metabolomics and coexpression analysis to uncover the complete biosynthetic pathway to 4-hydroxyindole-3-carbonyl nitrile (4-OH-ICN), a previously unknown Arabidopsis metabolite. This metabolite harbours cyanogenic functionality that is unprecedented in plants and exceedingly rare in nature; furthermore, the aryl cyanohydrin intermediate in the 4-OH-ICN pathway reveals a latent capacity for cyanogenic glucoside biosynthesis in Arabidopsis. By expressing 4-OH-ICN biosynthetic enzymes in Saccharomyces cerevisiae and Nicotiana benthamiana, we reconstitute the complete pathway in vitro and in vivo and validate the functions of its enzymes. Arabidopsis 4-OH-ICN pathway mutants show increased susceptibility to the bacterial pathogen Pseudomonas syringae, consistent with a role in inducible pathogen defence. Arabidopsis has been the pre-eminent model system for studying the role of small molecules in plant innate immunity; our results uncover a new branch of indole metabolism distinct from the canonical camalexin pathway, and support a role for this pathway in the Arabidopsis defence response. These results establish a more complete framework for understanding how the model plant Arabidopsis uses small molecules in pathogen defence.


Asunto(s)
Arabidopsis/metabolismo , Arabidopsis/microbiología , Indoles/metabolismo , Nitrilos/metabolismo , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/inmunología , Pseudomonas syringae/inmunología , Pseudomonas syringae/patogenicidad , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , Vías Biosintéticas/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucósidos/biosíntesis , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Metabolómica , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Saccharomyces cerevisiae/genética , Metabolismo Secundario , Tiazoles/metabolismo , Nicotiana/genética , Transcriptoma , Virulencia
15.
Proc Natl Acad Sci U S A ; 115(21): E4920-E4929, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29735713

RESUMEN

Systemic acquired resistance (SAR) is a global response in plants induced at the site of infection that leads to long-lasting and broad-spectrum disease resistance at distal, uninfected tissues. Despite the importance of this priming mechanism, the identity and complexity of defense signals that are required to initiate SAR signaling is not well understood. In this paper, we describe a metabolite, N-hydroxy-pipecolic acid (N-OH-Pip) and provide evidence that this mobile molecule plays a role in initiating SAR signal transduction in Arabidopsis thaliana We demonstrate that FLAVIN-DEPENDENT MONOOXYGENASE 1 (FMO1), a key regulator of SAR-associated defense priming, can synthesize N-OH-Pip from pipecolic acid in planta, and exogenously applied N-OH-Pip moves systemically in Arabidopsis and can rescue the SAR-deficiency of fmo1 mutants. We also demonstrate that N-OH-Pip treatment causes systemic changes in the expression of pathogenesis-related genes and metabolic pathways throughout the plant and enhances resistance to a bacterial pathogen. This work provides insight into the chemical nature of a signal for SAR and also suggests that the N-OH-Pip pathway is a promising target for metabolic engineering to enhance disease resistance.


Asunto(s)
Arabidopsis/inmunología , Resistencia a la Enfermedad/inmunología , Metabolómica , Ácidos Pipecólicos/metabolismo , Enfermedades de las Plantas/inmunología , Hojas de la Planta/inmunología , Pseudomonas syringae/patogenicidad , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/microbiología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Transducción de Señal
16.
Nat Chem Biol ; 14(5): 442-450, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29581584

RESUMEN

Iron is an essential but poorly bioavailable nutrient because of its low solubility, especially in alkaline soils. Here, we describe the discovery of a previously undescribed redox-active catecholic metabolite, termed sideretin, which derives from the coumarin fraxetin and is the primary molecule exuded by Arabidopsis thaliana roots in response to iron deficiency. We identified two enzymes that complete the biosynthetic pathway of fraxetin and sideretin. Chemical characterization of fraxetin and sideretin, and biological assays with pathway mutants, suggest that these coumarins are critical for iron nutrition in A. thaliana. Further, we show that sideretin production also occurs in eudicot species only distantly related to A. thaliana. Untargeted metabolomics of the root exudates of various eudicots revealed production of structurally diverse redox-active molecules in response to iron deficiency. Our results indicate that secretion of small-molecule reductants by roots may be a widespread and previously underappreciated component of reduction-based iron uptake.


Asunto(s)
Arabidopsis/metabolismo , Cumarinas/metabolismo , Deficiencias de Hierro , Oxidación-Reducción , Raíces de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Cinética , Metabolómica , Mutación , Fenotipo , Filogenia , Plantas Modificadas Genéticamente , Rizosfera , Escopoletina/metabolismo , Solubilidad , Termodinámica
17.
Proc Natl Acad Sci U S A ; 114(8): 1910-1915, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28154137

RESUMEN

Brassica crop species are prolific producers of indole-sulfur phytoalexins that are thought to have an important role in plant disease resistance. These molecules are conspicuously absent in the model plant Arabidopsis thaliana, and little is known about the enzymatic steps that assemble the key precursor brassinin. Here, we report the minimum set of biosynthetic genes required to generate cruciferous phytoalexins starting from the well-studied glucosinolate pathway. In vitro biochemical characterization revealed an additional role for the previously described carbon-sulfur lyase SUR1 in processing cysteine-isothiocyanate conjugates, as well as the S-methyltransferase DTCMT that methylates the resulting dithiocarbamate, together completing a pathway to brassinin. Additionally, the ß-glucosidase BABG that is present in Brassica rapa but absent in Arabidopsis was shown to act as a myrosinase and may be a determinant of plants that synthesize phytoalexins from indole glucosinolate. Transient expression of the entire pathway in Nicotiana benthamiana yields brassinin, demonstrating that the biosynthesis of indole-sulfur phytoalexins can be engineered into noncruciferous plants. The identification of these biosynthetic enzymes and the heterologous reconstitution of the indole-sulfur phytoalexin pathway sheds light on an important pathway in an edible plant and opens the door to using metabolic engineering to systematically quantify the impact of cruciferous phytoalexins on plant disease resistance and human health.


Asunto(s)
Brassica rapa/fisiología , Resistencia a la Enfermedad/fisiología , Glucosinolatos/metabolismo , Indoles/metabolismo , Sesquiterpenos/metabolismo , Tiocarbamatos/metabolismo , Arabidopsis/fisiología , Liasas de Carbono-Azufre/metabolismo , Ingeniería Metabólica/métodos , Metilación , Metiltransferasas/metabolismo , Fenómenos Fisiológicos de las Plantas , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Nicotiana/metabolismo , beta-Glucosidasa/metabolismo , Fitoalexinas
18.
J Am Chem Soc ; 141(49): 19231-19235, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31755709

RESUMEN

Etoposide is a plant-derived drug used clinically to treat several forms of cancer. Recent shortages of etoposide demonstrate the need for a more dependable production method to replace the semisynthetic method currently in place, which relies on extraction of a precursor natural product from Himalayan mayapple. Here we report milligram-scale production of (-)-deoxypodophyllotoxin, a late-stage biosynthetic precursor to the etoposide aglycone, using an engineered biosynthetic pathway in tobacco. Our strategy relies on engineering the supply of coniferyl alcohol, an endogenous tobacco metabolite and monolignol precursor to the etoposide aglycone. We show that transient expression of 16 genes, encoding both coniferyl alcohol and main etoposide aglycone pathway enzymes from mayapple, in tobacco leaves results in the accumulation of up to 4.3 mg/g dry plant weight (-)-deoxypodophyllotoxin, and enables isolation of high-purity (-)-deoxypodophyllotoxin after chromatography at levels up to 0.71 mg/g dry plant weight. Our work reveals that long (>10 step) pathways can be efficiently transferred from difficult-to-cultivate medicinal plants to a tobacco plant production chassis, and demonstrates mg-scale total biosynthesis for access to valuable precursors of the chemotherapeutic etoposide.


Asunto(s)
Antineoplásicos Fitogénicos/química , Vías Biosintéticas/genética , Etopósido/análogos & derivados , Ingeniería Metabólica/métodos , Nicotiana/genética , Plantas Modificadas Genéticamente/genética , Antineoplásicos Fitogénicos/metabolismo , Etopósido/metabolismo , Regulación de la Expresión Génica de las Plantas , Estructura Molecular , Plantas Modificadas Genéticamente/metabolismo , Podophyllum peltatum/genética , Podophyllum peltatum/metabolismo , Nicotiana/metabolismo
19.
Nat Chem Biol ; 11(11): 837-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26389737

RESUMEN

Phytoalexins are abundant in edible crucifers and have important biological activities, yet no dedicated gene for their biosynthesis is known. Here, we report two new cytochromes P450 from Brassica rapa (Chinese cabbage) that catalyze unprecedented S-heterocyclizations in cyclobrassinin and spirobrassinin biosynthesis. Our results provide genetic and biochemical insights into the biosynthesis of a prominent pair of dietary metabolites and have implications for pathway discovery across >20 recently sequenced crucifers.


Asunto(s)
Brassica rapa/enzimología , Brassicaceae/enzimología , Sistema Enzimático del Citocromo P-450/metabolismo , Indoles/metabolismo , Proteínas de Plantas/metabolismo , Sesquiterpenos/metabolismo , Compuestos de Espiro/metabolismo , Tiazoles/metabolismo , Tiocarbamatos/metabolismo , Secuencia de Bases , Biocatálisis , Brassica rapa/genética , Brassicaceae/genética , Ciclización , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Indoles/química , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Microsomas/química , Microsomas/metabolismo , Datos de Secuencia Molecular , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sesquiterpenos/química , Compuestos de Espiro/química , Tiazoles/química , Tiocarbamatos/química , Verduras/química , Verduras/metabolismo , Fitoalexinas
20.
PLoS Biol ; 12(6): e1001879, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24915445

RESUMEN

Great strides have been made in plant metabolic engineering over the last two decades, with notable success stories including Golden rice. Here, we discuss the field's progress in addressing four long-standing challenges: creating plants that satisfy their own nitrogen requirement, so reducing or eliminating the need for nitrogen fertilizer; enhancing the nutrient content of crop plants; engineering biofuel feed stocks that harbor easy-to-access fermentable saccharides by incorporating self-destructing lignin; and increasing photosynthetic efficiency. We also look to the future at emerging areas of research in this field.


Asunto(s)
Productos Agrícolas/genética , Ingeniería Metabólica , Biocombustibles , Productos Agrícolas/metabolismo , Fijación del Nitrógeno , Fotosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA