Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Pharmacol ; 9: 52, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29467654

RESUMEN

Under physiological conditions, adenosine triphosphate (ATP) is present at low levels in the extracellular milieu, being massively released by stressed or dying cells. Once outside the cells, ATP and related nucleotides/nucleoside generated by ectonucleotidases mediate a high evolutionary conserved signaling system: the purinergic signaling, which is involved in a variety of pathological conditions, including inflammatory diseases. Extracellular ATP has been considered an endogenous adjuvant that can initiate inflammation by acting as a danger signal through the activation of purinergic type 2 receptors-P2 receptors (P2Y G-protein coupled receptors and P2X ligand-gated ion channels). Among the P2 receptors, the P2X7 receptor is the most extensively studied from an immunological perspective, being involved in both innate and adaptive immune responses. P2X7 receptor activation induces large-scale ATP release via its intrinsic ability to form a membrane pore or in association with pannexin hemichannels, boosting purinergic signaling. ATP acting via P2X7 receptor is the second signal to the inflammasome activation, inducing both maturation and release of pro-inflammatory cytokines, such as IL-1ß and IL-18, and the production of reactive nitrogen and oxygen species. Furthermore, the P2X7 receptor is involved in caspases activation, as well as in apoptosis induction. During adaptive immune response, P2X7 receptor modulates the balance between the generation of T helper type 17 (Th17) and T regulatory (Treg) lymphocytes. Therefore, this receptor is involved in several inflammatory pathological conditions. In infectious diseases and cancer, P2X7 receptor can have different and contrasting effects, being an angel or a demon depending on its level of activation, cell studied, type of pathogen, and severity of infection. In neuroinflammatory and neurodegenerative diseases, P2X7 upregulation and function appears to contribute to disease progression. In this review, we deeply discuss P2X7 receptor dual function and its pharmacological modulation in the context of different pathologies, and we also highlight the P2X7 receptor as a potential target to treat inflammatory related diseases.

2.
Life Sci ; 92(3): 218-27, 2013 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-23295959

RESUMEN

AIM: The effects of physical exercise on oxidative stress parameters and immunocontent of NF-кß/p65 in lung of rats submitted to lung injury, as well as its possible protective effect on the changes in the alveolar-capillary barrier (total cell count, lactate dehydrogenase and total protein) in the bronchoalveolar lavage fluid (BALF) and the inflammatory infiltration in the pulmonary parenchyma were evaluated. MAIN METHODS: Wistar rats were submitted to two months of physical exercise and after this period, lung injury was induced by intratracheal instillation of lipopolysaccharide (dose of 100 µg/100 g body weight). Twelve hours after injury, the animals were sacrificed and lung and BALF were collected. KEY FINDINGS: Results showed an increase in reactive species production, lipid peroxidation, oxidative damage to protein, as well as in nitrite levels and NF-кß/p65 immunocontent in lung of rats submitted to lung injury. Physical exercise was able to totally prevent the increase in reactive species, nitrite levels and NF-кß/p65 immunocontent, but partially prevented the damage to protein. Superoxide dismutase and catalase were not changed in lung injury group, but the activities of these enzymes were increased in lung injury plus exercise group. Non-enzymatic antioxidant capacity, glutathione content and glutathione peroxidase were decreased and exercise totally prevented such effects. Rats subjected to lung injury presented an increase in total cell, lactate dehydrogenase and total protein; exercise partially prevented the increase in lactate dehydrogenase. SIGNIFICANCE: These findings suggest that physical exercise may prevent, at least partially, the oxidative damage caused by experimental lung injury, suggesting that exercise may have an important role as protector in this condition.


Asunto(s)
Barrera Alveolocapilar/metabolismo , Lesión Pulmonar/metabolismo , Estrés Oxidativo , Condicionamiento Físico Animal , Animales , Barrera Alveolocapilar/patología , Barrera Alveolocapilar/fisiopatología , Líquido del Lavado Bronquioalveolar , Catalasa/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Lipopolisacáridos/toxicidad , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/patología , Lesión Pulmonar/fisiopatología , Masculino , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo , Factor de Transcripción ReIA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA