Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 147(3): 1043-1056, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37804316

RESUMEN

AFG3L2 is a mitochondrial protease exerting protein quality control in the inner mitochondrial membrane. Heterozygous AFG3L2 mutations cause spinocerebellar ataxia type 28 (SCA28) or dominant optic atrophy type 12 (DOA12), while biallelic AFG3L2 mutations result in the rare and severe spastic ataxia type 5 (SPAX5). The clinical spectrum of SPAX5 includes childhood-onset cerebellar ataxia, spasticity, dystonia and myoclonic epilepsy. We previously reported that the absence or mutation of AFG3L2 leads to the accumulation of mitochondria-encoded proteins, causing the overactivation of the stress-sensitive protease OMA1, which over-processes OPA1, leading to mitochondrial fragmentation. Recently, OMA1 has been identified as the pivotal player communicating mitochondrial stress to the cytosol via a pathway involving the inner mitochondrial membrane protein DELE1 and the cytosolic kinase HRI, thus eliciting the integrated stress response. In general, the integrated stress response reduces global protein synthesis and drives the expression of cytoprotective genes that allow cells to endure proteotoxic stress. However, the relevance of the OMA1-DELE1-HRI axis in vivo, and especially in a human CNS disease context, has been poorly documented thus far. In this work, we demonstrated that mitochondrial proteotoxicity in the absence/mutation of AFG3L2 activates the OMA1-DELE1-HRI pathway eliciting the integrated stress response. We found enhanced OMA1-dependent processing of DELE1 upon depletion of AFG3L2. Also, in both skin fibroblasts from SPAX5 patients (including a novel case) and in the cerebellum of Afg3l2-/- mice we detected increased phosphorylation of the α-subunit of the eukaryotic translation initiation factor 2 (eIF2α), increased levels of ATF4 and strong upregulation of its downstream targets (Chop, Chac1, Ppp1r15a and Ffg21). Silencing of DELE1 or HRI in SPAX5 fibroblasts (where OMA1 is overactivated at basal state) reduces eIF2α phosphorylation and affects cell growth. In agreement, pharmacological potentiation of integrated stress response via Sephin-1, a drug that selectively inhibits the stress-induced eIF2alpha phosphatase GADD34 (encoded by Ppp1r15a), improved cell growth of SPAX5 fibroblasts and cell survival and dendritic arborization ex vivo in primary Afg3l2-/- Purkinje neurons. Notably, Sephin-1 treatment in vivo extended the lifespan of Afg3l2-/- mice, improved Purkinje neuron morphology, mitochondrial ultrastructure and respiratory capacity. These data indicate that activation of the OMA1-DELE1-HRI pathway is protective in the context of SPAX5. Pharmacological tuning of the integrated stress response may represent a future therapeutic strategy for SPAX5 and other cerebellar ataxias caused by impaired mitochondrial proteostasis.


Asunto(s)
Discapacidad Intelectual , Atrofia Óptica , Ataxias Espinocerebelosas , Humanos , Animales , Ratones , Niño , Ataxias Espinocerebelosas/genética , Espasticidad Muscular , Péptido Hidrolasas , ATPasas Asociadas con Actividades Celulares Diversas/genética , Proteasas ATP-Dependientes/genética , Proteínas Mitocondriales , Metaloproteasas
2.
Am J Med Genet A ; 194(5): e63510, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38135344

RESUMEN

Aicardi-Goutières syndrome (AGS) is a genetic interferonopathy classically characterized by early onset of severe neurologic injury with basal ganglia calcifications, white matter abnormalities, and progressive cerebral atrophy, along with lymphocytosis and raised interferon alpha (INFα) in the cerebrospinal fluid (CSF). Here, we report a 31/2 year-old patient born with prenatal onset AGS, first manifesting as intra-uterine growth retardation. Cranial ultrasonography and cerebral MRI revealed ventriculomegaly and periventricular and basal ganglia calcifications, along with cerebral atrophy. Perinatal infections and known metabolic disorders were excluded. Both CSF lymphocytosis and raised INFα were present. Molecular analysis disclosed two already described compound heterozygous pathogenic variants in TREX1 (c. 309dup, p.(Thr104Hisfs*53) and c. 506G > A, p.(Arg169His)). The evolution was marked by severe global developmental delay with progressive microcephaly. Promptly, the patient developed irritability, quadri-paretic dyskinetic movements, and subsequently tonic seizures. Sensorineural hearing loss was detected as well as glaucoma. Initially, he was symptomatically treated with trihexyphenidyl followed by levetiracetam and topiramate. At age 22 months, baricitinib (0.4 mg/kg/day) was introduced, leading to normal serum INFα levels. Clinically, dyskinetic movements significantly decreased as well as irritability and sleep disturbance. We confirmed that baricitinib was a useful treatment with no major side effect.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Azetidinas , Enfermedades de los Ganglios Basales , Calcinosis , Inhibidores de las Cinasas Janus , Linfocitosis , Malformaciones del Sistema Nervioso , Purinas , Pirazoles , Sulfonamidas , Masculino , Embarazo , Femenino , Humanos , Lactante , Linfocitosis/líquido cefalorraquídeo , Linfocitosis/genética , Malformaciones del Sistema Nervioso/tratamiento farmacológico , Malformaciones del Sistema Nervioso/genética , Enfermedades de los Ganglios Basales/diagnóstico , Enfermedades de los Ganglios Basales/tratamiento farmacológico , Enfermedades de los Ganglios Basales/genética , Enfermedades Autoinmunes del Sistema Nervioso/tratamiento farmacológico , Enfermedades Autoinmunes del Sistema Nervioso/genética , Calcinosis/genética , Atrofia
3.
Mol Genet Metab ; 140(3): 107681, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37604084

RESUMEN

In early-onset (EO) cblC deficiency (MMACHC), hydroxocobalamin dose-intensification (OHCBL-DI) improved biochemical and clinical outcome. In mammals, Cobalamin is reduced, in a reaction mediated by MMACHC. Pathogenic variants in MMACHC disrupt the synthesis pathway of methyl-cobalamin (MetCbl) and 5'-deoxy-adenosyl-cobalamin (AdoCbl), cofactors for both methionine synthase (MS) and methyl-malonyl-CoA mutase (MCM) enzymes. In 5 patients (pts.), with EO cblC deficiency, biochemical and clinical responses were studied following OHCbl-DI (mean ± SD 6,5 ± 3,3 mg/kg/day), given early, before age 5 months (pts. 1, 2, 3 and 4) or lately, at age 5 years (pt. 5). In all pts., total homocysteine (tHcy), methyl-malonic acid (MMA) and Cob(III)alamin levels were measured. Follow-up was performed during 74/12 years (pts. 1, 2, 3), 33/12 years (pt. 4) and 34/12 years (pt. 5). OHCbl was delivered intravenously or subcutaneously. Mean ± SD serum Cob(III)alamin levels were 42,2 × 106 ± 28, 0 × 106 pg/ml (normal: 200-900 pg/ml). In all pts., biomarkers were well controlled. All pts., except pt. 5, who had poor vision, had central vision, mild to moderate nystagmus, and with peri-foveolar irregularity in pts. 1, 2 and 4, yet none had the classic bulls' eye maculopathy and retinal degeneration characteristic of pts. with EO cblC deficiency. Only pt. 5, had severe cognitive deficiency. Both visual and cognitive functions were better preserved with early than with late OHCBL-DI. OHCBL-DI is suggested to bypass MMACHC, subsequently to be rescued by methionine synthase reductase (MSR) and adenosyl-transferase (ATR) to obtain Cob(I)alamin resulting in improved cognitive and retinal function in pts. with EO cblC deficiency.


Asunto(s)
Disfunción Cognitiva , Homocistinuria , Degeneración Macular , Deficiencia de Vitamina B 12 , Preescolar , Humanos , Lactante , Masculino , Disfunción Cognitiva/tratamiento farmacológico , Homocistinuria/tratamiento farmacológico , Homocistinuria/genética , Hidroxocobalamina/uso terapéutico , Degeneración Macular/tratamiento farmacológico , Mamíferos , Oxidorreductasas , Vitamina B 12/metabolismo , Deficiencia de Vitamina B 12/tratamiento farmacológico
4.
Genet Med ; 24(12): 2475-2486, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36197437

RESUMEN

PURPOSE: We aimed to investigate the molecular basis of a novel recognizable neurodevelopmental syndrome with scalp and enamel anomalies caused by truncating variants in the last exon of the gene FOSL2, encoding a subunit of the AP-1 complex. METHODS: Exome sequencing was used to identify genetic variants in all cases, recruited through Matchmaker exchange. Gene expression in blood was analyzed using reverse transcription polymerase chain reaction. In vitro coimmunoprecipitation and proteasome inhibition assays in transfected HEK293 cells were performed to explore protein and AP-1 complex stability. RESULTS: We identified 11 individuals from 10 families with mostly de novo truncating FOSL2 variants sharing a strikingly similar phenotype characterized by prenatal growth retardation, localized cutis scalp aplasia with or without skull defects, neurodevelopmental delay with autism spectrum disorder, enamel hypoplasia, and congenital cataracts. Mutant FOSL2 messenger RNAs escaped nonsense-mediated messenger RNA decay. Truncated FOSL2 interacts with c-JUN, thus mutated AP-1 complexes could be formed. CONCLUSION: Truncating variants in the last exon of FOSL2 associate a distinct clinical phenotype by altering the regulatory degradation of the AP-1 complex. These findings reveal a new role for FOSL2 in human pathology.


Asunto(s)
Trastorno del Espectro Autista , Displasia Ectodérmica , Trastornos del Neurodesarrollo , Humanos , Cuero Cabelludo/anomalías , Cuero Cabelludo/metabolismo , Trastorno del Espectro Autista/genética , Células HEK293 , Factor de Transcripción AP-1/genética , Exones/genética , Displasia Ectodérmica/genética , Trastornos del Neurodesarrollo/genética , ARN Mensajero , Antígeno 2 Relacionado con Fos/genética
5.
Genet Med ; 24(9): 1941-1951, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35678782

RESUMEN

PURPOSE: WNK3 kinase (PRKWNK3) has been implicated in the development and function of the brain via its regulation of the cation-chloride cotransporters, but the role of WNK3 in human development is unknown. METHOD: We ascertained exome or genome sequences of individuals with rare familial or sporadic forms of intellectual disability (ID). RESULTS: We identified a total of 6 different maternally-inherited, hemizygous, 3 loss-of-function or 3 pathogenic missense variants (p.Pro204Arg, p.Leu300Ser, p.Glu607Val) in WNK3 in 14 male individuals from 6 unrelated families. Affected individuals had ID with variable presence of epilepsy and structural brain defects. WNK3 variants cosegregated with the disease in 3 different families with multiple affected individuals. This included 1 large family previously diagnosed with X-linked Prieto syndrome. WNK3 pathogenic missense variants localize to the catalytic domain and impede the inhibitory phosphorylation of the neuronal-specific chloride cotransporter KCC2 at threonine 1007, a site critically regulated during the development of synaptic inhibition. CONCLUSION: Pathogenic WNK3 variants cause a rare form of human X-linked ID with variable epilepsy and structural brain abnormalities and implicate impaired phospho-regulation of KCC2 as a pathogenic mechanism.


Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X , Proteínas Serina-Treonina Quinasas , Simportadores , Encéfalo/anomalías , Dominio Catalítico/genética , Hemicigoto , Humanos , Mutación con Pérdida de Función , Masculino , Herencia Materna/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Mutación Missense , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Simportadores/metabolismo
6.
Clin Genet ; 102(2): 117-122, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35470444

RESUMEN

BRD4 is part of a multiprotein complex involved in loading the cohesin complex onto DNA, a fundamental process required for cohesin-mediated loop extrusion and formation of Topologically Associating Domains. Pathogenic variations in this complex have been associated with a growing number of syndromes, collectively known as cohesinopathies, the most classic being Cornelia de Lange syndrome. However, no cohort study has been conducted to delineate the clinical and molecular spectrum of BRD4-related disorder. We formed an international collaborative study, and collected 14 new patients, including two fetuses. We performed phenotype and genotype analysis, integrated prenatal findings from fetopathological examinations, phenotypes of pediatric patients and adults. We report the first cohort of patients with BRD4-related disorder and delineate the dysmorphic features at different ages. This work extends the phenotypic spectrum of cohesinopathies and characterize a new clinically relevant and recognizable pattern, distinguishable from the other cohesinopathies.


Asunto(s)
Síndrome de Cornelia de Lange , Proteínas Nucleares , Proteínas de Ciclo Celular/genética , Niño , Síndrome de Cornelia de Lange/diagnóstico , Síndrome de Cornelia de Lange/genética , Síndrome de Cornelia de Lange/patología , Femenino , Genómica , Humanos , Mutación , Proteínas Nucleares/genética , Fenotipo , Embarazo , Factores de Transcripción/genética
7.
Epilepsy Behav ; 126: 108471, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34915430

RESUMEN

AIM: KCNB1 encephalopathy encompasses a broad phenotypic spectrum associating intellectual disability, behavioral disturbances, and epilepsies of various severity. Using standardized parental questionnaires, we aimed to capture the heterogeneity of the adaptive and behavioral features in a series of patients with KCNB1 pathogenic variants. METHODS: We included 25 patients with a KCNB1 encephalopathy, aged from 3.2 to 34.1 years (median = 10 years). Adaptive functioning was assessed in all patients using the French version of the Vineland Adaptive Behavior Scales, Second Edition (VABS-II) questionnaire. We screened global behavior with the Childhood Behavioral Check-List (CBCL, Achenbach) and autism spectrum disorder (ASD) with the Social Communication Questionnaire (SCQ). We used a cluster analysis to identify subgroups of adaptive profiles. RESULTS: VABS-II questionnaire showed pathological adaptive behavior in all participants with a severity of adaptive deficiency ranging from mild in 8/20 to severe in 7/20. Eight out of 16 were at risk of Attention Problems at the CBCL and 13/18 were at risk of autism spectrum disorder (ASD). The adaptive behavior composite score significantly decreased with age (Spearman's Rho=-0.72, p<0.001) but not the equivalent ages, suggesting stagnation and slowing but no regression over time. The clustering analysis identified two subgroups of patients, one showing more severe adaptive behavior. The severity of the epilepsy phenotype predicted the severity of the behavioral profile with a sensitivity of 70% and a specificity of 90.9%. CONCLUSION: This study confirms the deleterious consequences of early-onset epilepsy in addition to the impact of the gene dysfunction in patients with KCNB1 encephalopathy. ASD and attention disorders are frequent. Parental questionnaires should be considered as useful tools for early screening and care adaptation.


Asunto(s)
Trastorno del Espectro Autista , Encefalopatías , Epilepsia , Discapacidad Intelectual , Adaptación Psicológica , Adolescente , Adulto , Trastorno del Espectro Autista/complicaciones , Trastorno del Espectro Autista/epidemiología , Trastorno del Espectro Autista/genética , Encefalopatías/complicaciones , Encefalopatías/epidemiología , Encefalopatías/genética , Niño , Preescolar , Epilepsia/genética , Humanos , Discapacidad Intelectual/epidemiología , Discapacidad Intelectual/genética , Discapacidad Intelectual/psicología , Canales de Potasio Shab/genética , Adulto Joven
8.
J Med Genet ; 58(10): 712-716, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-32820033

RESUMEN

OBJECTIVE: To determine the potential disease association between variants in LMBRD2 and complex multisystem neurological and developmental delay phenotypes. METHODS: Here we describe a series of de novo missense variants in LMBRD2 in 10 unrelated individuals with overlapping features. Exome sequencing or genome sequencing was performed on all individuals, and the cohort was assembled through GeneMatcher. RESULTS: LMBRD2 encodes an evolutionary ancient and widely expressed transmembrane protein with no known disease association, although two paralogues are involved in developmental and metabolic disorders. Exome or genome sequencing revealed rare de novo LMBRD2 missense variants in 10 individuals with developmental delay, intellectual disability, thin corpus callosum, microcephaly and seizures. We identified five unique variants and two recurrent variants, c.1448G>A (p.Arg483His) in three cases and c.367T>C (p.Trp123Arg) in two cases. All variants are absent from population allele frequency databases, and most are predicted to be deleterious by multiple in silico damage-prediction algorithms. CONCLUSION: These findings indicate that rare de novo variants in LMBRD2 can lead to a previously unrecognised early-onset neurodevelopmental disorder. Further investigation of individuals harbouring LMBRD2 variants may lead to a better understanding of the function of this ubiquitously expressed gene.


Asunto(s)
Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Trastornos de la Destreza Motora/diagnóstico , Trastornos de la Destreza Motora/genética , Mutación Missense , Malformaciones del Sistema Nervioso/diagnóstico , Malformaciones del Sistema Nervioso/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Alelos , Sustitución de Aminoácidos , Estudios de Cohortes , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Fenotipo
9.
Genet Med ; 23(7): 1202-1210, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33674768

RESUMEN

PURPOSE: The variant spectrum and the phenotype of X-linked Kabuki syndrome type 2 (KS2) are poorly understood. METHODS: Genetic and clinical details of new and published individuals with pathogenic KDM6A variants were compiled and analyzed. RESULTS: Sixty-one distinct pathogenic KDM6A variants (50 truncating, 11 missense) from 80 patients (34 males, 46 females) were identified. Missense variants clustered in the TRP 2, 3, 7 and Jmj-C domains. Truncating variants were significantly more likely to be de novo. Thirteen individuals had maternally inherited variants and one had a paternally inherited variant. Neonatal feeding difficulties, hypoglycemia, postnatal growth retardation, poor weight gain, motor delay, intellectual disability (ID), microcephaly, congenital heart anomalies, palate defects, renal malformations, strabismus, hearing loss, recurrent infections, hyperinsulinism, seizures, joint hypermobility, and gastroesophageal reflux were frequent clinical findings. Facial features of over a third of patients were not typical for KS. Males were significantly more likely to be born prematurely, have shorter stature, and severe developmental delay/ID. CONCLUSION: We expand the KDM6A variant spectrum and delineate the KS2 phenotype. We demonstrate that the variability of the KS2 phenotypic depends on sex and the variant type. We also highlight the overlaps and differences between the phenotypes of KS2 and KS1.


Asunto(s)
Histona Demetilasas/genética , Discapacidad Intelectual , Caracteres Sexuales , Anomalías Múltiples , Proteínas de Unión al ADN/genética , Cara/anomalías , Femenino , Estudios de Asociación Genética , Enfermedades Hematológicas , Humanos , Recién Nacido , Discapacidad Intelectual/genética , Masculino , Proteínas de Neoplasias/genética , Fenotipo , Enfermedades Vestibulares
10.
Hum Mutat ; 41(1): 69-80, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31513310

RESUMEN

Developmental and epileptic encephalopathies (DEE) refer to a heterogeneous group of devastating neurodevelopmental disorders. Variants in KCNB1 have been recently reported in patients with early-onset DEE. KCNB1 encodes the α subunit of the delayed rectifier voltage-dependent potassium channel Kv 2.1. We review the 37 previously reported patients carrying 29 distinct KCNB1 variants and significantly expand the mutational spectrum describing 18 novel variants from 27 unreported patients. Most variants occur de novo and mainly consist of missense variants located on the voltage sensor and the pore domain of Kv 2.1. We also report the first inherited variant (p.Arg583*). KCNB1-related encephalopathies encompass a wide spectrum of neurodevelopmental disorders with predominant language difficulties and behavioral impairment. Eighty-five percent of patients developed epilepsies with variable syndromes and prognosis. Truncating variants in the C-terminal domain are associated with a less-severe epileptic phenotype. Overall, this report provides an up-to-date review of the mutational and clinical spectrum of KCNB1, strengthening its place as a causal gene in DEEs and emphasizing the need for further functional studies to unravel the underlying mechanisms.


Asunto(s)
Epilepsia/diagnóstico , Epilepsia/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Canales de Potasio Shab/genética , Alelos , Estudios de Asociación Genética/métodos , Genotipo , Humanos , Fenotipo , Canales de Potasio Shab/química , Canales de Potasio Shab/metabolismo , Relación Estructura-Actividad
11.
Epilepsia ; 61(11): 2461-2473, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32954514

RESUMEN

OBJECTIVE: We aimed to delineate the phenotypic spectrum and long-term outcome of individuals with KCNB1 encephalopathy. METHODS: We collected genetic, clinical, electroencephalographic, and imaging data of individuals with KCNB1 pathogenic variants recruited through an international collaboration, with the support of the family association "KCNB1 France." Patients were classified as having developmental and epileptic encephalopathy (DEE) or developmental encephalopathy (DE). In addition, we reviewed published cases and provided the long-term outcome in patients older than 12 years from our series and from literature. RESULTS: Our series included 36 patients (21 males, median age = 10 years, range = 1.6 months-34 years). Twenty patients (56%) had DEE with infantile onset seizures (seizure onset = 10 months, range = 10 days-3.5 years), whereas 16 (33%) had DE with late onset epilepsy in 10 (seizure onset = 5 years, range = 18 months-25 years) and without epilepsy in six. Cognitive impairment was more severe in individuals with DEE compared to those with DE. Analysis of 73 individuals with KCNB1 pathogenic variants (36 from our series and 37 published individuals in nine reports) showed developmental delay in all with severe to profound intellectual disability in 67% (n = 41/61) and autistic features in 56% (n = 32/57). Long-term outcome in 22 individuals older than 12 years (14 in our series and eight published individuals) showed poor cognitive, psychiatric, and behavioral outcome. Epilepsy course was variable. Missense variants were associated with more frequent and more severe epilepsy compared to truncating variants. SIGNIFICANCE: Our study describes the phenotypic spectrum of KCNB1 encephalopathy, which varies from severe DEE to DE with or without epilepsy. Although cognitive impairment is worse in patients with DEE, long-term outcome is poor for most and missense variants are associated with more severe epilepsy outcome. Further understanding of disease mechanisms should facilitate the development of targeted therapies, much needed to improve the neurodevelopmental prognosis.


Asunto(s)
Encefalopatías/diagnóstico por imagen , Encefalopatías/genética , Epilepsia/diagnóstico por imagen , Epilepsia/genética , Variación Genética/genética , Canales de Potasio Shab/genética , Adolescente , Adulto , Encefalopatías/fisiopatología , Niño , Preescolar , Estudios de Cohortes , Electroencefalografía/tendencias , Epilepsia/fisiopatología , Femenino , Humanos , Lactante , Masculino , Estudios Retrospectivos , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
12.
Hum Mutat ; 39(8): 1076-1080, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29782060

RESUMEN

We describe progressive spastic paraparesis in two male siblings and the daughter of one of these individuals. Onset of disease occurred within the first decade, with stiffness and gait difficulties. Brisk deep tendon reflexes and extensor plantar responses were present, in the absence of intellectual disability or dermatological manifestations. Cerebral imaging identified intracranial calcification in all symptomatic family members. A marked upregulation of interferon-stimulated gene transcripts was recorded in all three affected individuals and in two clinically unaffected relatives. A heterozygous IFIH1 c.2544T>G missense variant (p.Asp848Glu) segregated with interferon status. Although not highly conserved (CADD score 10.08 vs. MSC-CADD score of 19.33) and predicted as benign by in silico algorithms, this variant is not present on publically available databases of control alleles, and expression of the D848E construct in HEK293T cells indicated that it confers a gain-of-function. This report illustrates, for the first time, the occurrence of autosomal-dominant spastic paraplegia with intracranial calcifications due to an IFIH1-related type 1 interferonopathy.


Asunto(s)
Helicasa Inducida por Interferón IFIH1/genética , Paraparesia Espástica/genética , Algoritmos , Encefalopatías/genética , Calcinosis/genética , Femenino , Mutación con Ganancia de Función/genética , Células HEK293 , Heterocigoto , Humanos , Masculino , Mutación Missense/genética , Linaje
13.
Am J Med Genet A ; 170(7): 1799-805, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27127007

RESUMEN

Shwachman-Diamond syndrome (SDS) is a recessive ribosomopathy, characterized by bone marrow failure and exocrine pancreatic insufficiency (ePI) often associated with neurodevelopmental and skeletal abnormalities. The aim of this report is to describe a SDS patient with early ichthyosis associated with dermal and epidermal intracellular lipid droplets (iLDs), hypoglycemia and later a distinctive clinical SDS phenotype. At 3 months of age, she had ichthyosis, growth retardation, and failure to thrive. She had not cytopenia. Ultrasonography (US) showed pancreatic diffuse high echogenicity. Subsequently fasting hypoketotic hypoglycemia occurred without permanent hepatomegaly or hyperlipidemia. Continuous gavage feeding was followed by clinical improvement including ichthyosis and hypoglycemia. After 14 months of age, she developed persistent neutropenia and ePI consistent with SDS. The ichthyotic skin biopsy, performed at 5 months of age, disclosed iLDs in all epidermal layers, in melanocytes, eccrine sweat glands, Schwann cells and dermal fibroblasts. These iLDs were reminiscent of those described in Dorfman-Chanarin syndrome (DCS) or Wolman's disease. Both LIPA and CGI-58 analysis did not revealed pathogenic mutation. By sequencing SBDS, a compound heterozygous for a previously reported gene mutation (c.258 + 2T>C) and a novel mutation (c.284T>G) were found. Defective SBDS may hypothetically interfere as in DCS, with neutral lipid metabolism and play a role in the SDS phenotype such as ichthyosis with dermal and epidermal iLDs and hypoglycemia. This interference with neutral lipid metabolism must most likely occur in the cytoplasm compartment as in DCS and not in the lysosomal compartment as in Wolman's disease. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Enfermedades de la Médula Ósea/fisiopatología , Insuficiencia Pancreática Exocrina/fisiopatología , Hipoglucemia/fisiopatología , Ictiosis/fisiopatología , Lipomatosis/fisiopatología , Enfermedades de la Médula Ósea/diagnóstico , Enfermedades de la Médula Ósea/metabolismo , Epidermis/metabolismo , Epidermis/patología , Insuficiencia Pancreática Exocrina/diagnóstico , Insuficiencia Pancreática Exocrina/metabolismo , Femenino , Humanos , Hipoglucemia/diagnóstico , Ictiosis/diagnóstico , Ictiosis/metabolismo , Lactante , Gotas Lipídicas/metabolismo , Gotas Lipídicas/patología , Lipomatosis/diagnóstico , Lipomatosis/metabolismo , Fenotipo , Síndrome de Shwachman-Diamond
14.
Blood ; 121(13): 2385-92, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23335372

RESUMEN

Caspase recruitment domain-containing protein 9 (CARD9) is an adaptor molecule in the cytosol of myeloid cells, required for induction of T-helper cells producing interleukin-17 (Th17 cells) and important in antifungal immunity. In a patient suffering from Candida dubliniensis meningoencephalitis, mutations in the CARD9 gene were found to result in the loss of protein expression. Apart from the reduced numbers of CD4(+) Th17 lymphocytes, we identified a lack of monocyte-derived cytokines in response to Candida strains. Importantly, CARD9-deficient neutrophils showed a selective Candida albicans killing defect with abnormal ultrastructural phagolysosomes and outgrowth of hyphae. The neutrophil killing defect was independent of the generation of reactive oxygen species by the reduced NAD phosphate oxidase system. Taken together, this demonstrates that human CARD9 deficiency results in selective defect in the host defense against invasive fungal infection, caused by an impaired phagocyte killing.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/deficiencia , Proteínas Adaptadoras de Señalización CARD/genética , Candidiasis Invasiva/inmunología , Neutrófilos/inmunología , Adolescente , Encefalopatías/diagnóstico , Encefalopatías/etiología , Encefalopatías/inmunología , Proteínas Adaptadoras de Señalización CARD/inmunología , Candida albicans/inmunología , Candida albicans/aislamiento & purificación , Candidiasis Invasiva/complicaciones , Candidiasis Invasiva/genética , Células Cultivadas , Citofagocitosis/genética , Citofagocitosis/inmunología , Femenino , Humanos , Inmunidad Innata/genética , Inmunidad Innata/fisiología
15.
Am J Med Genet A ; 167A(1): 211-4, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25338548

RESUMEN

In neonates, very long chain acyl-CoA dehydrogenase (VLCAD) deficiency is often characterized by cardiomyopathy, hepatic encephalopathy, or severe hypoketotic hypoglycemia, or a combination thereof. The purpose of this study was to further elucidate a familial VLCAD deficiency in three patients, two of whom died in the neonatal period. We report on a family with VLCAD deficiency. Acyl-carnitine profiles were obtained from dried blood spot and/or from oxidation of (13) C-palmitate by cultured skin fibroblasts. In the index patient, VLCAD deficiency was ascertained by enzyme activity measurement in fibroblasts and by molecular analysis of ACADVL. At 30 hr of life, the proband was diagnosed with hypoglycemia (1.77 mmol/L), rhabdomyolysis (CK: 12966 IU/L) and hyperlactacidemia (10.6 mmol/L). Acylcarnitine profile performed at 31 hr of life was consistent with VLCAD deficiency and confirmed by cultured skin fibroblast enzyme activity measurement. Molecular analysis of ACADVL revealed a homozygous splice-site mutation (1077 + 2T>C). The acyl-carnitine profile obtained from the sibling's original newborn screening cards demonstrated a similar, but less pronounced abnormal profile. In the proband, the initial metabolic crisis was controlled with 10% dextrose solution and oral riboflavin followed by specific diet (Basic-F and medium chain triglyceride (MCT). This clinical report demonstrates a familial history of repeated neonatal deaths explained by VLCAD deficiency, and the clinical evolution of the latest affected, surviving sibling. It shows that very early metabolic screening is an effective approach to avoid sudden unexpected death.


Asunto(s)
Acil-CoA Deshidrogenasa de Cadena Larga/deficiencia , Errores Innatos del Metabolismo Lipídico/complicaciones , Muerte Perinatal/etiología , Muerte Súbita del Lactante/diagnóstico , Carnitina/análogos & derivados , Carnitina/metabolismo , Niño , Familia , Femenino , Fibroblastos/metabolismo , Humanos , Lactante , Recién Nacido , Linfocitos/metabolismo , Masculino , Oxidación-Reducción , Palmitatos/metabolismo , Hermanos , Análisis de Supervivencia
16.
J Biol Chem ; 287(34): 28975-85, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22700964

RESUMEN

Hereditary hyperekplexia or startle disease is characterized by an exaggerated startle response, evoked by tactile or auditory stimuli, leading to hypertonia and apnea episodes. Missense, nonsense, frameshift, splice site mutations, and large deletions in the human glycine receptor α1 subunit gene (GLRA1) are the major known cause of this disorder. However, mutations are also found in the genes encoding the glycine receptor ß subunit (GLRB) and the presynaptic Na(+)/Cl(-)-dependent glycine transporter GlyT2 (SLC6A5). In this study, systematic DNA sequencing of SLC6A5 in 93 new unrelated human hyperekplexia patients revealed 20 sequence variants in 17 index cases presenting with homozygous or compound heterozygous recessive inheritance. Five apparently unrelated cases had the truncating mutation R439X. Genotype-phenotype analysis revealed a high rate of neonatal apneas and learning difficulties associated with SLC6A5 mutations. From the 20 SLC6A5 sequence variants, we investigated glycine uptake for 16 novel mutations, confirming that all were defective in glycine transport. Although the most common mechanism of disrupting GlyT2 function is protein truncation, new pathogenic mechanisms included splice site mutations and missense mutations affecting residues implicated in Cl(-) binding, conformational changes mediated by extracellular loop 4, and cation-π interactions. Detailed electrophysiology of mutation A275T revealed that this substitution results in a voltage-sensitive decrease in glycine transport caused by lower Na(+) affinity. This study firmly establishes the combination of missense, nonsense, frameshift, and splice site mutations in the GlyT2 gene as the second major cause of startle disease.


Asunto(s)
Enfermedades Genéticas Congénitas , Proteínas de Transporte de Glicina en la Membrana Plasmática , Glicina/metabolismo , Mutación , Proteínas del Tejido Nervioso , Enfermedades Neurodegenerativas , Animales , Análisis Mutacional de ADN , Femenino , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Glicina/genética , Proteínas de Transporte de Glicina en la Membrana Plasmática/genética , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Heterocigoto , Homocigoto , Humanos , Transporte Iónico/genética , Masculino , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Estructura Terciaria de Proteína , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Xenopus laevis
17.
BMJ Case Rep ; 15(8)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35922085

RESUMEN

Adrenal insufficiency (AI) in a newborn due to hypothalamic-pituitary-adrenal (HPA) axis suppression after maternal glucocorticoid therapy during pregnancy is a rare condition. We report an AI triggered by a nosocomial infection in a premature newborn. The suspected mechanism was the suppression of the HPA axis due to high doses of maternal glucocorticoid treatment during pregnancy. AI was revealed by recurrent hypoglycaemia and mild hyponatraemia during the neonatal period. His twin brother did not develop AI, showing the variable sensitivity of adrenal suppression after exposure to the same glucocorticoid dose. The affected boy was substituted with hydrocortisone until the age of 2 years. At this age, basal morning values for cortisol and Adrenocorticotropic hormone (ACTH) had normalised. The patient also suffers from galactosaemia. We suggest screening for AI, by testing for hypoglycaemia and hyponatraemia, in newborns who were exposed to high doses of maternal methylprednisolone treatment during the pregnancy and to include galactosaemia in national neonatal screening programmes.


Asunto(s)
Insuficiencia Suprarrenal , Galactosemias , Hipoglucemia , Hiponatremia , Enfermedades del Prematuro , Insuficiencia Suprarrenal/inducido químicamente , Insuficiencia Suprarrenal/diagnóstico , Insuficiencia Suprarrenal/tratamiento farmacológico , Preescolar , Galactosemias/tratamiento farmacológico , Glucocorticoides/uso terapéutico , Humanos , Hidrocortisona , Hipoglucemia/inducido químicamente , Hipoglucemia/tratamiento farmacológico , Hiponatremia/tratamiento farmacológico , Sistema Hipotálamo-Hipofisario , Lactante , Recién Nacido , Enfermedades del Prematuro/tratamiento farmacológico , Masculino , Sistema Hipófiso-Suprarrenal
18.
Front Mol Neurosci ; 15: 886729, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571374

RESUMEN

Glycine receptors (GlyRs) containing the α2 subunit govern cell fate, neuronal migration and synaptogenesis in the developing cortex and spinal cord. Rare missense variants and microdeletions in the X-linked GlyR α2 subunit gene (GLRA2) have been associated with human autism spectrum disorder (ASD), where they typically cause a loss-of-function via protein truncation, reduced cell-surface trafficking and/or reduced glycine sensitivity (e.g., GLRA2Δex8-9 and extracellular domain variants p.N109S and p.R126Q). However, the GlyR α2 missense variant p.R323L in the intracellular M3-M4 domain results in a gain-of-function characterized by slower synaptic decay times, longer duration active periods and increases in channel conductance. This study reports the functional characterization of four missense variants in GLRA2 associated with ASD or developmental disorders (p.V-22L, p.N38K, p.K213E, p.T269M) using a combination of bioinformatics, molecular dynamics simulations, cellular models of GlyR trafficking and electrophysiology in artificial synapses. The GlyR α2V-22L variant resulted in altered predicted signal peptide cleavage and a reduction in cell-surface expression, suggestive of a partial loss-of-function. Similarly, GlyR α2N38K homomers showed reduced cell-surface expression, a reduced affinity for glycine and a reduced magnitude of IPSCs in artificial synapses. By contrast, GlyR α2K213E homomers showed a slight reduction in cell-surface expression, but IPSCs were larger, with faster rise/decay times, suggesting a gain-of-function. Lastly, GlyR α2T269M homomers exhibited a high glycine sensitivity accompanied by a substantial leak current, suggestive of an altered function that could dramatically enhance glycinergic signaling. These results may explain the heterogeneity of clinical phenotypes associated with GLRA2 mutations and reveal that missense variants can result in a loss, gain or alteration of GlyR α2 function. In turn, these GlyR α2 missense variants are likely to either negatively or positively deregulate cortical progenitor homeostasis and neuronal migration in the developing brain, leading to changes in cognition, learning, and memory.

19.
Dev Med Child Neurol ; 53(8): 764-7, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21592117

RESUMEN

A previously healthy 8-year-old male presented with cognitive regression, sleep disturbance, hallucinations, and severe attacks of agitation and oligoclonal bands in the cerebrospinal fluid. N-methyl-d-aspartate receptor (NMDAR) antibodies in serum and cerebrospinal fluid were detected 2 months after onset of symptoms. Bursts of agitation were initially considered to be epileptic leading to the administration of a high dose of benzodiazepines. Video-electroencephalography (EEG) failed to disclose any correlation between the episodes of agitation and paroxysmal rhythmic slow activity on EEG persisting throughout and after attacks of agitation. Clinical improvement and EEG normalization followed an initial plasma exchange performed 3 months after onset of disease. This particular paroxysmal EEG pattern in NMDAR antibody encephalitis suggests that it may result from the combination of reduced NMDAR function and major γ-aminobutyric acid (GABA)-ergic activation.


Asunto(s)
Ondas Encefálicas/fisiología , Encefalitis , Receptores de N-Metil-D-Aspartato/inmunología , Autoanticuerpos/sangre , Niño , Electroencefalografía , Encefalitis/sangre , Encefalitis/diagnóstico , Encefalitis/inmunología , Humanos , Masculino , Grabación en Video
20.
J Med Genet ; 47(3): 155-61, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19833603

RESUMEN

BACKGROUND: The introduction of molecular karyotyping technologies facilitated the identification of specific genetic disorders associated with imbalances of certain genomic regions. A detailed phenotypic delineation of interstitial 16p13.3 duplications is hampered by the scarcity of such patients. OBJECTIVES: To delineate the phenotypic spectrum associated with interstitial 16p13.3 duplications, and perform a genotype-phenotype analysis. RESULTS: The present report describes the genotypic and phenotypic delineation of nine submicroscopic interstitial 16p13.3 duplications. The critically duplicated region encompasses a single gene, CREBBP, which is mutated or deleted in Rubinstein-Taybi syndrome. In 10 out of the 12 hitherto described probands, the duplication arose de novo. CONCLUSIONS: Interstitial 16p13.3 duplications have a recognizable phenotype, characterized by normal to moderately retarded mental development, normal growth, mild arthrogryposis, frequently small and proximally implanted thumbs and characteristic facial features. Occasionally, developmental defects of the heart, genitalia, palate or the eyes are observed. The frequent de novo occurrence of 16p13.3 duplications demonstrates the reduced reproductive fitness associated with this genotype. Inheritance of the duplication from a clinically normal parent in two cases indicates that the associated phenotype is incompletely penetrant.


Asunto(s)
Proteína de Unión a CREB/genética , Cromosomas Humanos Par 16 , Duplicación de Gen , Síndrome de Rubinstein-Taybi/genética , Anomalías Múltiples/genética , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Cariotipificación , Masculino , Fenotipo , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA