RESUMEN
In conventional Bardeen-Cooper-Schrieffer superconductors1, electrons with opposite momenta bind into Cooper pairs due to an attractive interaction mediated by phonons in the material. Although superconductivity naturally emerges at thermal equilibrium, it can also emerge out of equilibrium when the system parameters are abruptly changed2-8. The resulting out-of-equilibrium phases are predicted to occur in real materials and ultracold fermionic atoms, but not all have yet been directly observed. Here we realize an alternative way to generate the proposed dynamical phases using cavity quantum electrodynamics (QED). Our system encodes the presence or absence of a Cooper pair in a long-lived electronic transition in 88Sr atoms coupled to an optical cavity and represents interactions between electrons as photon-mediated interactions through the cavity9,10. To fully explore the phase diagram, we manipulate the ratio between the single-particle dispersion and the interactions after a quench and perform real-time tracking of the subsequent dynamics of the superconducting order parameter using nondestructive measurements. We observe regimes in which the order parameter decays to zero (phase I)3,4, assumes a non-equilibrium steady-state value (phase II)2,3 or exhibits persistent oscillations (phase III)2,3. This opens up exciting prospects for quantum simulation, including the potential to engineer unconventional superconductors and to probe beyond mean-field effects like the spectral form factor11,12, and for increasing the coherence time for quantum sensing.
RESUMEN
We sympathetically cool highly charged ions (HCI) in Coulomb crystals of Doppler-cooled Be+ ions confined in a cryogenic linear Paul trap that is integrated into a fully enclosing radio-frequency resonator manufactured from superconducting niobium. By preparing a single Be+ cooling ion and a single HCI, quantum logic spectroscopy toward frequency metrology and qubit operations with a great variety of species are enabled. While cooling down the assembly through its transition temperature into the superconducting state, an applied quantization magnetic field becomes persistent, and the trap becomes shielded from subsequent external electromagnetic fluctuations. Using a magnetically sensitive hyperfine transition of Be+ as a qubit, we measure the fractional decay rate of the stored magnetic field to be at the 10-10 s-1 level. Ramsey interferometry and spin-echo measurements yield coherence times of >400 ms, demonstrating excellent passive magnetic shielding at frequencies down to DC.