Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(13): 5203-5215, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36962006

RESUMEN

Air-water interfacial retention of poly- and perfluoroalkyl substances (PFASs) is increasingly recognized as an important environmental process. Herein, column transport experiments were used to measure air-water interfacial partitioning values for several perfluoroalkyl ethers and for PFASs derived from aqueous film-forming foam, while batch experiments were used to determine equilibrium Kia data for compounds exhibiting evidence of rate-limited partitioning. Experimental results suggest a Freundlich isotherm best describes PFAS air-water partitioning at environmentally relevant concentrations (101-106 ng/L). A multiparameter regression analysis for Kia prediction was performed for the 15 PFASs for which equilibrium Kia values were determined, assessing 246 possible combinations of 8 physicochemical and system properties. Quantitative structure-property relationships (QSPRs) based on three to four parameters provided predictions of high accuracy without model overparameterization. Two QSPRs (R2 values of 0.92 and 0.83) were developed using an assumed average Freundlich n value of 0.65 and validated across a range of relevant concentrations for perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), and hexafluoropropylene oxide-dimer acid (i.e., GenX). A mass action model was further modified to account for the changing ionic strength on PFAS air-water interfacial sorption. The final result was two distinct QSPRs for estimating PFAS air-water interfacial partitioning across a range of aqueous concentrations and ionic strengths.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Agua , Fluorocarburos/análisis , Éteres , Contaminantes Químicos del Agua/análisis , Concentración Osmolar
2.
Environ Sci Technol ; 57(5): 1940-1948, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36689630

RESUMEN

While several studies have focused on perfluoroalkyl acid (PFAA) leaching from soils, field studies evaluating the relationship between PFAA mass removal and porewater concentrations as the PFAA source becomes depleted are lacking. Herein, in situ water flushing was performed at a site historically impacted with AFFF to accelerate the leaching of PFAAs from unsaturated soils in a highly characterized field test cell. Porous cup suction lysimeters were used to assess the changes in PFAA porewater concentrations as a function of PFAA mass removal from the unsaturated soils, where flushing was intermittently paused to determine ambient PFAA porewater concentrations. Results showed that the fractional decreases in PFAA porewater concentrations during flushing exceeded the fractional decrease in PFAA mass removal from the soil. PFOS porewater concentrations decrease by 76% (with negligible rebound) compared to only a 7.4% decrease in overall PFOS mass removed from the unsaturated zone. Overall, the results observed herein suggest that, when considering soil impacts to groundwater, less stringent soil cleanup criteria than those that consider an equivalent relationship between mass removal and mass discharge may be appropriate. In addition, remedial approaches that remove only a modest fraction of the PFAA soil mass may be protective of underlying groundwater, particularly for perfluorinated sulfonates with at least six carbons.


Asunto(s)
Fluorocarburos , Agua Subterránea , Contaminantes Químicos del Agua , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Agua , Suelo
3.
Environ Sci Technol ; 56(12): 7963-7975, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35549168

RESUMEN

Predicting the transport of perfluoroalkyl acids (PFAAs) in the vadose zone is critically important for PFAA site cleanup and risk mitigation. PFAAs exhibit several unusual and poorly understood transport behaviors, including partitioning to the air-water interface, which is currently the subject of debate. This study develops a novel use of quasi-saturated (residual air saturation) column experiments to estimate chemical partitioning parameters of both linear and branched perfluorooctane sulfonate (PFOS) in unsaturated soils. The ratio of linear-to-branched air-water interfacial partitioning constants for all six experiments was 1.62 ± 0.24, indicating significantly greater partitioning of linear PFOS isomers at the air-water interface. Standard breakthrough curve analysis and numerical inversion of HYDRUS models support the application of a Freundlich isotherm for PFOS air-water interfacial partitioning below a critical reference concentration (CRC). Data from this study and previously reported unsaturated column data on perfluorooctanoate (PFOA) were reevaluated to examine unsaturated systems for transport nonidealities. This reanalysis suggests both transport nonidealities and Freundlich isotherm behavior for PFOA below the CRC using drainage-based column methods, contrary to the assertions of the original authors. Finally, a combined Freundlich-Langmuir isotherm was proposed to describe PFAA air-water interfacial partitioning across the full range of relevant PFAA concentrations.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Ácidos Alcanesulfónicos/análisis , Caprilatos/análisis , Fluorocarburos/análisis , Isomerismo , Porosidad , Agua , Contaminantes Químicos del Agua/análisis
4.
Environ Sci Technol ; 56(20): 14774-14787, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36162863

RESUMEN

UV-sulfite has been shown to effectively degrade per- and polyfluoroalkyl substances (PFASs) in single-solute experiments. We recently reported treatment of 15 PFASs, including perfluoroalkyl sulfonic acids (PFSAs), perfluoroalkyl carboxylic acids (PFCAs), and fluorotelomer sulfonic acids (FTSs), detected in aqueous film-forming foam (AFFF) using high-resolution liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) targeted analysis. Here, we extend the analysis within those original reaction solutions to include the wider set of PFASs in AFFF for which reactivity is largely unknown by applying recently established LC-QTOF-MS suspect screening and semiquantitative analysis protocols. Sixty-eight additional PFASs were detected (15 targeted + 68 suspect screening = 83 PFASs) with semiquantitative analysis, and their behavior was binned on the basis of (1) detection in untreated AFFF, (2) PFAS photogeneration, and (3) reactivity. These 68 structures account for an additional 20% of the total fluorine content in the AFFF (targeted + suspect screening = 57% of total fluorine content). Structure-reactivity trends were also revealed. During treatment, transformations of highly reactive structures containing sulfonamide (-SO2N-) and reduced sulfur groups (e.g., -S- and -SO-) adjacent to the perfluoroalkyl [F(CF2)n-] or fluorotelomer [F(CF2)n(CH2)2-] chain are likely sources of PFCA, PFSA, and FTS generation previously reported during the early stages of reactions. The results also show the character of headgroup moieties adjacent to the F(CF2)n-/F(CF2)n(CH2)2- chain (e.g., sulfur oxidation state, sulfonamide type, and carboxylic acids) and substitution along the F(CF2)n- chain (e.g., H-, ketone, and ether) together may determine chain length-dependent reactivity trends. The results highlight the importance of monitoring PFASs outside conventional targeted analytical methodologies.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Ácidos Carboxílicos/análisis , Éteres , Flúor , Fluorocarburos/análisis , Cetonas , Espectrometría de Masas , Sulfitos , Sulfonamidas , Ácidos Sulfónicos , Azufre , Agua/química , Contaminantes Químicos del Agua/análisis
5.
Environ Sci Technol ; 55(23): 15744-15753, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34748313

RESUMEN

Poly- and perfluorinated alkyl substances (PFASs) frequently co-occur with fuel-derived contaminants because of the use of aqueous film-forming foam (AFFF). Biosparging is a common remediation technology that injects oxygen into the saturated zone to encourage aerobic biodegradation, thereby altering aquifer redox conditions and potentially facilitating the biotransformation of polyfluorinated substances. Between 136 and 280 pore volumes of nitrogen-sparged or oxygen-sparged artificial groundwater amended with toluene were pumped through four saturated, AFFF-impacted soil columns to assess impacts on PFAS release and transformation. Column effluents and soils were analyzed for PFASs by high-resolution mass spectrometry. Significantly higher concentrations of five PFASs eluted from O2-sparged columns compared to N2-sparged columns shortly after sparging was initiated. The mass fractions eluted of many zwitterionic, sulfonamide-based PFASs were higher in both sets of columns than unaltered, non-biostimulated columns. Mass balance calculations suggested the transformation of sulfonamide-based precursors to perfluorinated sulfonamides (i.e., perfluorohexanesulfonamide) in oxygen- and nitrogen-sparged columns: recoveries of perfluorinated sulfonamides were 158-235% for C3-C6 homologs but recoveries of several prominent sulfonamide-based zwitterions were low. For example, the recovery of n-carboxyethyldimethyl-ammoniopropyl perfluorohexanesulfonamide was 9-13%. These results suggest biosparging can enhance the transformation and release of PFASs in saturated soils, which has important implications for site characterization and remediation.


Asunto(s)
Fluorocarburos , Agua Subterránea , Contaminantes Químicos del Agua , Fluorocarburos/análisis , Suelo , Agua , Contaminantes Químicos del Agua/análisis
6.
Environ Sci Technol ; 55(8): 5001-5011, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33749259

RESUMEN

Despite benefits to the firefighting industry, the release of per- and polyfluoroalkyl substances (PFASs) from aqueous film-forming foam (AFFF) into aquatic systems poses significant risks to human health and other organisms. While anion-exchange technologies have proven to be effective for removing perfluoroalkyl acids (PFAAs) from water, their effectiveness for removing the diverse PFAS structures discovered in AFFF remains unknown. Here, we report on the adsorption of 75 PFASs, including 63 polyfluorinated substances, in a diluted AFFF mixture using 14 commercially available ion-exchange (IX)/nonionic resins and granular activated carbon (GAC). Results showed that anion-exchange resins (AERs) exhibited significant adsorption of PFASs compared to cation-exchange resins (CERs), nonionic resins (NIRs), and GAC regardless of the PFAS's predicted charge. Isotherm data showed that macroporous AERs have a higher PFAS adsorption capacity compared to gel-type AERs. Cross-correlation comparison of PFAS/Cl- selectivity coefficients (Kex) for each PFAS-AER combination showed that the hydrophobicity of the AER functional group, and polymer matrix played a dominant role in determining resin affinity for PFASs. PFAS structural characteristics also significantly affected adsorption, with increasing chain length and a net negative charge increasing the extent of adsorption. Results from this study provide guidelines for the selection of resins to adsorb a wider range of PFASs and meaningful insights for the development of quantitative models for IX treatment of AFFF-impacted water.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Aerosoles , Carbón Orgánico , Fluorocarburos/análisis , Humanos , Agua , Contaminantes Químicos del Agua/análisis
7.
Environ Sci Technol ; 54(11): 6957-6967, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32343565

RESUMEN

Ultraviolet photochemical reaction of sulfite (SO32-) photosensitizer generates strongly reducing hydrated electrons (eaq-; NHE = -2.9 V) that have been shown to effectively degrade individual per- and polyfluoroalkyl substances (PFASs), including perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA). However, treatment of complex PFAS mixtures in aqueous film-forming foam (AFFF) remains largely unknown. Here, UV-sulfite was applied to a diluted AFFF to characterize eaq- reactions with 15 PFASs identified by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) targeted analysis. Results show that reactivity varies widely among PFASs, but reaction rates observed for individual PFASs in AFFF are similar to rates observed in single-solute experiments. While some structures, including long-chain perfluoroalkyl sulfonic acids (PFSAs) and perfluoroalkyl carboxylic acids (PFCAs) were readily degraded, other structures, most notably short-chain PFSAs and fluorotelomer sulfonic acids (FTSs), were more recalcitrant. This finding is consistent with results showing incomplete fluoride ion release (up to 53% of the F content in AFFF) during reactions. Furthermore, results show that selected PFSAs, PFCAs, and FTSs can form as transient intermediates or unreactive end-products via eaq- reactions with precursor structures in AFFF. These results indicate that while UV-sulfite treatment can be effective for treating PFOS and PFOA to meet health advisory levels, remediation of the wider range of PFASs in AFFF will prove more challenging.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Ácidos Carboxílicos , Fluorocarburos/análisis , Sulfitos , Agua , Contaminantes Químicos del Agua/análisis
8.
Environ Sci Technol ; 53(21): 12442-12448, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31577432

RESUMEN

Bench-scale experiments were performed to assess uptake of poly- and perfluoroalkyl substances (PFAS), both single compounds and mixtures, at the air-water interface. The focus was on evaluating uptake at field-relevant PFAS concentrations (<2 × 10-4 mol m-3 or 0.1 mg L-1), assessing the impacts of various PFAS mixtures, and quantifying the impacts of background NaCl concentrations. Both interfacial tension measurements and direct quantification of PFAS mass sorbed at the air-water interface in water films were used to evaluate PFAS interfacial partitioning. Results showed that a Freundlich-based model, rather than a Langmuir-based model, described perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) interfacial uptake. At lower and field-relevant PFOS and PFOA concentrations, the Langmuir-based model underpredicted interfacial uptake by up to several orders of magnitude. The interfacial partition coefficient, kaw, increased as PFAS concentrations decreased. Results also showed that the interfacial tension and interfacial uptake of PFAS mixtures were (within a factor of 2) predicted based on the single solute systems assuming ideal dilute behavior. Furthermore, the addition of NaCl at concentrations of up to 0.01 M increased PFOS uptake by less than a factor of 2 at field-relevant PFOS concentrations. The results presented herein have important implications for PFAS migration in unsaturated soils as well as for remedial technologies that rely on PFAS interfacial sorption, particularly at field-relevant PFAS concentrations.


Asunto(s)
Fluorocarburos , Suelo , Tensión Superficial , Agua
9.
Environ Sci Technol ; 52(23): 13747-13755, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30394724

RESUMEN

Bench-scale experiments were performed on natural sediments to assess abiotic dechlorination of trichloroethene (TCE) under both aerobic and anaerobic conditions. In the absence of oxygen (<26 µM), TCE dechlorination proceeded via a reductive pathway generating acetylene and/or ethene. Reductive dechlorination rate constants up to 3.1 × 10-5 d-1 were measured, after scaling to in situ solid:water ratios. In the presence of oxygen greater than 120 µM, TCE dechlorination proceeded via an oxidative pathway generating formic/glyoxylic and glycolic/acetic acids, and oxidative dechlorination rate constants (again scaled to in situ conditions) up to 7.4 × 10-3 d-1 were measured. These rates correspond to half-lives of 60 and 0.25 years for abiotic TCE dechlorination under anaerobic and aerobic conditions, respectively, indicating the potentially large impact of aerobic TCE oxidation in the field. For both reductive and oxidative TCE dechlorination pathways, measured first-order rate constants increased with increasing ferrous iron content, suggesting the role of iron oxidation. Hydroxyl radical formation was measured and increased with increasing oxygen and ferrous iron content. Rate constants associated with TCE oxidation products increased with increasing hydroxyl radical generation rates, and were zero in the presence of a hydroxyl radical scavenger, suggesting that oxidative TCE dechlorination is a hydroxyl radical driven process.


Asunto(s)
Tricloroetileno , Halogenación , Hierro , Minerales , Oxidación-Reducción
10.
Environ Sci Technol ; 52(18): 10689-10697, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30130962

RESUMEN

While oxidative technologies have been proposed for treatment of waters impacted by aqueous film forming foams (AFFFs), information is lacking regarding the transformation pathways for the chemical precursors to the perfluoroalkyl acids (PFAAs) typically present in such waters. This study examined the oxidative electrochemical treatment of poly- and perfluoroalkyl substances (PFASs) for two AFFF-impacted groundwaters. The bulk pseudo first order rate constant for PFOA removal was 0.23 L h-1 A-1; for PFOS, this value ranged from 0.084 to 0.23 L h-1 A-1. Results from the first groundwater studied suggested a transformation pathway where sulfonamide-based PFASs transformed to primarily perfluorinated sulfonamides and perfluorinated carboxylic acids (PFCAs), with subsequent defluorination of the PFCAs. Transient increases in the perfluorinated sulfonamides and PFCAs were observed. For the second groundwater studied, no transient increases in PFAAs were measured, despite the presence of similarly structured suspected PFAA precursors and substantial defluorination. For both waters, suspected precursors were the primary sources of the generated fluoride. Assessment of precursor compound transformation noted the formation of keto-perfluoroalkanesulfonates only in the second groundwater. These results confirm that oxidation and defluorination of suspected PFAA precursors in the second groundwater underwent transformation via a pathway different than that of the first groundwater, which was not captured by total oxidizable precursor assay.


Asunto(s)
Fluorocarburos , Agua Subterránea , Contaminantes Químicos del Agua , Ácidos Carboxílicos , Agua
11.
Biodegradation ; 28(5-6): 453-468, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29022194

RESUMEN

The objective of this research was to evaluate the potential for two gases, methane and ethane, to stimulate the biological degradation of 1,4-dioxane (1,4-D) in groundwater aquifers via aerobic cometabolism. Experiments with aquifer microcosms, enrichment cultures from aquifers, mesophilic pure cultures, and purified enzyme (soluble methane monooxygenase; sMMO) were conducted. During an aquifer microcosm study, ethane was observed to stimulate the aerobic biodegradation of 1,4-D. An ethane-oxidizing enrichment culture from these samples, and a pure culture capable of growing on ethane (Mycobacterium sphagni ENV482) that was isolated from a different aquifer also biodegraded 1,4-D. Unlike ethane, methane was not observed to appreciably stimulate the biodegradation of 1,4-D in aquifer microcosms or in methane-oxidizing mixed cultures enriched from two different aquifers. Three different pure cultures of mesophilic methanotrophs also did not degrade 1,4-D, although each rapidly oxidized 1,1,2-trichloroethene (TCE). Subsequent studies showed that 1,4-D is not a substrate for purified sMMO enzyme from Methylosinus trichosporium OB3b, at least not at the concentrations evaluated, which significantly exceeded those typically observed at contaminated sites. Thus, our data indicate that ethane, which is a common daughter product of the biotic or abiotic reductive dechlorination of chlorinated ethanes and ethenes, may serve as a substrate to enhance 1,4-D degradation in aquifers, particularly in zones where these products mix with aerobic groundwater. It may also be possible to stimulate 1,4-D biodegradation in an aerobic aquifer through addition of ethane gas. Conversely, our results suggest that methane may have limited importance in natural attenuation or for enhancing biodegradation of 1,4-D in groundwater environments.


Asunto(s)
Bacterias/metabolismo , Dioxanos/metabolismo , Etano/metabolismo , Metano/metabolismo , Contaminantes Químicos del Agua/metabolismo , Bacterias/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Dioxanos/química , Etano/análisis , Etilenos/análisis , Etilenos/metabolismo , Agua Subterránea , Metano/análisis , Oxigenasas/química , Oxigenasas/metabolismo , Contaminantes Químicos del Agua/química
12.
Environ Sci Technol ; 50(1): 207-13, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26619000

RESUMEN

Partitioning tracer testing was performed in discrete intervals within a fractured bedrock tetrachloroethene (PCE) dense nonaqueous-phase liquid (DNAPL) source area to assess the fracture flow field and DNAPL architecture. Results confirmed that the partitioning tracer testing was able to identify and quantify low levels of residual DNAPL along flow paths in hydraulically conductive fractures. DNAPL fracture saturations (Sn) ranged from undetectable to 0.007 (DNAPL volume/fracture volume). A comparison of the fracture flow field to the DNAPL distribution indicated that the highest value of Sn was observed in the least transmissive fracture (or fracture zone). Application of a simple ambient dissolution model showed that the DNAPL present in this low transmissivity zone would persist longer than the DNAPL present in more transmissive fractures and would persist for 200 years (in the absence of any degradation reactions). Assessment of PCE mass distribution between the rock matrix and fractures showed that, due to the presence of DNAPL, the rock matrix accounted for less than 10% of the total PCE mass. The evaluation of PCE concentration profiles in the rock matrix and the estimated diffusional flux from the rock matrix suggest that the elevated PCE groundwater concentrations observed in the fractures likely are due to the presence of the residual DNAPL sources and that removal of the residual DNAPL sources within the fractures would result in a significant decrease in dissolved PCE concentrations in the source area.


Asunto(s)
Fenómenos Geológicos , Agua Subterránea/química , Modelos Teóricos , Tetracloroetileno/química , Contaminantes Químicos del Agua/química , Difusión , Ecología
14.
J Contam Hydrol ; 264: 104359, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38697007

RESUMEN

Poly- and perfluoroalkyl substance (PFAS) leaching from unsaturated soils impacted with aqueous film-forming foams (AFFFs) is an environmental challenge that remains difficult to measure and predict. Complicating measurements and predictions of this process is a lack of understanding between the PFAS concentrations measured in a collected environmental unsaturated soil sample, and the PFAS concentrations measured in the corresponding porewater using field-deployed lysimeters. The applicability of bench-scale batch testing to assess this relationship also remains uncertain. In this study, field-deployed porous cup suction lysimeters were used to measure PFAS porewater concentrations in unsaturated soils at 5 AFFF-impacted sites. Field-measured PFAS porewater concentrations were compared to those measured in porewater extracted in the laboratory from collected unsaturated soil cores, and from PFAS concentrations measured in the laboratory using batch soil slurries. Results showed that, despite several years since the last AFFF release at most of the test sites, precursors were abundant in 3 out of the 5 sites. Comparison of field lysimeter results to laboratory testing suggested that the local equilibrium assumption was valid for at least 3 of the sites and conditions of this study. Surprisingly, PFAS accumulation at the air-water interface was orders of magnitude less than expected at two of the test sites, suggesting potential gaps in the understanding of PFAS accumulation at the air-water interface at AFFF-impacted sites. Finally, results herein suggest that bench-scale testing on unsaturated soils can in some cases be used to inform on PFAS in situ porewater concentrations.


Asunto(s)
Monitoreo del Ambiente , Fluorocarburos , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química , Fluorocarburos/química , Fluorocarburos/análisis , Suelo/química , Contaminantes Químicos del Agua/análisis , Aire/análisis , Agua/química
15.
J Hazard Mater ; 465: 133460, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38211524

RESUMEN

The widespread use of per- and polyfluoroalkyl substances (PFAS)-containing products in numerous commercial and industrial applications has resulted in their occurrence in wastewater treatment plants (WWTPs). Herein, proof-of-concept bench-scale experiments were performed to measure the extent to which PFAS could be removed from a WWTP if aerosols generated during aeration were captured. Experiments were designed to mimic the aeration rate:water volume ratio, the water volume:surface area ratio, and aeration bubble size applicable to the full-scale aeration vessel. Results showed that substantial (75%) removal of perfluorooctane sulfonate (PFOS) was observed under these operating conditions in the bench-scale system; up to 97% PFOS removal was observed if the aeration rate was increased 3-fold. PFAS removal generally increased with increasing aerosol capture and with increasing PFAS surface activity. Analysis of semi-quantified PFAS showed that the semi-quantified PFAS accounted for approximately 93% of the identified PFAS in the raw wastewater, dominated largely by the presence of 2:2 fluorotelomer carboxylic acid (2:2 FTCA). This preliminary study suggests that aerosol capture in aeration basins has potential for mitigating PFAS in WWTPs. Further testing is needed to assess the feasibility of this approach at the field scale.

16.
J Hazard Mater ; 466: 133591, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38295728

RESUMEN

The widespread use of aqueous film-forming foam (AFFF) for firefighting and firefighter training has led to extensive per- and polyfluoroalkyl substance (PFAS) contamination in the environment. Challenges remain in the analytical determination of PFASs via liquid chromatography-mass spectrometry (LC-MS), particularly when attempting to include ultrashort-chain perfluoroalkyl acids (PFAAs) and longer-chain anionic and zwitterionic PFASs in a single direct injection. In this study, we assessed the performance of three analytical LC columns (C18, JJ, and Acclaim columns) to separate targeted and suspect PFASs in AFFF-impacted water samples collected from five sites. The C18 column failed to retain ultrashort-chain PFAAs while the JJ and Acclaim columns were not suitable for hydrophobic PFASs. Ultrashort-chain PFAAs were detected at three sites and comprised 1.6-18% of the total perfluoroalkyl carboxylic and sulfonic acids. Semi-quantified concentrations of suspect PFASs comprised 0.70-13% of the total PFASs. When attempting to capture the entirety of the PFAS mass in a water sample, the C18 column captured the broadest suite of suspect PFASs, while the JJ column quantified the most total PFAS mass. Results of this study highlight the importance and tradeoffs of LC column choice to comprehensively determine the composition of PFASs and their concentrations in AFFF-impacted water samples.

17.
J Contam Hydrol ; 265: 104382, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38861839

RESUMEN

Some Per- and polyfluoroalkyl substances (PFAS) are strongly retained in the vadose zone due to their sorption to both soils and air-water interfaces. While significant research has been dedicated to understanding equilibrium behavior for these multi-phase retention processes, leaching and desorption from aqueous film-forming foam (AFFF) impacted soils under field relevant conditions can exhibit significant deviations from equilibrium. Herein, laboratory column studies using field collected AFFF-impacted soils were employed to examine the leaching of perfluoroalkyl acids (PFAAs) under simulated rainfall conditions. The HYDRUS 1-D model was calibrated to estimate the unsaturated hydraulic properties of the soil in a layered system using multiple boundary condtions. Forward simulations of equilibrium PFAS partitioning using the HYDRUS model and simplified mass balance calculations showed good agreement with the net PFAS mass flux out of the column. However, neither were able to predict the PFAS concentrations in the leached porewater. To better understand the mechanisms controlling the leaching behavior, the HYDRUS 1-D two-site leaching model incorporating solid phase rate limitation and equilibrium air-water interfacial partitioning was employed. Three variations of the novel model incorporating different forms of equilibrium air-water interfacial partitioning were considered using built-in numerical inversion. Results of numerical inversion show that a combination of air-water interfacial collapse and rate-limited desorption from soils can better predict the unique leaching behavior exhibited by PFAAs in AFFF-impacted soils. A sensitivity analysis of the initial conditions and rate-limited desorption terms was conducted to assess the agreement of the model with measured data. The models demonstrated herein show that, under some circumstances, laboratory equilibrium partitioning data can provide a reasonable estimation of total mass leaching, but fail to account for the significant rate-limited, non-Fickian transport which affect PFAA leaching to groundwater in unsaturated soils.


Asunto(s)
Fluorocarburos , Agua Subterránea , Contaminantes del Suelo , Contaminantes Químicos del Agua , Fluorocarburos/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Agua Subterránea/química , Contaminantes del Suelo/química , Contaminantes del Suelo/análisis , Suelo/química , Modelos Teóricos , Adsorción , Aire , Modelos Químicos
18.
Environ Sci Technol ; 47(9): 4291-8, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23590334

RESUMEN

Laboratory experiments were performed using minimally disturbed sedimentary rocks to measure the coupled diffusion and abiotic reaction of trichloroethene (TCE) through rock core samples. Results showed that, for all rock types studied, TCE dechlorination occurred, as evidenced by generation of acetylene, ethene, and/or ethane daughter products. First-order bulk reaction rate constants for TCE degradation ranged from 8.3 × 10(-10) to 4.2 × 10(-8) s(-1). Observed reaction rate constants showed a general correlation to the available ferrous iron content of the rock, which was determined by evaluating the spatial distribution of ferrous iron relative to that of the rock porosity. For some rock types, exposure to TCE resulted in a decrease in the effective diffusivity. Scanning electron microscopy (SEM) indicated that the decrease in the effective diffusivity was due to a decrease in the porosity that occurred after exposure to TCE. Overall, these coupled diffusion and reaction results suggest that diffusion of TCE into rock matrices as well as the rate and extent of back-diffusion may be substantially mitigated in rocks that contain ferrous iron or other naturally occurring reactive metals, thereby lessening the impacts of matrix diffusion on sustaining dissolved contaminant plumes in bedrock aquifers.


Asunto(s)
Geología , Tricloroetileno/química , Difusión , Cinética
19.
Environ Sci Process Impacts ; 25(3): 405-414, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36629138

RESUMEN

Per- and polyfluoroalkyl substances (PFASs) are frequently found at high concentrations in the subsurface of aqueous film forming foam (AFFF)-impacted sites. Geochemical parameters affect the release of PFASs from source area soils into groundwater but have not been extensively studied for soils that have been historically impacted with AFFF. This study investigated the effects of pH and salt concentrations on release of anionic and zwitterionic PFASs from AFFF-impacted soils in flow-through saturated columns. High pH (10) columns with elevated sodium concentrations had higher cumulative masses eluted of several PFASs compared to pH 3 and pH 7 columns with lower sodium concentrations, likely caused by changes to soil organic matter surface charge. Four PFASs (e.g. 4:2 fluorotelomer sulfonate, perfluorobutane sulfonamido acetic acid) eluted significantly earlier in both pH 3 and pH 10/high NaCl columns compared to pH 7 columns. The results of this study suggest that shifts in pH for soils located at AFFF-impacted sites - particularly raising the pH - may mobilize sorbed PFASs, specifically longer-chain and zwitterionic compounds that are typically strongly sorbed to soil.


Asunto(s)
Fluorocarburos , Agua Subterránea , Contaminantes Químicos del Agua , Suelo , Contaminantes Químicos del Agua/análisis , Fluorocarburos/análisis , Fenómenos Químicos , Agua , Agua Subterránea/química
20.
Water Res ; 233: 119724, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36801573

RESUMEN

Both quantifiable and semi-quantifiable poly- and perfluoroalkyl substances (PFAS) were evaluated in the influent, effluent, and biosolids of 38 wastewater treatment plants. PFAS were detected in all streams at all facilities. For the means of the sums of detected, quantifiable PFAS concentrations were 98 ± 28 ng/L, 80 ± 24 ng/L, and 160,000 ± 46,000 ng/kg (dry weight basis) in the influent, effluent, and biosolids (respectively). In the aqueous influent and effluent streams this quantifiable PFAS mass was typically associated with perfluoroalkyl acids (PFAAs). In contrast, quantifiable PFAS in the biosolids were primarily polyfluoroalkyl substances that potentially serve as precursors to the more recalcitrant PFAAs. Results of the total oxidizable precursor (TOP) assay on select influent and effluent samples showed that semi-quantified (or, unidentified) precursors accounted for a substantial portion (21 to 88%) of the fluorine mass compared to that associated with quantified PFAS, and that this fluorine precursor mass was not appreciably transformed to perfluoroalkyl acids within the WWTPs, as influent and effluent precursor concentrations via the TOP assay were statistically identical. Evaluation of semi-quantified PFAS, consistent with results of the TOP assay, showed the presence of several classes of precursors in the influent, effluent, and biosolids; perfluorophosphonic acids (PFPAs) and fluorotelomer phosphate diesters (di-PAPs) occurred in 100 and 92% of biosolid samples, respectively. Analysis of mass flows showed that, for both quantified (on a fluorine mass basis) and semi-quantified PFAS, the majority of PFAS exited WWTPs through the aqueous effluent compared to the biosolids stream. Overall, these results highlight the importance of semi-quantified PFAS precursors in WWTPs, and the need to further understand the impacts of their ultimate fate in the environment.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Purificación del Agua , Contaminantes Químicos del Agua/análisis , Biosólidos , Flúor , Fluorocarburos/análisis , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA