Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(22): e2401185121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38768340

RESUMEN

The origin of the German cockroach, Blattella germanica, is enigmatic, in part because it is ubiquitous worldwide in human-built structures but absent from any natural habitats. The first historical records of this species are from ca. 250 years ago (ya) from central Europe (hence its name). However, recent research suggests that the center of diversity of the genus is Asian, where its closest relatives are found. To solve this paradox, we sampled genome-wide markers of 281 cockroaches from 17 countries across six continents. We confirm that B. germanica evolved from the Asian cockroach Blattella asahinai approximately 2,100 ya, probably by adapting to human settlements in India or Myanmar. Our genomic analyses reconstructed two primary global spread routes, one older, westward route to the Middle East coinciding with various Islamic dynasties (~1,200 ya), and another younger eastward route coinciding with the European colonial period (~390 ya). While Europe was not central to the early domestication and spread of the German cockroach, European advances in long-distance transportation and temperature-controlled housing were likely important for the more recent global spread, increasing chances of successful dispersal to and establishment in new regions. The global genetic structure of German cockroaches further supports our model, as it generally aligns with geopolitical boundaries, suggesting regional bridgehead populations established following the advent of international commerce.


Asunto(s)
Blattellidae , Animales , Blattellidae/genética , Filogenia , Europa (Continente) , Evolución Biológica
2.
Int Arch Allergy Immunol ; 185(5): 460-465, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38253039

RESUMEN

INTRODUCTION: German cockroach (GCr) aeroallergens are associated with allergic rhinitis and asthma. Vitellogenin (Vg) and vitellin (Vn) are abundant proteins in GCr blood and eggs (including egg cases), respectively, and are possible high molecular mass allergens. Prior efforts to purify Vg/Vn yielded amounts too small for subsequent studies. In this study, we report the affinity purification of Vg/Vn from whole-body defatted GCr powder and determination of the binding of Vg/Vn to anti-GCr IgE. METHOD: New Zealand white rabbits were immunized with pure Vg/Vn in Freund's adjuvant, and IgG was purified from the rabbit sera and conjugated to cyanogen bromide (CNBr)-activated Sepharose. Aqueous extracts from GCr powder were passed over the column. After extensive washing, putative Vg/Vn was eluted in low-pH buffer, neutralized, and analyzed by SDS-PAGE and liquid chromatography high-resolution mass spectrometry (LC-HRMS). IgE binding of Vg/Vn was evaluated by inhibition of IgE binding to GCr-ImmunoCAP(I6) in sera from 10 GCr-allergic individuals. In addition, Vg/Vn was biotinylated and bound to ImmunoCAP-streptavidin, and direct IgE antibody binding to the immobilized Vg/Vn was determined in sera from 26 GCr-allergic individuals. RESULTS: Vg/Vn isolated by affinity chromatography was 91% pure by LC-HRMS; contaminants included Bla g 3 (0.9%), human keratin (6%), and rabbit IgG. Vg/Vn inhibited IgE binding to GCr-ImmunoCAP(I6) in 8 of 10 sera. In direct-binding experiments, 21/26 (80%) sera had anti-Vg/Vn IgE at >0.10 kUA/L, while 11/26 (42%) sera were >0.35 kUA/L. CONCLUSIONS: We affinity-purified Vg/Vn and demonstrated that Vg/Vn-specific IgE antibody is a major component of GCr-specific IgE.


Asunto(s)
Alérgenos , Inmunoglobulina E , Vitelogeninas , Animales , Alérgenos/inmunología , Inmunoglobulina E/inmunología , Inmunoglobulina E/sangre , Conejos , Humanos , Vitelogeninas/inmunología , Blattellidae/inmunología , Masculino , Femenino , Adulto , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Niño
3.
PLoS Biol ; 19(7): e3001330, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34314414

RESUMEN

Insect cuticular hydrocarbons (CHCs) serve as important intersexual signaling chemicals and generally show variation between the sexes, but little is known about the generation of sexually dimorphic hydrocarbons (SDHCs) in insects. In this study, we report the molecular mechanism and biological significance that underlie the generation of SDHC in the German cockroach Blattella germanica. Sexually mature females possess more C29 CHCs, especially the contact sex pheromone precursor 3,11-DimeC29. RNA interference (RNAi) screen against the fatty acid elongase family members combined with heterologous expression of the genes in yeast revealed that both BgElo12 and BgElo24 were involved in hydrocarbon (HC) production, but BgElo24 is of wide catalytic activities and is able to provide substrates for BgElo12, and only the female-enriched BgElo12 is responsible for sustaining female-specific HC profile. Repressing BgElo12 masculinized the female CHC profile, decreased contact sex pheromone level, and consequently reduced the sexual attractiveness of female cockroaches. Moreover, the asymmetric expression of BgElo12 between the sexes is modulated by sex differentiation cascade. Specifically, male-specific BgDsx represses the transcription of BgElo12 in males, while BgTra is able to remove this effect in females. Our study reveals a novel molecular mechanism responsible for the formation of SDHCs and also provide evidences on shaping of the SDHCs by sexual selection, as females use them to generate high levels of contact sex pheromone.


Asunto(s)
Blattellidae/metabolismo , Ácidos Grasos/metabolismo , Hidrocarburos/metabolismo , Atractivos Sexuales/metabolismo , Caracteres Sexuales , Conducta Sexual Animal , Animales , Blattellidae/genética , Blattellidae/fisiología , Femenino , Genes de Insecto , Diferenciación Sexual/genética
4.
J Chem Ecol ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727793

RESUMEN

Insect cuticular hydrocarbons (CHCs) serve as important waterproofing barriers and as signals and cues in chemical communication. Over the past 30 years, numerous studies on CHCs have been conducted in the German cockroach, Blattella germanica, leading to substantial progress in the field. However, there has not been a systematic review of CHC studies in this species in recent years. This review aims to provide a concise overview of the chemical composition, storage, transport, and physical properties of different CHCs in B. germanica. Additionally, we focus on the biosynthetic pathway and the genetic regulation of HC biosynthesis in this species. A considerable amount of biochemical evidence regarding the biosynthetic pathway of insect CHCs has been gathered from studies conducted in B. germanica. In recent years, there has also been an improved understanding of the molecular mechanisms that underlie CHC production in this insect. In this article, we summarize the biosynthesis of different classes of CHCs in B. germanica. Then, we review CHCs reaction to various environmental conditions and stressors and internal physiological states. Additionally, we review a body of work showing that in B. germanica, CHC profiles exhibit significant sexual dimorphism, specific CHCs act as essential precursors for female contact sex pheromone components, and we summarize the molecular regulatory mechanisms that underlie sexual dimorphism of CHC profiles. Finally, we highlight future directions and challenges in research on the biosynthesis and regulatory mechanisms of CHCs in B. germanica, and also identify potential applications of CHC studies in the pest control.

5.
Proc Biol Sci ; 290(1995): 20222337, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36987637

RESUMEN

Human-imposed selection can lead to adaptive changes in sensory traits. However, rapid evolution of the sensory system can interfere with other behaviours, and animals must overcome such sensory conflicts. In response to intense selection by insecticide baits that contain glucose, German cockroaches evolved glucose-aversion (GA), which confers behavioural resistance against baits. During courtship the male offers the female a nuptial gift that contains maltose, which expediates copulation. However, the female's saliva rapidly hydrolyses maltose into glucose, which causes GA females to dismount the courting male, thus reducing their mating success. Comparative analysis revealed two adaptive traits in GA males. They produce more maltotriose, which is more resilient to salivary glucosidases, and they initiate copulation faster than wild-type males, before GA females interrupt their nuptial feeding and dismount the male. Recombinant lines of the two strains showed that the two emergent traits of GA males were not genetically associated with the GA trait. Results suggest that the two courtship traits emerged in response to the altered sexual behaviour of GA females and independently of the male's GA trait. Although rapid adaptive evolution generates sexual mismatches that lower fitness, compensatory behavioural evolution can correct these sensory discrepancies.


Asunto(s)
Cortejo , Conducta Sexual Animal , Animales , Humanos , Femenino , Masculino , Conducta Sexual Animal/fisiología , Maltosa , Copulación , Glucosa
6.
Artículo en Inglés | MEDLINE | ID: mdl-33956595

RESUMEN

A Gram-stain-negative, rod-shaped, non-motile, non-spore-forming, aerobic bacterium, designated type strain SSI9T, was isolated from sand fly (Phlebotomus papatasi Scopoli; Diptera: Psychodidae) rearing substrate and subjected to polyphasic taxonomic analysis. Strain SSI9T contained phosphatidylethanolamine as a major polar lipid, MK-7 as the predominant quinone, and C16 : 1ω6c/C16 : 1ω7c, iso-C15 : 0, iso-C17 : 0 3-OH and C16 : 0 as the major cellular fatty acids. Phylogenetic analysis based on 16S rRNA gene sequences revealed that SSI9T represents a member of the genus Sphingobacterium, of the family Sphingobacteriaceae sharing 96.5-88.0 % sequence similarity with other species of the genus Sphingobacterium. The results of multilocus sequence analysis using the concatenated sequences of the housekeeping genes recA, rplC and groL indicated that SSI9T formed a separate branch in the genus Sphingobacterium. The genome of SSI9T is 5 197 142 bp with a DNA G+C content of 41.8 mol% and encodes 4395 predicted coding sequences, 49 tRNAs, and three complete rRNAs and two partial rRNAs. SSI9T could be distinguished from other species of the genus Sphingobacterium with validly published names by several phenotypic, chemotaxonomic and genomic characteristics. On the basis of the results of this polyphasic taxonomic analysis, the bacterial isolate represents a novel species within the genus Sphingobacterium, for which the name Sphingobacterium phlebotomi sp. nov. is proposed. The type strain is SSI9T (=ATCC TSD-210T=LMG 31664T=NRRL B-65603T).


Asunto(s)
Phlebotomus/microbiología , Sphingobacterium/clasificación , Sphingobacterium/aislamiento & purificación , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Fosfatidiletanolaminas/metabolismo , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Sphingobacterium/genética , Sphingobacterium/metabolismo
7.
Proc Natl Acad Sci U S A ; 115(15): 3888-3893, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29555778

RESUMEN

Chemical communication is fundamental to success in social insect colonies. Species-, colony-, and caste-specific blends of cuticular hydrocarbons (CHCs) and other chemicals have been well documented as pheromones, mediating important behavioral and physiological aspects of social insects. More specifically, royal pheromones used by queens (and kings in termites) enable workers to recognize and care for these vital individuals and maintain the reproductive division of labor. In termites, however, no royal-recognition pheromones have been identified to date. In the current study, solvent extracts of the subterranean termite Reticulitermes flavipes were analyzed to assess differences in cuticular compounds among castes. We identified a royal-specific hydrocarbon-heneicosane-and several previously unreported and highly royal enriched long-chain alkanes. When applied to glass dummies, heneicosane elicited worker behavioral responses identical to those elicited by live termite queens, including increased vibratory shaking and antennation. Further, the behavioral effects of heneicosane were amplified when presented with nestmate termite workers' cuticular extracts, underscoring the importance of chemical context in termite royal recognition. Thus, heneicosane is a royal-recognition pheromone that is active in both queens and kings of R. flavipes The use of heneicosane as a queen and king recognition pheromone by termites suggests that CHCs evolved as royal pheromones ∼150 million years ago, ∼50 million years before their first use as queen-recognition pheromones in social Hymenoptera. We therefore infer that termites and social Hymenoptera convergently evolved the use of these ubiquitous compounds in royal recognition.


Asunto(s)
Hidrocarburos/química , Isópteros/química , Isópteros/fisiología , Feromonas/química , Alcanos/química , Alcanos/metabolismo , Animales , Conducta Animal , Evolución Biológica , Femenino , Hidrocarburos/metabolismo , Isópteros/genética , Masculino , Feromonas/metabolismo , Predominio Social
8.
Proc Biol Sci ; 287(1921): 20192466, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32097587

RESUMEN

Once emitted, semiochemicals are exposed to reactive environmental factors that may alter them, thus disrupting chemical communication. Some species, however, might have adapted to detect environmentally mediated breakdown products of their natural chemicals as semiochemicals. We demonstrate that air, water vapour and ultraviolet (UV) radiation break down unsaturated cuticular hydrocarbons (CHCs) of Periplaneta americana (American cockroach), resulting in the emission of volatile organic compounds (VOCs). In behavioural assays, nymphs strongly avoided aggregating in shelters exposed to the breakdown VOCs from cuticular alkenes. The three treatments (air, water vapour, UV) produced the same VOCs, but at different time-courses and ratios. Fourteen VOCs from UV-exposed CHCs elicited electrophysiological responses in nymph antennae; 10 were identified as 2-nonanone, 1-pentanol, 1-octanol, 1-nonanol, tetradecanal, acetic acid, propanoic acid, butanoic acid, pentanoic acid and hexanoic acid. When short-chain fatty acids were tested as a mix and a blend of the alcohols and aldehyde was tested as a second mix, nymphs exhibited no preference for control or treated shelters. However, nymphs avoided shelters that were exposed to VOCs from the complete 10-compound mix. Conditioned shelters (occupied by cockroaches with faeces and CHCs deposited on the shelters), which are normally highly attractive to nymphs, were also avoided after UV exposure, confirming that breakdown products from deposited metabolites, including CHCs, mediate this behaviour. Our results demonstrate that common environmental agents degrade CHCs into behaviourally active volatile compounds that potentially may serve as necromones or epideictic pheromones, mediating group dissolution.


Asunto(s)
Alquenos/metabolismo , Conducta Animal/fisiología , Periplaneta/fisiología , Feromonas/metabolismo , Animales , Hidrocarburos/metabolismo , Conducta Social , Compuestos Orgánicos Volátiles
9.
Clin Exp Allergy ; 50(6): 741-751, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32243003

RESUMEN

BACKGROUND: Allergen extracts are the primary tool for diagnosis and treatment of allergic diseases. In the United States, most allergen extracts are non-standardized. More sophisticated analytical approaches are needed to characterize these products and enable manufacturers and regulators to better determine potency. OBJECTIVE: To expand the multiple reaction monitoring (MRM) assay for an in-depth characterization of German cockroach (GCr; Blattella germanica) allergen extracts. METHODS: We applied advanced liquid chromatography (LC) and mass spectrometry (MS) techniques including MRM. The expanded LC/MRM-MS method was optimized to measure known GCr allergens and their isoforms/variants in commercial extracts and environmental samples. We performed isoform-specific allergen measurements in multiple extracts from four commercial sources and extracts prepared using environmental samples from urban homes. To investigate causes of heterogeneity, we examined over 30 extraction process variables. RESULTS: Evaluation of the commercial extracts confirmed the variability of production lots and commercial sources. Commonly used defatting and extraction protocols yielded extracts with comparable allergen profiles and content. However, the identity and quality of source materials was a major contributor to variability. In comparing commercial GCr extracts to environmental samples, relative quantities of Bla g 1, Bla g 2, Bla g 3, Bla g 4 and Bla g 11 were similar, while Bla g 5, Bla g 6, Bla g 7 and Bla g 8 were present in the environmental samples but largely absent for the commercial extracts. CONCLUSIONS AND CLINICAL RELEVANCE: LC/MRM-MS can be used to measure all known GCr allergens in commercial allergen extracts and environmental samples. Significant differences exist between allergen profiles of commercial extracts and the profiles of environmental samples from dwellings. This analytical platform can serve as a template to achieve better product characterization of similarly complex products.


Asunto(s)
Alérgenos/química , Blattellidae/química , Mezclas Complejas/química , Proteínas de Insectos/química , Animales , Cromatografía Liquida , Espectrometría de Masas
10.
J Allergy Clin Immunol ; 143(4): 1474-1481.e8, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30170124

RESUMEN

BACKGROUND: Cockroach allergens are an important cause of IgE-mediated sensitization in inner-city asthmatic patients. However, cockroach extracts used for diagnosis and immunotherapy are not standardized. OBJECTIVE: We sought to determine the allergen content of nonstandardized German cockroach extracts and the levels of sensitization to an expanded set of cockroach allergens as determinants of in vitro extract potency for IgE reactivity. METHODS: Twelve German cockroach extracts were compared for allergen content and potency of IgE reactivity. Bla g 1, Bla g 2, and Bla g 5 were measured by using immunoassays. IgE antibody levels to 8 purified recombinant allergens from groups 1, 2, 4, 5, 6, 7, 9, and 11 were measured by using ImmunoCAP. IgE antibody binding inhibition assays were performed to assess extract in vitro potencies (concentration inhibiting 30% of the total IgE antibody-binding inhibition) relative to an arbitrarily selected reference extract in 5 patients with cockroach allergy. RESULTS: Allergen levels were highly variable. Three new major allergens (groups 6, 9, and 11), were identified among highly cockroach-sensitized subjects (CAP class ≥ 3). Sensitization profiles were unique per subject without immunodominant allergens. The sum of IgE to 8 allergen components showed a good correlation with cockroach-specific IgE levels (r = 0.88, P < .001). In vitro potencies varied among different extracts per subject and among subjects for each extract. CONCLUSIONS: The in vitro potency of German cockroach extracts for IgE reactivity depends on allergen content and allergen-specific IgE titers of patients with cockroach allergy. These factors are relevant for selection of potent extracts to be used for immunotherapy and for the design and interpretation of data from immunotherapy trials.


Asunto(s)
Alérgenos/inmunología , Blattellidae/inmunología , Hipersensibilidad/inmunología , Inmunoglobulina E/inmunología , Proteínas de Insectos/inmunología , Animales , Femenino , Humanos , Hipersensibilidad/etiología , Masculino
11.
BMC Public Health ; 19(1): 96, 2019 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-30686267

RESUMEN

BACKGROUND: The German cockroach, Blattella germanica, is one of the most challenging pests to eradicate from indoor environments. Professional pest control is often prohibitively expensive, prompting low-income residents to turn to over-the-counter consumer products, including total release foggers (TRFs, "bug bombs"). Despite their widespread use, little is known regarding either the associated pesticide exposure risks or the efficacy of TRFs. METHODS: Cockroach-infested homes were recruited into the study. Wipe samples were collected from various surfaces before TRFs were discharged, immediately after, and one month later to determine pesticide exposure risks in 20 homes (divided equally among four different TRF products). Simultaneously, cockroach populations were monitored in all homes to assess the efficacy of TRFs. In parallel, 10 homes were treated with gel baits (divided equally between two bait products), to compare TRFs to a more targeted, low-risk, do-it-yourself intervention strategy. RESULTS: TRFs failed to reduce cockroach populations, whereas similarly priced gel baits caused significant declines in the cockroach populations. Use of TRFs resulted in significant pesticide deposits throughout the kitchen. Across all products, pesticides, and horizontal kitchen surfaces, pesticide residues following TRF discharge were 603-times (SEM ±184) higher than baseline, with a median increase of 85 times. CONCLUSIONS: The high risks of pesticide exposure associated with TRFs combined with their ineffectiveness in controlling German cockroach infestations call into question their utility in the marketplace, especially because similarly priced and much safer bait products are highly effective in the indoor environment.


Asunto(s)
Blattellidae/efectos de los fármacos , Exposición a Riesgos Ambientales/efectos adversos , Fumigación , Vivienda , Control de Insectos/métodos , Resistencia a los Insecticidas , Insecticidas/efectos adversos , Animales , Humanos , Residuos de Plaguicidas/análisis , Medición de Riesgo
12.
J Exp Zool B Mol Dev Evol ; 330(5): 265-278, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29566459

RESUMEN

The acquisition of genome sequences from a wide range of insects and other arthropods has revealed a broad positive correlation between the complexity of their chemical ecology and the size of their chemosensory gene repertoire. The German cockroach Blattella germanica is an extreme omnivore and has the largest chemosensory gene repertoire known for an arthropod, exceeding even the highly polyphagous spider mite Tetranychus urticae. While the Odorant Receptor family is not particularly large, with 123 genes potentially encoding 134 receptors (105 intact), the Gustatory Receptor family is greatly expanded to 431 genes potentially encoding 545 receptors (483 intact), the largest known for insects and second only to the spider mite. The Ionotropic Receptor family of olfactory and gustatory receptors is vastly expanded to at least 897 genes (604 intact), the largest size known in arthropods, far surpassing the 150 known from the dampwood termite Zootermopsis nevadensis. Commensurately, the Odorant Binding Protein family is expanded to the largest known for insects at 109 genes (all intact). Comparison with the far more specialized, but phylogenetically related termite, within the Dictyoptera, reveals considerable gene losses from the termite, and massive species-specific gene expansions in the cockroach. The cockroach has lost function of 11%-41% of these three chemoreceptor gene families to pseudogenization, and most of these are young events, implying rapid turnover of genes along with these major expansions, presumably in response to changes in its chemical ecology.


Asunto(s)
Blattellidae/genética , Proteínas de Insectos/genética , Receptores de Superficie Celular/genética , Animales , Evolución Molecular , Conducta Alimentaria , Isópteros/genética , Familia de Multigenes/genética , Filogenia , Especificidad de la Especie , Gusto
13.
J Exp Zool B Mol Dev Evol ; 330(5): 254-264, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29998472

RESUMEN

The German cockroach, Blattella germanica, is a worldwide pest that infests buildings, including homes, restaurants, and hospitals, often living in unsanitary conditions. As a disease vector and producer of allergens, this species has major health and economic impacts on humans. Factors contributing to the success of the German cockroach include its resistance to a broad range of insecticides, immunity to many pathogens, and its ability, as an extreme generalist omnivore, to survive on most food sources. The recently published genome shows that B. germanica has an exceptionally high number of protein coding genes. In this study, we investigate the functions of the 93 significantly expanded gene families with the aim to better understand the success of B. germanica as a major pest despite such inhospitable conditions. We find major expansions in gene families with functions related to the detoxification of insecticides and allelochemicals, defense against pathogens, digestion, sensory perception, and gene regulation. These expansions might have allowed B. germanica to develop multiple resistance mechanisms to insecticides and pathogens, and enabled a broad, flexible diet, thus explaining its success in unsanitary conditions and under recurrent chemical control. The findings and resources presented here provide insights for better understanding molecular mechanisms that will facilitate more effective cockroach control.


Asunto(s)
Blattellidae/genética , Blattellidae/inmunología , Proteínas de Insectos/genética , Animales , Blattellidae/metabolismo , Dieta , Evolución Molecular , Genoma de los Insectos , Inactivación Metabólica/genética , Resistencia a los Insecticidas/genética , Resistencia a los Insecticidas/fisiología , Familia de Multigenes , Control de Plagas , Receptores de Superficie Celular/genética
14.
Appl Environ Microbiol ; 84(17)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29959246

RESUMEN

German cockroaches, Blattella germanica (Blattodea: Ectobiidae), are human commensals that move freely between food and waste, disseminating bacteria, including potential pathogens, through their feces. However, the relationship between the microbial communities of the cockroach gut and feces is poorly understood. We analyzed the V4 region of the 16S rRNA gene and the V9 region of the 18S rRNA gene by next-generation sequencing (NGS) to compare the bacterial and protist diversities in guts versus feces and males versus females, as well as assess variation across cockroach populations. Cockroaches harbored a diverse array of bacteria, and 80 to 90% of the operational taxonomic units (OTUs) were shared between the feces and gut. Lab-reared and field-collected cockroaches had distinct microbiota, and whereas lab-reared cockroaches had relatively conserved communities, considerable variation was observed in the microbial community composition of cockroaches collected in different apartments. Nonetheless, cockroaches from all locations shared some core bacterial taxa. The eukaryotic community in the feces of field-collected cockroaches was found to be more diverse than that in lab-reared cockroaches. These results demonstrate that cockroaches disseminate their gut microbiome in their feces, and they underscore the important contribution of the cockroach fecal microbiome to the microbial diversity of cockroach-infested homes.IMPORTANCE The German cockroach infests diverse human-built structures, including homes and hospitals. It produces potent allergens that trigger asthma and disseminates opportunistic pathogens in its feces. A comprehensive understanding of gut and fecal microbial communities of cockroaches is essential not only to understand their contribution to the biology of the cockroach, but also for exploring their clinical relevance. In this study, we compare the diversity of bacteria and eukaryotes in the cockroach gut and feces and assess the variation in the gut microbiota across cockroach populations.


Asunto(s)
Bacterias/clasificación , Cucarachas/microbiología , Cucarachas/parasitología , Microbioma Gastrointestinal/fisiología , Parásitos/clasificación , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Heces/microbiología , Heces/parasitología , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Parásitos/genética , Parásitos/aislamiento & purificación , ARN Ribosómico 16S/genética , ARN Ribosómico 18S/genética
15.
J Chem Ecol ; 44(7-8): 621-630, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30039209

RESUMEN

Female-emitted volatile sex pheromones in most moths are composed of biosynthetically related blends of fatty acid derivatives, such as aldehydes, acetate esters and alcohols. In many moths, as in the noctuid Heliothis (Chloridea) virescens, the pheromone gland contains alcohols (e.g., (Z)-11-hexadecen-1-ol, hereafter Z11-16:OH) that may serve dual functions as pheromone components as well as precursors of other pheromone components. The relative importance of Z11-16:OH to male attraction in H. virescens has been controversial. It occurs in the pheromone gland in relatively large amounts, but several studies could neither detect Z11-16:OH in gland emissions nor attribute any conspecific behavioral function to it in flight- tunnel assays. Trapping assays in the field, however, have more consistently documented that the addition of Z11-16:OH increased trap catch. Using a short section of thick film megabore column, in combination with derivatization and GC-CI-SIM-MS, we determined that Z11-16:OH is emitted from the sex pheromone gland during calling. Field trapping studies demonstrated that trap catch increased when Z11-16:OH was added to a 2-component minimal blend and to a 6-component blend. Behavioral observations in the field confirmed that more males responded to a pheromone blend that contained a low blend ratio of Z11-16:OH, but ≥5% Z11-16:OH depressed both male behavior and trap catch. We conclude that Z11-16:OH should be considered a component of the sex pheromone of H. virescens females.


Asunto(s)
Alcoholes Grasos/metabolismo , Mariposas Nocturnas/fisiología , Atractivos Sexuales/metabolismo , Conducta Sexual Animal , Comunicación Animal , Animales , Alcoholes Grasos/análisis , Femenino , Masculino , Mariposas Nocturnas/química , Atractivos Sexuales/análisis , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo
16.
Proc Natl Acad Sci U S A ; 112(51): 15678-83, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26644557

RESUMEN

Aggregation of the German cockroach, Blattella germanica, is regulated by fecal aggregation agents (pheromones), including volatile carboxylic acids (VCAs). We demonstrate that the gut microbial community contributes to production of these semiochemicals. Chemical analysis of the fecal extract of B. germanica revealed 40 VCAs. Feces from axenic cockroaches (no microorganisms in the alimentary tract) lacked 12 major fecal VCAs, and 24 of the remaining compounds were represented at extremely low amounts. Olfactory and aggregation bioassays demonstrated that nymphs strongly preferred the extract of control feces over the fecal extract of axenic cockroaches. Additionally, nymphs preferred a synthetic blend of 6 fecal VCAs over a solvent control or a previously identified VCA blend. To test whether gut bacteria contribute to the production of fecal aggregation agents, fecal aerobic bacteria were cultured, isolated, and identified. Inoculation of axenic cockroaches with individual bacterial taxa significantly rescued the aggregation response to the fecal extract, and inoculation with a mix of six bacterial isolates was more effective than with single isolates. The results indicate that the commensal gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community. Our results highlight the pivotal role of gut bacteria in mediating insect-insect communication. Moreover, because the gut microbial community reflects the local environment, local plasticity in fecal aggregation pheromones enables colony-specific odors and fidelity to persistent aggregation sites.


Asunto(s)
Blattellidae/fisiología , Tracto Gastrointestinal/microbiología , Feromonas/fisiología , Animales , Comunicación , Heces/microbiología
17.
J Allergy Clin Immunol ; 140(2): 565-570, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28108117

RESUMEN

BACKGROUND: Exposure to cockroaches is an important asthma trigger, particularly for children with asthma living in inner cities. Integrated pest management is the recommended approach to cockroach abatement; however, it is costly and difficult to implement. The impact of reducing cockroach exposure on asthma outcomes is not known. OBJECTIVE: We sought to test the use of a single intervention, insecticidal bait, to reduce cockroach exposure in the home of children with asthma in New Orleans and to examine the impact of cockroach reduction on asthma outcomes. METHODS: One hundred two children aged 5 to 17 years with moderate to severe asthma were enrolled in a 12-month randomized controlled trial testing the use of insecticidal bait on cockroach counts and asthma morbidity. Homes were visited 6 times and asthma symptoms were assessed every 2 months. RESULTS: After adjustment, intervention homes had significantly fewer cockroaches than did control homes (mean change in cockroaches trapped, 13.14; 95% CI, 6.88-19.39; P < .01). Children in control homes had more asthma symptoms and unscheduled health care utilization in the previous 2 weeks (1.82, 95% CI, 0.14-3.50, P = .03; 1.17, 95% CI, 0.11-2.24, P = .03, respectively) and a higher proportion of children with FEV1 of less than 80% predicted (odds ratio, 5.74; 95% CI, 1.60-20.57; P = .01) compared with children living in intervention homes. CONCLUSIONS: Previous research has demonstrated improvement in asthma health outcomes using multifaceted interventions. The strategic placement of insecticidal bait, which is inexpensive, has low toxicity, and is widely available, resulted in sustained cockroach elimination over 12 months and was associated with improved asthma outcomes. This single intervention may be an alternative to multifaceted interventions currently recommended to improve asthma morbidity.


Asunto(s)
Asma/epidemiología , Cucarachas , Exposición a Riesgos Ambientales/prevención & control , Control de Plagas/métodos , Adolescente , Atención Ambulatoria/estadística & datos numéricos , Animales , Niño , Preescolar , Femenino , Hospitalización/estadística & datos numéricos , Humanos , Insecticidas , Masculino , Morbilidad
18.
J Exp Biol ; 220(Pt 2): 304-311, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27811297

RESUMEN

The German cockroach (Blattella germanica) is an excellent model omnivore for studying the effect of foraging effort on nutrient balancing behavior and physiology, and its consequences for performance. We investigated the effect of foraging distance on individual German cockroaches by providing two foods differing in protein-to-carbohydrate ratio at opposite ends of long containers or adjacent to each other in short containers. Each food was nutritionally imbalanced, but the two foods were nutritionally complementary, allowing optimal foraging by selective feeding from both foods. We measured nutrient-specific consumption in fifth instar nymphs and newly eclosed females foraging at the two distances, hypothesizing that individuals foraging over longer distance would select more carbohydrate-biased diets to compensate for the energetic cost of locomotion. We then determined dry mass growth and lipid accumulation in the nymphs as well as mass gain and the length of basal oocytes in the adult females as an estimate of sexual maturation. Nymphs foraging over longer distance accumulated less lipid relative to total dry mass growth, but contrary to our predictions, their protein intake was higher and they accumulated more structural mass. In concordance, adult females foraging over longer distance gained more body mass and matured their oocytes faster. Our results show a positive effect of foraging distance on fitness-related parameters at two life stages, in both cases involving increased consumption of specific nutrients corresponding to requirements at the respective life stage.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Blattellidae/fisiología , Metabolismo Energético , Metabolismo de los Lípidos , Maduración Sexual , Animales , Blattellidae/crecimiento & desarrollo , Conducta Alimentaria , Femenino , Masculino , Ninfa/crecimiento & desarrollo , Ninfa/fisiología , Oocitos/crecimiento & desarrollo
19.
Parasitol Res ; 116(1): 237-242, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27830371

RESUMEN

The common bed bug Cimex lectularius, has been recently shown to constitute two host races, which are likely in the course of incipient speciation. The human-associated lineage splits from the ancestral bat-associated species deep in the history of modern humans, likely even prior to the Neolithic Period and establishment of the first permanent human settlements. Hybridization experiments between these two lineages show that post-mating reproductive barriers are incomplete due to local variation. As mating takes place in off-host refugia marked by aggregation semiochemicals, the present investigation tested the hypothesis that bed bugs use these semiochemicals to differentiate between refugia marked by bat- and human-associated bed bugs; this would constitute a pre-copulation isolation mechanism. The preference for lineage-specific odors was tested using artificial shelters conditioned by a group of either male or female bed bugs. Adult males were assayed individually in four-choice assays that included two clean unconditioned control shelters. In most assays, bed bugs preferred to rest in conditioned shelters, with no apparent fidelity to shelters conditioned by their specific lineage. However, 51 % of the bat-associated males preferred unconditioned shelters over female-conditioned shelters of either lineage. Thus, bed bugs show no preferences for lineage-specific shelters, strongly suggesting that semiochemicals associated with shelters alone do not function in reproductive isolation.


Asunto(s)
Chinches/clasificación , Chinches/fisiología , Quirópteros/parasitología , Infestaciones Ectoparasitarias/parasitología , Infestaciones Ectoparasitarias/veterinaria , Animales , Chinches/genética , Bioensayo , Femenino , Humanos , Hibridación Genética , Masculino , Odorantes/análisis , Reproducción
20.
J Exp Biol ; 219(Pt 23): 3773-3780, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27688050

RESUMEN

Host location in bed bugs is poorly understood. Of the primary host-associated cues known to attract bed bugs - CO2, odors, heat - heat has received little attention as an independent stimulus. We evaluated the effects of target temperatures ranging from 23 to 48°C on bed bug activation, orientation and feeding. Activation and orientation responses were assessed using a heated target in a circular arena. All targets heated above ambient temperature activated bed bugs (initiated movement) and elicited oriented movement toward the target, with higher temperatures generally resulting in faster activation and orientation. The distance over which bed bugs could orient toward a heat source was measured using a 2-choice T-maze assay. Positive thermotaxis was limited to distances <3 cm. Bed bug feeding responses on an artificial feeding system increased with feeder temperature up to 38 and 43°C, and declined precipitously at 48°C. In addition, bed bugs responded to the relative difference between ambient and feeder temperatures. These results highlight the wide range of temperatures that elicit activation, orientation and feeding responses in bed bugs. In contrast, the ability of bed bugs to correctly orient towards a heated target, independently of other cues, is limited to very short distances (<3 cm). Finally, bed bug feeding is shown to be relative to ambient temperature, not an absolute response to feeder blood temperature.


Asunto(s)
Chinches/fisiología , Conducta Alimentaria/fisiología , Calor , Actividad Motora/fisiología , Taxia/fisiología , Animales , Orientación Espacial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA