Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Vis ; 24(6): 3, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38837169

RESUMEN

The primary symptom of visual snow syndrome (VSS) is the unremitting perception of small, flickering dots covering the visual field. VSS is a serious but poorly understood condition that can interfere with daily tasks. Several studies have provided qualitative data about the appearance of visual snow, but methods to quantify the symptom are lacking. Here, we developed a task in which participants with VSS adjusted parameters of simulated visual snow on a computer monitor until the simulation matched their internal visual snow. On each trial, participants (n = 31 with VSS) modified the size, density, update speed, and contrast of the simulation. Participants' settings were highly reliable across trials (intraclass correlation coefficients > 0.89), and they reported that the task was effective at stimulating their visual snow. On average, visual snow was very small (less than 2 arcmin in diameter), updated quickly (mean temporal frequency = 18.2 Hz), had low density (mean snow elements vs. background = 2.87%), and had low contrast (average root mean square contrast = 2.56%). Our task provided a quantitative assessment of visual snow percepts, which may help individuals with VSS communicate their experience to others, facilitate assessment of treatment efficacy, and further our understanding of the trajectory of symptoms, as well as the neural origins of VSS.


Asunto(s)
Campos Visuales , Humanos , Adulto , Masculino , Femenino , Campos Visuales/fisiología , Adulto Joven , Estimulación Luminosa/métodos , Persona de Mediana Edad , Sensibilidad de Contraste/fisiología , Trastornos de la Percepción/fisiopatología , Trastornos de la Percepción/etiología , Percepción Visual/fisiología , Simulación por Computador , Trastornos de la Visión/fisiopatología
2.
Neuroimage ; 272: 120060, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36997137

RESUMEN

Visual perception is abnormal in psychotic disorders such as schizophrenia. In addition to hallucinations, laboratory tests show differences in fundamental visual processes including contrast sensitivity, center-surround interactions, and perceptual organization. A number of hypotheses have been proposed to explain visual dysfunction in psychotic disorders, including an imbalance between excitation and inhibition. However, the precise neural basis of abnormal visual perception in people with psychotic psychopathology (PwPP) remains unknown. Here, we describe the behavioral and 7 tesla MRI methods we used to interrogate visual neurophysiology in PwPP as part of the Psychosis Human Connectome Project (HCP). In addition to PwPP (n = 66) and healthy controls (n = 43), we also recruited first-degree biological relatives (n = 44) in order to examine the role of genetic liability for psychosis in visual perception. Our visual tasks were designed to assess fundamental visual processes in PwPP, whereas MR spectroscopy enabled us to examine neurochemistry, including excitatory and inhibitory markers. We show that it is feasible to collect high-quality data across multiple psychophysical, functional MRI, and MR spectroscopy experiments with a sizable number of participants at a single research site. These data, in addition to those from our previously described 3 tesla experiments, will be made publicly available in order to facilitate further investigations by other research groups. By combining visual neuroscience techniques and HCP brain imaging methods, our experiments offer new opportunities to investigate the neural basis of abnormal visual perception in PwPP.


Asunto(s)
Trastorno Bipolar , Conectoma , Trastornos Psicóticos , Esquizofrenia , Humanos , Conectoma/métodos , Trastornos Psicóticos/diagnóstico por imagen , Esquizofrenia/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
3.
J Vis ; 23(2): 2, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36723929

RESUMEN

Perceptual distortions are core features of psychosis. Weakened contrast surround suppression has been proposed as a neural mechanism underlying atypical perceptual experiences. Although previous work has measured suppression by asking participants to report the perceived contrast of a low-contrast target surrounded by a high-contrast surround, it is possible to modulate perceived contrast solely by manipulating the orientation of a matched-contrast center and surround. Removing the bottom-up segmentation cue of contrast difference and isolating orientation-dependent suppression may clarify the neural processes responsible for atypical surround suppression in psychosis. We examined surround suppression across a spectrum of psychotic psychopathology including people with schizophrenia (PSZ; N = 31) and people with bipolar disorder (PBD; N = 29), first-degree biological relatives of these patient groups (PBDrel, PSZrel; N = 28, N = 21, respectively), and healthy controls (N = 29). PSZ exhibited reduced surround suppression across orientations; although group differences were minimal at the condition that produced the strongest suppression. PBD and PSZrel exhibited intermediate suppression, whereas PBDrel performed most similarly to controls. Intriguingly, group differences in orientation-dependent surround suppression magnitude were moderated by visual acuity. A simulation in which visual acuity and/or focal attention interact with untuned gain control reproduces the observed pattern of results, including the lack of group differences when orientation of center and surround are the same. Our findings further elucidate perceptual mechanisms of impaired center-surround processing in psychosis and provide insights into the effects of visual acuity on orientation-dependent suppression in PSZ.


Asunto(s)
Esquizofrenia , Humanos , Orientación , Estimulación Luminosa/métodos , Agudeza Visual , Sensibilidad de Contraste
4.
J Neurosci ; 40(11): 2269-2281, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32015023

RESUMEN

A prominent hypothesis regarding the pathophysiology of autism is that an increase in the balance between neural excitation and inhibition results in an increase in neural responses. However, previous reports of population-level response magnitude in individuals with autism have been inconsistent. Critically, network interactions have not been considered in previous neuroimaging studies of excitation and inhibition imbalance in autism. In particular, a defining characteristic of cortical organization is its hierarchical and interactive structure; sensory and cognitive systems are comprised of networks where later stages inherit and build upon the processing of earlier input stages, and also influence and shape earlier stages by top-down modulation. Here we used the well established connections of the human visual system to examine response magnitudes in a higher-order motion processing region [middle temporal area (MT+)] and its primary input region (V1). Simple visual stimuli were presented to adult individuals with autism spectrum disorders (ASD; n = 24, mean age 23 years, 8 females) and neurotypical controls (n = 24, mean age 22, 8 females) during fMRI scanning. We discovered a strong dissociation of fMRI response magnitude between region MT+ and V1 in individuals with ASD: individuals with high MT+ responses had attenuated V1 responses. The magnitude of MT+ amplification and of V1 attenuation was associated with autism severity, appeared to result from amplified suppressive feedback from MT+ to V1, and was not present in neurotypical controls. Our results reveal the potential role of altered hierarchical network interactions in the pathophysiology of ASD.SIGNIFICANCE STATEMENT An imbalance between neural excitation and inhibition, resulting in increased neural responses, has been suggested as a pathophysiological pathway to autism, but direct evidence from humans is lacking. In the current study we consider the role of interactions between stages of sensory processing when testing increased neural responses in individuals with autism. We used the well known hierarchical structure of the visual motion pathway to demonstrate dissociation in the fMRI response magnitude between adjacent stages of processing in autism: responses are attenuated in a primary visual area but amplified in a subsequent higher-order area. This response dissociation appears to rely on enhanced suppressive feedback between regions and reveals a previously unknown cortical network alteration in autism.


Asunto(s)
Percepción de Movimiento/fisiología , Red Nerviosa/fisiopatología , Lóbulo Temporal/fisiopatología , Adulto , Trastorno del Espectro Autista/fisiopatología , Mapeo Encefálico , Movimientos Oculares/fisiología , Femenino , Movimientos de la Cabeza/fisiología , Humanos , Imagen por Resonancia Magnética , Masculino , Inhibición Neural/fisiología , Estimulación Luminosa , Desempeño Psicomotor/fisiología , Adulto Joven
5.
Neuroimage ; 241: 118439, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34339830

RESUMEN

Investigations within the Human Connectome Project have expanded to include studies focusing on brain disorders. This paper describes one of the investigations focused on psychotic psychopathology: The psychosis Human Connectome Project (P-HCP). The data collected as part of this project were multimodal and derived from clinical assessments of psychopathology, cognitive assessments, instrument-based motor assessments, blood specimens, and magnetic resonance imaging (MRI) data. The dataset will be made publicly available through the NIMH Data Archive. In this report we provide specific information on how the sample of participants was obtained and characterized and describe the experimental tasks and procedures used to probe neural functions involved in psychotic disorders that may also mark genetic liability for psychotic psychopathology. Our goal in this paper is to outline the data acquisition process so that researchers intending to use these publicly available data can plan their analyses. MRI data described in this paper are limited to data acquired at 3 Tesla. A companion paper describes the study's 7 Tesla image acquisition protocol in detail, which is focused on visual perceptual functions in psychotic psychopathology.


Asunto(s)
Encéfalo/diagnóstico por imagen , Conectoma/métodos , Imagen por Resonancia Magnética/métodos , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/genética , Adulto , Estudios Transversales , Bases de Datos Factuales , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Selección de Paciente , Trastornos Psicóticos/psicología
6.
Hum Brain Mapp ; 42(13): 4205-4223, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34156132

RESUMEN

Echo planar imaging (EPI) is widely used in functional and diffusion-weighted MRI, but suffers from significant geometric distortions in the phase encoding direction caused by inhomogeneities in the static magnetic field (B0 ). This is a particular challenge for EPI at very high field (≥7 T), as distortion increases with higher field strength. A number of techniques for distortion correction exist, including those based on B0 field mapping and acquiring EPI scans with opposite phase encoding directions. However, few quantitative comparisons of distortion compensation methods have been performed using human EPI data, especially at very high field. Here, we compared distortion compensation using B0 field maps and opposite phase encoding scans in two different software packages (FSL and AFNI) applied to 7 T gradient echo (GE) EPI data from 31 human participants. We assessed distortion compensation quality by quantifying alignment to anatomical reference scans using Dice coefficients and mutual information. Performance between FSL and AFNI was equivalent. In our whole-brain analyses, we found superior distortion compensation using GE scans with opposite phase encoding directions, versus B0 field maps or spin echo (SE) opposite phase encoding scans. However, SE performed better when analyses were limited to ventromedial prefrontal cortex, a region with substantial dropout. Matching the type of opposite phase encoding scans to the EPI data being corrected (e.g., SE-to-SE) also yielded better distortion correction. While the ideal distortion compensation approach likely varies depending on methodological differences across experiments, this study provides a framework for quantitative comparison of different distortion compensation methods.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Imagen Eco-Planar , Neuroimagen Funcional , Adulto , Imagen Eco-Planar/métodos , Imagen Eco-Planar/normas , Familia , Femenino , Neuroimagen Funcional/métodos , Neuroimagen Funcional/normas , Humanos , Masculino , Persona de Mediana Edad , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/fisiopatología , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/fisiopatología
7.
Psychol Med ; 51(5): 786-794, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-31858929

RESUMEN

BACKGROUND: Accurate perception of visual contours is essential for seeing and differentiating objects in the environment. Both the ability to detect visual contours and the influence of perceptual context created by surrounding stimuli are diminished in people with schizophrenia (SCZ). The central aim of the present study was to better understand the biological underpinnings of impaired contour integration and weakened effects of perceptual context. Additionally, we sought to determine whether visual perceptual abnormalities reflect genetic factors in SCZ and are present in other severe mental disorders. METHODS: We examined behavioral data and event-related potentials (ERPs) collected during the perception of simple linear contours embedded in similar background stimuli in 27 patients with SCZ, 23 patients with bipolar disorder (BP), 23 first-degree relatives of SCZ, and 37 controls. RESULTS: SCZ exhibited impaired visual contour detection while BP exhibited intermediate performance. The orientation of neighboring stimuli (i.e. flankers) relative to the contour modulated perception across all groups, but SCZ exhibited weakened suppression by the perceptual context created by flankers. Late visual (occipital P2) and cognitive (centroparietal P3) neural responses showed group differences and flanker orientation effects, unlike earlier ERPs (occipital P1 and N1). Moreover, behavioral effects of flanker context on contour perception were correlated with modulation in P2 & P3 amplitudes. CONCLUSION: In addition to replicating and extending findings of abnormal contour integration and visual context modulation in SCZ, we provide novel evidence that the abnormal use of perceptual context is associated with higher-order sensory and cognitive processes.


Asunto(s)
Potenciales Evocados , Esquizofrenia/fisiopatología , Psicología del Esquizofrénico , Adulto , Conducta , Femenino , Humanos , Masculino , Persona de Mediana Edad , Percepción Visual
8.
Neuroimage ; 184: 925-931, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30312807

RESUMEN

There is large individual variability in human neural responses and perceptual abilities. The factors that give rise to these individual differences, however, remain largely unknown. To examine these factors, we measured fMRI responses to moving gratings in the motion-selective region MT, and perceptual duration thresholds for motion direction discrimination. Further, we acquired MR spectroscopy data, which allowed us to quantify an index of neurotransmitter levels in the region of area MT. These three measurements were conducted in separate experimental sessions within the same group of male and female subjects. We show that stronger Glx (glutamate + glutamine) signals in the MT region are associated with both higher fMRI responses and superior psychophysical task performance. Our results suggest that greater baseline levels of glutamate within MT facilitate motion perception by increasing neural responses in this region.


Asunto(s)
Ácido Glutámico/metabolismo , Percepción de Movimiento/fisiología , Corteza Visual/fisiología , Adulto , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Masculino , Estimulación Luminosa , Psicofísica , Corteza Visual/metabolismo , Vías Visuales/metabolismo , Vías Visuales/fisiología , Adulto Joven
9.
J Vis ; 19(4): 12, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30952163

RESUMEN

What we see depends on the spatial context in which it appears. Previous work has linked the suppression of perceived contrast by surrounding stimuli to reduced neural responses in early visual cortex. This surround suppression depends on at least two separable neural mechanisms, "low-level" and "higher level," which can be differentiated by their response characteristics. We used electroencephalography to demonstrate for the first time that human occipital neural responses show evidence of these two suppression mechanisms. Eighteen adults (10 women, 8 men) each participated in three experimental sessions, in which they viewed visual stimuli through a mirror stereoscope. The first session was used to identify the C1 component, while the second and third comprised the main experiment. Event-related potentials were measured in response to center gratings either with no surround or with surrounding gratings oriented parallel or orthogonal, and presented in either the same eye (monoptic) or the opposite eye (dichoptic). We found that the earliest component of an event-related potential (C1; ∼60 ms) was suppressed by surrounding stimuli, but that suppression did not depend on surround configuration. This suggests a suppression mechanism that is not tuned for relative orientation acting on the earliest cortical response to the target. A later response component (N1; ∼160 ms) showed stronger suppression for parallel and monoptic surrounds, consistent with our earlier psychophysical results and a second form of suppression that is binocular and orientation tuned. We conclude that these two forms of surround suppression have distinct response time courses in the human visual system, which can be differentiated using electrophysiology.


Asunto(s)
Lóbulo Occipital/fisiología , Orientación Espacial/fisiología , Corteza Visual/fisiología , Adulto , Electroencefalografía , Potenciales Evocados/fisiología , Femenino , Humanos , Masculino , Psicofísica , Factores de Tiempo
10.
Neuroimage ; 164: 59-66, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28017921

RESUMEN

In the absence of an optic chiasm, visual input to the right eye is represented in primary visual cortex (V1) in the right hemisphere, while visual input to the left eye activates V1 in the left hemisphere. Retinotopic mapping In V1 reveals that in each hemisphere left and right visual hemifield representations are overlaid (Hoffmann et al., 2012). To explain how overlapping hemifield representations in V1 do not impair vision, we tested the hypothesis that visual projections from nasal and temporal retina create interdigitated left and right visual hemifield representations in V1, similar to the ocular dominance columns observed in neurotypical subjects (Victor et al., 2000). We used high-resolution fMRI at 7T to measure the spatial distribution of responses to left- and right-hemifield stimulation in one achiasmic subject. T2-weighted 2D Spin Echo images were acquired at 0.8mm isotropic resolution. The left eye was occluded. To the right eye, a presentation of flickering checkerboards alternated between the left and right visual fields in a blocked stimulus design. The participant performed a demanding orientation-discrimination task at fixation. A general linear model was used to estimate the preference of voxels in V1 to left- and right-hemifield stimulation. The spatial distribution of voxels with significant preference for each hemifield showed interdigitated clusters which densely packed V1 in the right hemisphere. The spatial distribution of hemifield-preference voxels in the achiasmic subject was stable between two days of testing and comparable in scale to that of human ocular dominance columns. These results are the first in vivo evidence showing that visual hemifield representations interdigitate in achiasmic V1 following a similar developmental course to that of ocular dominance columns in V1 with intact optic chiasm.


Asunto(s)
Mapeo Encefálico/métodos , Predominio Ocular/fisiología , Quiasma Óptico/anomalías , Quiasma Óptico/diagnóstico por imagen , Corteza Visual/diagnóstico por imagen , Adulto , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Masculino
11.
Neuroimage ; 159: 32-45, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28716717

RESUMEN

Magnetic resonance spectroscopy (MRS) is the only biomedical imaging method that can noninvasively detect endogenous signals from the neurotransmitter γ-aminobutyric acid (GABA) in the human brain. Its increasing popularity has been aided by improvements in scanner hardware and acquisition methodology, as well as by broader access to pulse sequences that can selectively detect GABA, in particular J-difference spectral editing sequences. Nevertheless, implementations of GABA-edited MRS remain diverse across research sites, making comparisons between studies challenging. This large-scale multi-vendor, multi-site study seeks to better understand the factors that impact measurement outcomes of GABA-edited MRS. An international consortium of 24 research sites was formed. Data from 272 healthy adults were acquired on scanners from the three major MRI vendors and analyzed using the Gannet processing pipeline. MRS data were acquired in the medial parietal lobe with standard GABA+ and macromolecule- (MM-) suppressed GABA editing. The coefficient of variation across the entire cohort was 12% for GABA+ measurements and 28% for MM-suppressed GABA measurements. A multilevel analysis revealed that most of the variance (72%) in the GABA+ data was accounted for by differences between participants within-site, while site-level differences accounted for comparatively more variance (20%) than vendor-level differences (8%). For MM-suppressed GABA data, the variance was distributed equally between site- (50%) and participant-level (50%) differences. The findings show that GABA+ measurements exhibit strong agreement when implemented with a standard protocol. There is, however, increased variability for MM-suppressed GABA measurements that is attributed in part to differences in site-to-site data acquisition. This study's protocol establishes a framework for future methodological standardization of GABA-edited MRS, while the results provide valuable benchmarks for the MRS community.


Asunto(s)
Encéfalo/metabolismo , Espectroscopía de Resonancia Magnética/normas , Ácido gamma-Aminobutírico/análisis , Adulto , Conjuntos de Datos como Asunto , Femenino , Humanos , Espectroscopía de Resonancia Magnética/instrumentación , Espectroscopía de Resonancia Magnética/métodos , Masculino , Adulto Joven
12.
J Vis ; 16(1): 2, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26756172

RESUMEN

Surround suppression is a well-known phenomenon in which the response to a visual stimulus is diminished by the presence of neighboring stimuli. This effect is observed in neural responses in areas such as primary visual cortex, and also manifests in visual contrast perception. Studies in animal models have identified at least two separate mechanisms that may contribute to surround suppression: one that is monocular and resistant to contrast adaptation, and another that is binocular and strongly diminished by adaptation. The current study was designed to investigate whether these two mechanisms exist in humans and if they can be identified psychophysically using eye-of-origin and contrast adaptation manipulations. In addition, we examined the prediction that the monocular suppression component is broadly tuned for orientation, while suppression between eyes is narrowly tuned. Our results confirmed that when center and surrounding stimuli were presented dichoptically (in opposite eyes), suppression was orientation-tuned. Following adaptation in the surrounding region, no dichoptic suppression was observed, and monoptic suppression no longer showed orientation selectivity. These results are consistent with a model of surround suppression that depends on both low-level and higher level components. This work provides a method to assess the separate contributions of these components during spatial context processing in human vision.


Asunto(s)
Sensibilidad de Contraste/fisiología , Percepción Visual/fisiología , Adaptación Fisiológica , Adulto , Femenino , Humanos , Masculino , Orientación/fisiología , Psicofísica , Visión Binocular/fisiología , Corteza Visual/fisiología
13.
J Vis ; 16(10): 19, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27565016

RESUMEN

Although V1 responses are driven primarily by elements within a neuron's receptive field, which subtends about 1° visual angle in parafoveal regions, previous work has shown that localized fMRI responses to visual elements reflect not only local feature encoding but also long-range pattern attributes. However, separating the response to an image feature from the response to the surrounding stimulus and studying the interactions between these two responses demands both spatial precision and signal independence, which may be challenging to attain with fMRI. The present study used 7 Tesla fMRI with 1.2-mm resolution to measure the interactions between small sinusoidal grating patches (targets) at 3° eccentricity and surrounds of various sizes and orientations to test the conditions under which localized, context-dependent fMRI responses could be predicted from either psychophysical or electrophysiological data. Targets were presented at 8%, 16%, and 32% contrast while manipulating (a) spatial extent of parallel (strongly suppressive) or orthogonal (weakly suppressive) surrounds, (b) locus of attention, (c) stimulus onset asynchrony between target and surround, and (d) blocked versus event-related design. In all experiments, the V1 fMRI signal was lower when target stimuli were flanked by parallel versus orthogonal context. Attention amplified fMRI responses to all stimuli but did not show a selective effect on central target responses or a measurable effect on orientation-dependent surround suppression. Suppression of the V1 fMRI response by parallel surrounds was stronger than predicted from psychophysics but showed a better match to previous electrophysiological reports.


Asunto(s)
Atención/fisiología , Neuronas/fisiología , Orientación/fisiología , Enmascaramiento Perceptual/fisiología , Corteza Visual/fisiología , Percepción Visual/fisiología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Psicofísica
14.
Transl Psychiatry ; 14(1): 201, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714650

RESUMEN

Bi-stable stimuli evoke two distinct perceptual interpretations that alternate and compete for dominance. Bi-stable perception is thought to be driven at least in part by mutual suppression between distinct neural populations that represent each percept. Abnormal visual perception has been observed among people with psychotic psychopathology (PwPP), and there is evidence to suggest that these visual deficits may depend on impaired neural suppression in the visual cortex. However, it is not yet clear whether bi-stable visual perception is abnormal among PwPP. Here, we examined bi-stable perception in a visual structure-from-motion task using a rotating cylinder illusion in a group of 65 PwPP, 44 first-degree biological relatives, and 43 healthy controls. Data from a 'real switch' task, in which physical depth cues signaled real switches in rotation direction were used to exclude individuals who did not show adequate task performance. In addition, we measured concentrations of neurochemicals, including glutamate, glutamine, and γ-amino butyric acid (GABA), involved in excitatory and inhibitory neurotransmission. These neurochemicals were measured non-invasively in the visual cortex using 7 tesla MR spectroscopy. We found that PwPP and their relatives showed faster bi-stable switch rates than healthy controls. Faster switch rates also correlated with significantly higher psychiatric symptom levels, specifically disorganization, across all participants. However, we did not observe any significant relationships across individuals between neurochemical concentrations and SFM switch rates. Our results are consistent with a reduction in suppressive neural processes during structure-from-motion perception in PwPP, and suggest that genetic liability for psychosis is associated with disrupted bi-stable perception.


Asunto(s)
Trastornos Psicóticos , Corteza Visual , Percepción Visual , Humanos , Masculino , Femenino , Adulto , Trastornos Psicóticos/fisiopatología , Corteza Visual/fisiopatología , Percepción Visual/fisiología , Adulto Joven , Percepción de Movimiento/fisiología , Espectroscopía de Resonancia Magnética , Persona de Mediana Edad
15.
Invest Ophthalmol Vis Sci ; 64(15): 23, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38117246

RESUMEN

Purpose: Visual snow syndrome-characterized by flickering specks throughout the visual field and accompanied by other symptoms-can disrupt daily life and affects roughly 2% of the population. However, its neural bases remain mysterious, and treatments are lacking. Here, we report the first intervention that can temporarily eliminate the visual snow symptom, allowing many observers to see the world without snow for the first time since symptom onset. Prolonged viewing of a visual stimulus strongly reduces the responsiveness of the visual pathways to subsequent stimuli, and we tested whether such adaptation could affect visual snow. Methods: Participants with visual snow (total n = 27) viewed high-contrast dynamic noise patterns, resembling television static, and then judged the strength of the symptom. Results: Visual snow was temporarily reduced in strength to the point that it was invisible at longer adaptation durations for most observers. The effect followed typical trends of adaptation for physical stimuli in normally sighted observers: Effect duration increased monotonically with duration of exposure to the adapter and was specific to dynamic noise. Conclusions: These results establish that spontaneous neural activity in the visual system is causally related to the visual snow percept. Because they perceive this activity, people with visual snow may provide a unique window into the generation and suppression of noise in the visual system. Adaptation allows reliable experimental control over visual snow, and so is a strong candidate for diagnostic testing and a promising tool for further understanding its neural origins, which could in turn aid the development of treatments.


Asunto(s)
Trastornos de la Percepción , Humanos , Programas Informáticos , Campos Visuales , Vías Visuales
16.
medRxiv ; 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-36896020

RESUMEN

Bi-stable stimuli evoke two distinct perceptual interpretations that alternate and compete for dominance. Bi-stable perception is thought to be driven at least in part by mutual suppression between distinct neural populations that represent each percept. Abnormal visual perception is observed among people with psychotic psychopathology (PwPP), and there is evidence to suggest that these visual deficits may depend on impaired neural suppression in visual cortex. However, it is not yet clear whether bi-stable visual perception is abnormal among PwPP. Here, we examined bi-stable perception in a visual structure-from-motion task using a rotating cylinder illusion in a group of 65 PwPP, 44 first-degree biological relatives, and 43 healthy controls. Data from a 'real switch' task, in which physical depth cues signaled real switches in rotation direction were used to exclude individuals who did not show adequate task performance. In addition, we measured concentrations of neurochemicals, including glutamate, glutamine, and γ-amino butyric acid (GABA), involved in excitatory and inhibitory neurotransmission. These neurochemicals were measured non-invasively in visual cortex using 7 tesla MR spectroscopy. We found that PwPP and their relatives showed faster bi-stable switch rates than healthy controls. Faster switch rates also correlated with significantly higher psychiatric symptom levels across all participants. However, we did not observe any significant relationships across individuals between neurochemical concentrations and SFM switch rates. Our results are consistent with a reduction in suppressive neural processes during structure-from-motion perception in PwPP, and suggest that genetic liability for psychosis is associated with disrupted bi-stable perception.

17.
Hum Brain Mapp ; 33(7): 1594-606, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21674691

RESUMEN

Although the gross somatotopic organization of the posterior bank of the precentral gyrus is well established, a fine scale organization of the representations of the digits of the hand has not been fully characterized. Previous neuroimaging studies have failed to find clear evidence for a specificity of digit representations in motor cortex, but rather report a distributed network of control. Reported here are the results of two experiments; in Experiment 1 a sequential finger tapping task produced strong blood oxygen level dependent (BOLD) responses in the contralateral precentral gyrus, but there was a lack of specificity for distinguishing individual representations. A randomly ordered task did accomplish this goal. In the second experiment, a randomly ordered finger-tapping task was used and the findings demonstrated BOLD responses in clusters of voxels specific to movement of a single digit. The region of interest defined for each digit comprised several noncontiguous clusters. A "selectivity index" was developed to quantify the magnitude of the BOLD response to the movement of a specific digit, relative to BOLD response associated with movement of other digits. Strong evidence of BOLD selectivity (albeit not exclusivity) was found in the hemisphere contralateral to the cued digit; however, there was no evidence for an orderly spatial topography. These findings demonstrate that a selectivity of activation is quantifiable, supports a theory of noncontiguous distribution of control, and provides a method for comparing between healthy and impaired populations and investigating changes following training or intervention.


Asunto(s)
Dedos/fisiología , Imagen por Resonancia Magnética/métodos , Corteza Motora/metabolismo , Movimiento/fisiología , Desempeño Psicomotor/fisiología , Adulto , Mapeo Encefálico/métodos , Femenino , Humanos , Masculino , Estimulación Luminosa/métodos
18.
Front Hum Neurosci ; 14: 241, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32694986

RESUMEN

Disrupted cortical neural inhibition has been hypothesized to be a primary contributor to the pathophysiology of autism spectrum disorder (ASD). This hypothesis predicts that ASD will be associated with an increase in neural responses. We tested this prediction by comparing fMRI response magnitudes to simultaneous visual, auditory, and motor stimulation in ASD and neurotypical (NT) individuals. No increases in the initial transient response in any brain region were observed in ASD, suggesting that there is no increase in overall cortical neural excitability. Most notably, there were widespread fMRI magnitude increases in the ASD response following stimulation offset, approximately 6-8 s after the termination of sensory and motor stimulation. In some regions, the higher fMRI offset response in ASD could be attributed to a lack of an "undershoot"-an often observed feature of fMRI responses believed to reflect inhibitory processing. Offset response magnitude was associated with reaction times (RT) in the NT group and may explain an overall reduced RT in the ASD group. Overall, our results suggest that increases in neural responsiveness are present in ASD but are confined to specific components of the neural response, are particularly strong following stimulation offset, and are linked to differences in RT.

19.
Front Psychiatry ; 11: 638, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733293

RESUMEN

Sensory discrimination thresholds (i.e., the briefest stimulus that can be accurately perceived) can be measured using tablet-based auditory and visual sweep paradigms. These basic sensory functions have been found to be diminished in patients with psychosis. However, the extent to which worse sensory discrimination characterizes genetic liability for psychosis, and whether it is related to clinical symptomatology and community functioning remains unknown. In the current study we compared patients with psychosis (PSY; N=76), their first-degree biological relatives (REL; N=44), and groups of healthy controls (CON; N=13 auditory and visual/N=275 auditory/N=267 visual) on measures of auditory and visual sensory discrimination, and examined relationships with a battery of symptom, cognitive, and functioning measures. Sound sweep thresholds differed among the PSY, REL, and CON groups, driven by higher thresholds in the PSY compared to CON group, with the REL group showing intermediate thresholds. Visual thresholds also differed among the three groups, driven by higher thresholds in the REL versus CON group, and no significant differences between the REL and PSY groups. Across groups and among patients, higher thresholds (poorer discrimination) for both sound and visual sweeps strongly correlated with lower global cognitive scores. We conclude that low-level auditory and visual sensory discrimination deficits in psychosis may reflect genetic liability for psychotic illness. Critically, these deficits relate to global cognitive disruptions that are a hallmark of psychotic illnesses such as schizophrenia.

20.
Autism Res ; 13(7): 1111-1129, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32297709

RESUMEN

The balance of excitation and inhibition in neural circuits is hypothesized to be increased in autism spectrum disorder, possibly mediated by altered signaling of the inhibitory neurotransmitter γ-aminobutyric acid (GABA), yet empirical evidence in humans is inconsistent. We used edited magnetic resonance spectroscopy (MRS) to quantify signals associated with both GABA and the excitatory neurotransmitter glutamate in multiple regions of the sensory and sensorimotor cortex, including primary visual, auditory, and motor areas in adult individuals with autism and in neurotypical controls. Despite the strong a priori hypothesis of reduced GABA in autism spectrum disorder, we found no group differences in neurometabolite concentrations in any of the examined regions and no correlations of MRS measure with psychophysical visual sensitivity or autism symptomatology. We demonstrate high data quality that is comparable across groups, with a relatively large sample of well-characterized participants, and use Bayesian statistics to corroborate the lack of any group differences. We conclude that levels of GABA and Glx (glutamate, glutamine, and glutathione) in the sensory and sensorimotor cortex, as measured with MRS at 3T, are comparable in adults with autism and neurotypical individuals. Autism Res 2020, 13: 1111-1129. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: γ-Aminobutyric acid (GABA) and glutamate are the main inhibitory and excitatory neurotransmitters in the human brain, respectively, and their balanced interaction is necessary for neural function. Previous research suggests that the GABA and glutamate systems might be altered in autism. In this study, we used magnetic resonance spectroscopy to measure concentrations of these neurotransmitters in the sensory areas in the brains of young adults with autism. In contradiction to the common hypothesis of reduced GABA in autism, we demonstrate that concentrations of both GABA and glutamate, in all the brain regions examined, are comparable in individuals with autism and in neurotypical adults. © 2020 International Society for Autism Research, Wiley Periodicals, Inc.


Asunto(s)
Trastorno del Espectro Autista , Trastorno del Espectro Autista/diagnóstico por imagen , Teorema de Bayes , Femenino , Ácido Glutámico , Glutamina , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Adulto Joven , Ácido gamma-Aminobutírico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA