Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Genet ; 55: 479-496, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34530637

RESUMEN

High-throughput single-cell transcriptomic approaches have revolutionized our view of gene expression at the level of individual cells, providing new insights into their heterogeneity, identities, and functions. Recently, technical challenges to the application of single-cell transcriptomics to plants have been overcome, and many plant organs and tissues have now been subjected to analyses at single-cell resolution. In this review, we describe these studies and their impact on our understanding of the diversity, differentiation, and activities of plant cells. We particularly highlight their impact on plant cell identity, including unprecedented views of cell transitions and definitions of rare and novel cell types. We also point out current challenges and future opportunities for the application and analyses of single-cell transcriptomics in plants.


Asunto(s)
Células Vegetales , Transcriptoma , Diferenciación Celular/genética , Perfilación de la Expresión Génica , Plantas/genética , Análisis de la Célula Individual , Transcriptoma/genética
2.
Plant Physiol ; 195(2): 1256-1276, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38391271

RESUMEN

The Arabidopsis (Arabidopsis thaliana) TRANSPARENT TESTA GLABRA2 (TTG2) gene encodes a WRKY transcription factor that regulates a range of development events like trichome, seed coat, and atrichoblast formation. Loss-of-function of TTG2 was previously shown to reduce or eliminate trichome specification and branching. Here, we report the identification of an allele of TTG2, ttg2-6. In contrast to the ttg2 mutants described before, ttg2-6 displayed unique trichome phenotypes. Some ttg2-6 mutant trichomes were hyper-branched, whereas others were hypo-branched, distorted, or clustered. Further, we found that in addition to specifically activating R3 MYB transcription factor TRIPTYCHON (TRY) to modulate trichome specification, TTG2 also integrated cytoskeletal signaling to regulate trichome morphogenesis. The ttg2-6 trichomes displayed aberrant cortical microtubules (cMTs) and actin filaments (F-actin) configurations. Moreover, genetic and biochemical analyses showed that TTG2 could directly bind to the promoter and regulate the expression of BRICK1 (BRK1), which encodes a subunit of the actin nucleation promoting complex suppressor of cyclic AMP repressor (SCAR)/Wiskott-Aldrich syndrome protein family verprolin homologous protein (WAVE). Collectively, taking advantage of ttg2-6, we uncovered a function for TTG2 in facilitating cMTs and F-actin cytoskeleton-dependent trichome development, providing insight into cellular signaling events downstream of the core transcriptional regulation during trichome development in Arabidopsis.


Asunto(s)
Citoesqueleto de Actina , Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción , Tricomas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Tricomas/genética , Tricomas/crecimiento & desarrollo , Tricomas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Mutación/genética , Fenotipo , Microtúbulos/metabolismo , Forma de la Célula/genética , Regiones Promotoras Genéticas/genética
3.
Plant J ; 116(3): 756-772, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37516999

RESUMEN

Cell differentiation and morphogenesis are crucial for the establishment of diverse cell types and organs in multicellular organisms. Trichome cells offer an excellent paradigm for dissecting the regulatory mechanisms of plant cell differentiation and morphogenesis due to their unique growth characteristics. Here, we report the isolation of an Arabidopsis mutant, aberrantly branched trichome 3-1 (abt3-1), with a reduced trichome branching phenotype. Positional cloning and molecular complementation experiments confirmed that abt3-1 is a new mutant allele of Auxin resistant 1 (AXR1), which encodes the N-terminal half of ubiquitin-activating enzyme E1 and functions in auxin signaling pathway. Meanwhile, we found that transgenic plants expressing constitutively active version of ROP2 (CA-ROP2) caused a reduction of trichome branches, resembling that of abt3-1. ROP2 is a member of Rho GTPase of plants (ROP) family, serving as versatile signaling switches involved in a range of cellular and developmental processes. Our genetic and biochemical analyses showed AXR1 genetically interacted with ROP2 and mediated ROP2 protein stability. The loss of AXR1 aggravated the trichome defects of CA-ROP2 and induced the accumulation of steady-state ROP2. Consistently, elevated AXR1 expression levels suppressed ROP2 expression and partially rescued trichome branching defects in CA-ROP2 plants. Together, our results presented a new mutant allele of AXR1, uncovered the effects of AXR1 and ROP2 during trichome development, and revealed a pathway of ROP2-mediated regulation of plant cell morphogenesis in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Tricomas/genética , Tricomas/metabolismo , Ácidos Indolacéticos , Alelos , Diferenciación Celular , Morfogénesis/genética , Plantas Modificadas Genéticamente/genética , Mutación , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo
4.
New Phytol ; 238(6): 2410-2426, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36932734

RESUMEN

In superrosid species, root epidermal cells differentiate into root hair cells and nonhair cells. In some superrosids, the root hair cells and nonhair cells are distributed randomly (Type I pattern), and in others, they are arranged in a position-dependent manner (Type III pattern). The model plant Arabidopsis (Arabidopsis thaliana) adopts the Type III pattern, and the gene regulatory network (GRN) that controls this pattern has been defined. However, it is unclear whether the Type III pattern in other species is controlled by a similar GRN as in Arabidopsis, and it is not known how the different patterns evolved. In this study, we analyzed superrosid species Rhodiola rosea, Boehmeria nivea, and Cucumis sativus for their root epidermal cell patterns. Combining phylogenetics, transcriptomics, and cross-species complementation, we analyzed homologs of the Arabidopsis patterning genes from these species. We identified R. rosea and B. nivea as Type III species and C. sativus as Type I species. We discovered substantial similarities in structure, expression, and function of Arabidopsis patterning gene homologs in R. rosea and B. nivea, and major changes in C. sativus. We propose that in superrosids, diverse Type III species inherited the patterning GRN from a common ancestor, whereas Type I species arose by mutations in multiple lineages.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Redes Reguladoras de Genes , Raíces de Plantas/metabolismo , Células Epidérmicas , Regulación de la Expresión Génica de las Plantas
5.
Plant Cell ; 32(7): 2402-2423, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32371546

RESUMEN

The Arabidopsis (Arabidopsis thaliana) root epidermis consists of a position-dependent pattern of root hair cells and non-hair cells. Underlying this cell type patterning is a network of transcription factors including a central MYB-basic helix-loop-helix-WD40 complex containing WEREWOLF (WER), GLABRA3 (GL3)/ENHANCER OF GLABRA3, and TRANSPARENT TESTA GLABRA1. In this study, we used a genetic enhancer screen to identify apum23-4, a mutant allele of the ribosome biogenesis factor (RBF) gene ARABIDOPSIS PUMILIO23 (APUM23), which caused prospective root hair cells to instead adopt the non-hair cell fate. We discovered that this cell fate switch relied on MYB23, a MYB protein encoded by a WER target gene and acting redundantly with WER. In the apum23-4 mutant, MYB23 exhibited ectopic expression that was WER independent and instead required ANAC082, a recently identified ribosomal stress response mediator. We examined additional RBF mutants that produced ectopic non-hair cells and determined that this cell fate switch is generally linked to defects in ribosome biogenesis. Furthermore, the flagellin peptide flg22 triggers the ANAC082-MYB23-GL2 pathway. Taken together, our study provides a molecular explanation for root epidermal cell fate switch in response to ribosomal defects and, more generally, it demonstrates a novel regulatory connection between stress conditions and cell fate control in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Epidermis de la Planta/citología , Raíces de Plantas/citología , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Cicloheximida/farmacología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Mutación , Epidermis de la Planta/fisiología , Raíces de Plantas/fisiología , Plantas Modificadas Genéticamente , Proteínas de Unión al ARN/genética , Ribosomas/genética , Ribosomas/metabolismo , Factores de Transcripción/genética
6.
New Phytol ; 234(4): 1507-1520, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35211979

RESUMEN

An essential step in the analysis of single-cell RNA sequencing data is to classify cells into specific cell types using marker genes. In this study, we have developed a machine learning pipeline called single-cell predictive marker (SPmarker) to identify novel cell-type marker genes in the Arabidopsis root. Unlike traditional approaches, our method uses interpretable machine learning models to select marker genes. We have demonstrated that our method can: assign cell types based on cells that were labelled using published methods; project cell types identified by trajectory analysis from one data set to other data sets; and assign cell types based on internal GFP markers. Using SPmarker, we have identified hundreds of new marker genes that were not identified before. As compared to known marker genes, the new marker genes have more orthologous genes identifiable in the corresponding rice single-cell clusters. The new root hair marker genes also include 172 genes with orthologs expressed in root hair cells in five non-Arabidopsis species, which expands the number of marker genes for this cell type by 35-154%. Our results represent a new approach to identifying cell-type marker genes from scRNA-seq data and pave the way for cross-species mapping of scRNA-seq data in plants.


Asunto(s)
Arabidopsis , Análisis de la Célula Individual , Arabidopsis/genética , Biomarcadores , Perfilación de la Expresión Génica/métodos , Aprendizaje Automático , RNA-Seq , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Secuenciación del Exoma
7.
Plant Physiol ; 181(3): 1239-1256, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31492737

RESUMEN

The Arabidopsis (Arabidopsis thaliana) root epidermis exhibits a position-dependent pattern of root-hair and nonhair cell types. A highly orchestrated network of gene regulatory interactions, including the R2R3-type MYB transcription factor WEREWOLF (WER), is responsible for generating this cell pattern during root development. In this study, we identified a novel wer mutant from a genetic enhancer screen, designated wer-4, that exhibits an abnormal pattern of root-hair and nonhair cells. We established that wer-4 bears a single-residue substitution (D105N) in the DNA-binding R3 MYB repeat of WER, which differentially affects the transcription of WER target genes, including GLABRA2, CAPRICE, TRIPTYCHON, and ENHANCER OF TRY AND CPC1 This modulation of the gene regulatory network leads to altered levels and distributions of cell fate regulators in the differentiating epidermal cells that ultimately generate the abnormal cell-type pattern. We also created several WER variants with substitutions at the Asp-105 position, and these exhibited a variety of gene expression and cell-type pattern alterations, further supporting the critical role of this residue. These findings provide insight into WER protein function and its importance in generating the proper balance of downstream transcriptional factors in the gene regulatory network that establishes root epidermal cell fate.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas Proto-Oncogénicas c-myb/genética , Proteínas Proto-Oncogénicas c-myb/metabolismo
8.
Plant Physiol ; 179(4): 1444-1456, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718350

RESUMEN

Single-cell RNA sequencing (scRNA-seq) has been used extensively to study cell-specific gene expression in animals, but it has not been widely applied to plants. Here, we describe the use of a commercially available droplet-based microfluidics platform for high-throughput scRNA-seq to obtain single-cell transcriptomes from protoplasts of more than 10,000 Arabidopsis (Arabidopsis thaliana) root cells. We find that all major tissues and developmental stages are represented in this single-cell transcriptome population. Further, distinct subpopulations and rare cell types, including putative quiescent center cells, were identified. A focused analysis of root epidermal cell transcriptomes defined developmental trajectories for individual cells progressing from meristematic through mature stages of root-hair and nonhair cell differentiation. In addition, single-cell transcriptomes were obtained from root epidermis mutants, enabling a comparative analysis of gene expression at single-cell resolution and providing an unprecedented view of the impact of the mutated genes. Overall, this study demonstrates the feasibility and utility of scRNA-seq in plants and provides a first-generation gene expression map of the Arabidopsis root at single-cell resolution.


Asunto(s)
Arabidopsis/metabolismo , Raíces de Plantas/metabolismo , Análisis de la Célula Individual , Transcriptoma , Arabidopsis/citología , Estudios de Factibilidad , Epidermis de la Planta/metabolismo , Raíces de Plantas/citología , Protoplastos/metabolismo , Análisis de Secuencia de ARN
9.
J Exp Bot ; 71(15): 4405-4414, 2020 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31796961

RESUMEN

Nitrogen (N) is one of the most important macronutrients for plant growth and development. However, the concentration and distribution of N varies in soil due to a variety of environmental factors. In response, higher plants have evolved a developmentally flexible root system to efficiently take up N under N-limited conditions. Over the past decade, significant progress has been made in understanding this form of plant 'root-foraging' behavior, which is controlled by both a local and a long-distance systemic nitrate signaling pathway. In this review, we focus on the key components of nitrate perception, signaling, and transduction and its role in lateral root development. We also highlight recent findings on the molecular mechanisms of the nitrate systemic signaling pathway, including small signaling peptides involved in long-distance shoot-root communication. Furthermore, we summarize the transcription factor networks responsible for nitrate-dependent lateral root and root hair development.


Asunto(s)
Arabidopsis , Nitratos , Transducción de Señal , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Nitratos/metabolismo , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo
11.
Plant Physiol ; 174(3): 1697-1712, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28487476

RESUMEN

The molecular genetic program for root hair development has been studied intensively in Arabidopsis (Arabidopsis thaliana). To understand the extent to which this program might operate in other plants, we conducted a large-scale comparative analysis of root hair development genes from diverse vascular plants, including eudicots, monocots, and a lycophyte. Combining phylogenetics and transcriptomics, we discovered conservation of a core set of root hair genes across all vascular plants, which may derive from an ancient program for unidirectional cell growth coopted for root hair development during vascular plant evolution. Interestingly, we also discovered preferential diversification in the structure and expression of root hair development genes, relative to other root hair- and root-expressed genes, among these species. These differences enabled the definition of sets of genes and gene functions that were acquired or lost in specific lineages during vascular plant evolution. In particular, we found substantial divergence in the structure and expression of genes used for root hair patterning, suggesting that the Arabidopsis transcriptional regulatory mechanism is not shared by other species. To our knowledge, this study provides the first comprehensive view of gene expression in a single plant cell type across multiple species.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Genes del Desarrollo , Genes de Plantas , Variación Genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/metabolismo , Funciones de Verosimilitud , Morfogénesis/genética , Familia de Multigenes , Oryza/genética , Filogenia , Especificidad de la Especie
12.
Plant Cell ; 27(8): 2119-32, 2015 08.
Artículo en Inglés | MEDLINE | ID: mdl-26265761

RESUMEN

The molecular basis for the origin and diversification of morphological adaptations is a central issue in evolutionary developmental biology. Here, we defined temporal transcript accumulation in developing roots from seven vascular plants, permitting a genome-wide comparative analysis of the molecular programs used by a single organ across diverse species. The resulting gene expression maps uncover significant similarity in the genes employed in roots and their developmental expression profiles. The detailed analysis of a subset of 133 genes known to be associated with root development in Arabidopsis thaliana indicates that most of these are used in all plant species. Strikingly, this was also true for root development in a lycophyte (Selaginella moellendorffii), which forms morphologically different roots and is thought to have evolved roots independently. Thus, despite vast differences in size and anatomy of roots from diverse plants, the basic molecular mechanisms employed during root formation appear to be conserved. This suggests that roots evolved in the two major vascular plant lineages either by parallel recruitment of largely the same developmental program or by elaboration of an existing root program in the common ancestor of vascular plants.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética , Plantas/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Análisis por Conglomerados , Cucumis sativus/genética , Cucumis sativus/crecimiento & desarrollo , Evolución Molecular , Ontología de Genes , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Oryza/genética , Oryza/crecimiento & desarrollo , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas/clasificación , Selaginellaceae/genética , Selaginellaceae/crecimiento & desarrollo , Glycine max/genética , Glycine max/crecimiento & desarrollo , Especificidad de la Especie , Zea mays/genética , Zea mays/crecimiento & desarrollo
13.
Plant Cell Environ ; 39(4): 897-907, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26667588

RESUMEN

GLABRA1 (GL1) is an R2R3 MYB transcription factor that regulates trichome formation in Arabidopsis by interacting with the bHLH transcription factor GLABRA3 (GL3) or ENHANCER OF GL3 (EGL3). The conserved [D/E]L×2 [R/K]×3L×6L×3R amino acid signature in the R3 domain of MYB proteins has been shown to be required for the interaction of MYBs with R/B-like bHLH transcription factors. By using genetic and molecular analyses, we show that the glabrous phenotype in the nph4-1 mutant is caused by a single nucleotide mutation in the GL1 gene, generating a Ser to Phe substitution (S92F) in the conserved [D/E]L×2[R/K]×3L×6L×3R amino acid signature of GL1. Activation of the integrated GL2p:GUS reporter gene in protoplasts by cotransfection of GL1 and GL3 or EGL3 was abolished by this GL1-S92F substitution. However, GL1-S92F interacted successfully with GL3 or EGL3 in protoplast transfection assays. Unlike VPGL1GL3, the fusion protein VPGL1-S92FGL3 failed to activate the integrated GL2p:GUS reporter gene in transfected protoplasts. These results suggested that the S92 in the conserved [D/E]L×2 [R/K]×3L×6L×3R amino acid signature of GL1 is not essential for the interaction of GL1 and GL3, but may play a role in the binding of GL1 to the promoters of its target genes.


Asunto(s)
Sustitución de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Tricomas/crecimiento & desarrollo , Secuencia de Aminoácidos , Arabidopsis/genética , Genes de Plantas , Modelos Biológicos , Mutación/genética , Fenotipo , Células Vegetales/metabolismo , Unión Proteica , Dominios Proteicos , Proteínas Recombinantes de Fusión/metabolismo , Relación Estructura-Actividad , Tricomas/metabolismo
14.
J Exp Bot ; 67(22): 6363-6372, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27799284

RESUMEN

Multiple phytohormones, including auxin, ethylene, and cytokinin, play vital roles in regulating cell development in the root epidermis. However, their interactions in specific root hair cell developmental stages are largely unexplored. To bridge this gap, we employed genetic and pharmacological approaches as well as transcriptional analysis in order to dissect their distinct and overlapping roles in root hair initiation and elongation in Arabidopsis thaliana Our results show that among auxin, ethylene, and cytokinin, only ethylene induces ectopic root hair cells in wild-type plants, implying a special role of ethylene in the hair initiation stage. In the subsequent elongation stage, however, auxin, ethylene, and cytokinin enhance root hair tip growth equally. Our data also suggest that the effect of cytokinin is independent from auxin and ethylene in this process. Exogenous cytokinin restores root hair elongation when the auxin and ethylene signal is defective, whereas auxin and ethylene also sustain elongation in the absence of the cytokinin signal. Notably, transcriptional analyses demonstrated that auxin, ethylene, and cytokinin regulate a similar set of root hair-specific genes. Together these analyses provide important clues regarding the mechanism of hormonal interactions and regulation in the formation of single-cell structures.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Genes de Plantas/fisiología , Reguladores del Crecimiento de las Plantas/fisiología , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/fisiología , Aumento de la Célula , Citocininas/metabolismo , Citocininas/fisiología , Etilenos/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/fisiología , Transducción de Señal/fisiología
15.
Plant Cell ; 25(9): 3175-85, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24014549

RESUMEN

Traditional genetic analysis relies on mutants with observable phenotypes. Mutants lacking visible abnormalities may nevertheless exhibit molecular differences useful for defining gene function. To examine this, we analyzed tissue-specific transcript profiles from Arabidopsis thaliana transcription factor gene mutants with known roles in root epidermis development, but lacking a single-gene mutant phenotype due to genetic redundancy. We discovered substantial transcriptional changes in each mutant, preferentially affecting root epidermal genes in a manner consistent with the known double mutant effects. Furthermore, comparing transcript profiles of single and double mutants, we observed remarkable variation in the sensitivity of target genes to the loss of one or both paralogous genes, including preferential effects on specific branches of the epidermal gene network, likely reflecting the pathways of paralog subfunctionalization during evolution. In addition, we analyzed the root epidermal transcriptome of the transparent testa glabra2 mutant to clarify its role in the network. These findings provide insight into the molecular basis of genetic redundancy and duplicate gene diversification at the level of a specific gene regulatory network, and they demonstrate the usefulness of tissue-specific transcript profiling to define gene function in mutants lacking informative visible changes in phenotype.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Arabidopsis/anatomía & histología , Arabidopsis/crecimiento & desarrollo , Diferenciación Celular , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Genes Reporteros , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Especificidad de Órganos , Fenotipo , Epidermis de la Planta/anatomía & histología , Epidermis de la Planta/genética , Epidermis de la Planta/crecimiento & desarrollo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Factores de Transcripción/genética
16.
Biochem Biophys Res Commun ; 465(3): 587-93, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26296462

RESUMEN

In Arabidopsis thaliana, an atypical leucine-rich repeat receptor-like kinase, SCRAMBLED (SCM), is required for multiple developmental processes including root epidermal cell fate determination, silique dehiscence, inflorescence growth, ovule morphogenesis, and tissue morphology. Previous work suggested that SCM regulates these multiple pathways using distinct mechanisms via interactions with specific downstream factors. ANGUSTIFOLIA (AN) is known to regulate cell and tissue morphogenesis by influencing cortical microtubule arrangement, and recently, the AN protein was reported to interact with the SCM protein. Therefore, we examined whether AN might be responsible for mediating some of the SCM-dependent phenotypes. We discovered that both scm and an mutant lines cause an abnormal spiral or twisting growth of roots, but only the scm mutant affected root epidermal patterning. The siliques of the an and scm mutants also exhibited spiral growth, as previously reported, but only the scm mutant altered silique dehiscence. Interestingly, we discovered that the spiral growth of roots and siliques of the scm mutant is rescued by a truncated SCM protein that lacks its kinase domain, and that a juxtamembrane domain of SCM was sufficient for AN binding in the yeast two-hybrid analysis. These results suggest that the AN protein is one of the critical downstream factors of SCM pathways specifically responsible for mediating its effects on cell/tissue morphogenesis through cortical microtubule arrangement.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Raíces de Plantas/fisiología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal/fisiología , Proliferación Celular/fisiología
17.
Biochem Biophys Res Commun ; 467(1): 94-100, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26408906

RESUMEN

In multicellular organisms, cell fates are specified through differential regulation of transcription. Epidermal cell fates in the Arabidopsis thaliana root are precisely specified by several transcription factors, with the GLABRA2 (GL2) homeodomain protein acting at the farthest downstream in this process. To better understand the regulation of GL2 expression, we ectopically expressed WEREWOLF (WER) and ENHANCER OF GLABRA3 (EGL3) in various tissues and examined GL2 expression. Here we show that WER expressed ubiquitously in the root induced GL2 expression only in the root epidermis, whereas co-expression of WER and EGL3 induced GL2 expression in the corresponding tissues. We also found that GL3 accumulated in the nucleus at the early meristematic region and EGL3 accumulated later in the nucleus of epidermal cells. We further found that ectopic expression of WER and EGL3 in ground tissues inhibited GL2 expression in the epidermis. Our results suggest that the co-expression of WER and EGL3 is sufficient for driving GL2 and CPC expression.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Unión al ADN/genética , Genes de Plantas , Proteínas de Homeodominio/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Proto-Oncogénicas c-myb/genética
18.
Plant Physiol ; 166(2): 976-87, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25136062

RESUMEN

SCRAMBLED (SCM), a leucine-rich repeat receptor-like kinase in Arabidopsis (Arabidopsis thaliana), is required for positional signaling in the root epidermis and for tissue/organ development in the shoot. To further understand SCM action, we generated a series of kinase domain variants and analyzed their ability to complement scm mutant defects. We found that the SCM kinase domain, but not kinase activity, is required for its role in root epidermal patterning, supporting the view that SCM is an atypical receptor kinase. We also describe a previously uncharacterized role for SCM in fruit dehiscence, because mature siliques from scm mutants fail to open properly. Interestingly, the kinase domain of SCM appears to be dispensable for this developmental process. Furthermore, we found that most of the SCM kinase domain mutations dramatically inhibit inflorescence development. Because this process is not affected in scm null mutants, it is likely that SCM acts redundantly to regulate inflorescence size. The importance of distinct kinase residues for these three developmental processes provides an explanation for the maintenance of the conserved kinase domain in the SCM protein, and it may generally explain its conservation in other atypical kinases. Furthermore, these results indicate that individual leucine-rich repeat receptor-like kinases may participate in multiple pathways using distinct signaling mechanisms to mediate diverse cellular communication events.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Arabidopsis/fisiología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas Fluorescentes Verdes/metabolismo , Datos de Secuencia Molecular , Mutación , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Proteínas Tirosina Quinasas Receptoras/química , Proteínas Tirosina Quinasas Receptoras/genética , Homología de Secuencia de Aminoácido
19.
Plant Cell ; 24(7): 2839-56, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22829145

RESUMEN

Position-dependent patterning of hair and non-hair cells in the Arabidopsis thaliana root epidermis is a powerful system to study the molecular basis of cell fate specification. Here, we report an epidermal patterning mutant affecting the ADENOSINE DIMETHYL TRANSFERASE 1A (DIM1A) rRNA dimethylase gene, predicted to participate in rRNA posttranscriptional processing and base modification. Consistent with a role in ribosome biogenesis, DIM1A is preferentially expressed in regions of rapid growth, and its product is nuclear localized with nucleolus enrichment. Furthermore, DIM1A preferentially accumulates in the developing hair cells, and the dim1A point mutant alters the cell-specific expression of the transcriptional regulators GLABRA2, CAPRICE, and WEREWOLF. Together, these findings suggest that establishment of cell-specific gene expression during root epidermis development is dependent upon proper ribosome biogenesis, possibly due to the sensitivity of the cell fate decision to relatively small differences in gene regulatory activities. Consistent with its effect on the predicted S-adenosyl-l-Met binding site, dim1A plants lack the two 18S rRNA base modifications but exhibit normal pre-rRNA processing. In addition to root epidermal defects, the dim1A mutant exhibits abnormal root meristem division, leaf development, and trichome branching. Together, these findings provide new insights into the importance of rRNA base modifications and translation regulation for plant growth and development.


Asunto(s)
Arabidopsis/enzimología , Metiltransferasas/metabolismo , Epidermis de la Planta/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , ARN Ribosómico/metabolismo , Secuencia de Aminoácidos , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Tipificación del Cuerpo , Núcleo Celular/metabolismo , Cotiledón/citología , Cotiledón/enzimología , Cotiledón/genética , Cotiledón/crecimiento & desarrollo , Meristema/citología , Meristema/enzimología , Meristema/genética , Meristema/crecimiento & desarrollo , Metiltransferasas/genética , Datos de Secuencia Molecular , Mutación , Especificidad de Órganos , Componentes Aéreos de las Plantas/citología , Componentes Aéreos de las Plantas/enzimología , Componentes Aéreos de las Plantas/genética , Componentes Aéreos de las Plantas/crecimiento & desarrollo , Epidermis de la Planta/citología , Epidermis de la Planta/enzimología , Epidermis de la Planta/genética , Raíces de Plantas/citología , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , ARN de Planta/genética , ARN de Planta/metabolismo , ARN Ribosómico/genética , Ribosomas/genética , Ribosomas/metabolismo , Plantones/citología , Plantones/enzimología , Plantones/genética , Plantones/crecimiento & desarrollo , Alineación de Secuencia
20.
PLoS Genet ; 8(1): e1002446, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22253603

RESUMEN

The root epidermis of Arabidopsis provides an exceptional model for studying the molecular basis of cell fate and differentiation. To obtain a systems-level view of root epidermal cell differentiation, we used a genome-wide transcriptome approach to define and organize a large set of genes into a transcriptional regulatory network. Using cell fate mutants that produce only one of the two epidermal cell types, together with fluorescence-activated cell-sorting to preferentially analyze the root epidermis transcriptome, we identified 1,582 genes differentially expressed in the root-hair or non-hair cell types, including a set of 208 "core" root epidermal genes. The organization of the core genes into a network was accomplished by using 17 distinct root epidermis mutants and 2 hormone treatments to perturb the system and assess the effects on each gene's transcript accumulation. In addition, temporal gene expression information from a developmental time series dataset and predicted gene associations derived from a Bayesian modeling approach were used to aid the positioning of genes within the network. Further, a detailed functional analysis of likely bHLH regulatory genes within the network, including MYC1, bHLH54, bHLH66, and bHLH82, showed that three distinct subfamilies of bHLH proteins participate in root epidermis development in a stage-specific manner. The integration of genetic, genomic, and computational analyses provides a new view of the composition, architecture, and logic of the root epidermal transcriptional network, and it demonstrates the utility of a comprehensive systems approach for dissecting a complex regulatory network.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Redes Reguladoras de Genes , Reguladores del Crecimiento de las Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Arabidopsis/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Epidermis de la Planta/citología , Epidermis de la Planta/crecimiento & desarrollo , Epidermis de la Planta/metabolismo , Raíces de Plantas/citología , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA