Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Plant Biotechnol J ; 14(4): 1151-60, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26426390

RESUMEN

Genome modification by homology-directed repair (HDR) is an attractive tool for the controlled genetic manipulation of plants. Here, we report the HDR-mediated gene exchange of expression cassettes in tobacco BY-2 cells using a designed zinc finger nuclease (ZFN). The target contained a 7-kb fragment flanked by two ZFN cutting sites. That fragment was replaced with a 4-kb donor cassette, which integrates gene markers for selection (kanamycin resistance) and for scoring targeting (red fluorescent protein, RFP). Candidates resulting from cassette exchange were identified by molecular analysis of calli generated by transformation via direct DNA delivery. The precision of HDR-mediated donor integration was evaluated by Southern blot analysis, sequencing of the integration locus and analysis of RFP fluorescence by flow cytometry. Screening of 1326 kanamycin-resistant calli yielded 18 HDR events, 16 of which had a perfect cassette exchange at the insert junction and 13 of which produced functional RFP. Our results demonstrate that ZFN-based HDR can be used for high frequency, precise, targeted exchange of fragments of sizes that are commercially relevant in plants.


Asunto(s)
Desoxirribonucleasas/metabolismo , Marcación de Gen/métodos , Nicotiana/genética , Southern Blotting , Desoxirribonucleasas/genética , Citometría de Flujo/métodos , Resistencia a la Kanamicina/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Células Vegetales , Plantas Modificadas Genéticamente , Reparación del ADN por Recombinación/genética , Nicotiana/citología , Dedos de Zinc , Proteína Fluorescente Roja
2.
Malar J ; 15: 65, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26850066

RESUMEN

BACKGROUND: Malaria still represents a major cause of morbidity and mortality predominantly in several developing countries, and remains a priority in many public health programmes. Despite the enormous gains made in control and prevention the development of an effective vaccine represents a persisting challenge. Although several parasite antigens including pre-erythrocytic antigens and blood stage antigens have been thoroughly investigated, the identification of solid immune correlates of protection against infection by Plasmodium falciparum or clinical malaria remains a major hurdle. In this study, an immuno-epidemiological survey was carried out between two populations naturally exposed to P. falciparum malaria to determine the immune correlates of protection. METHODS: Plasma samples of immune adults from two countries (Ghana and Madagascar) were tested for their reactivity against the merozoite surface proteins MSP1-19, MSP3 and AMA1 by ELISA. The antigens had been selected on the basis of cumulative evidence of their role in anti-malarial immunity. Additionally, reactivity against crude P. falciparum lysate was investigated. Purified IgG from these samples were furthermore tested in an invasion inhibition assay for their antiparasitic activity. RESULTS: Significant intra- and inter- population variation of the reactivity of the samples to the tested antigens were found, as well as a significant positive correlation between MSP1-19 reactivity and invasion inhibition (p < 0.05). Interestingly, male donors showed a significantly higher antibody response to all tested antigens than their female counterparts. In vitro invasion inhibition assays comparing the purified antibodies from the donors from Ghana and Madagascar did not show any statistically significant difference. Although in vitro invasion inhibition increased with breadth of antibody response, the increase was not statistically significant. CONCLUSIONS: The findings support the fact that the development of semi-immunity to malaria is probably contingent on the development of antibodies to not only one, but a range of antigens and that invasion inhibition in immune adults may be a function of antibodies to various antigens. This supports strategies of vaccination including multicomponent vaccines as well as passive vaccination strategies with antibody cocktails.


Asunto(s)
Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Adulto , Antígenos de Protozoos/inmunología , Cromatografía de Afinidad , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Persona de Mediana Edad , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología
3.
Plant Cell Rep ; 35(7): 1487-91, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27146974

RESUMEN

Genome editing is a revolutionary technology in molecular biology. While scientists are fascinated with the unlimited possibilities provided by directed and controlled changes in DNA in eukaryotes and have eagerly adopted such tools for their own experiments, an understanding of the intellectual property (IP) implications involved in bringing genome editing-derived products to market is often lacking. Due to the ingenuity of genome editing, the time between new product conception and its actual existence can be relatively short; therefore knowledge about IP of the various genome editing methods is relevant. This point must be regarded in a national framework as patents are instituted nationally. Therefore, when designing scientific work that could lead to a product, it is worthwhile to consider the different methods used for genome editing not only for their scientific merits but also for their compatibility with a speedy and reliable launch into the desired market.


Asunto(s)
Biotecnología/métodos , Edición Génica/métodos , Genoma de Planta/genética , Propiedad Intelectual , Plantas/genética , Sistemas CRISPR-Cas , Ingeniería Genética/métodos , Mutagénesis Sitio-Dirigida , Plantas Modificadas Genéticamente
4.
Biotechnol Bioeng ; 112(4): 659-67, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25335451

RESUMEN

We demonstrated the successful optimization of a recombinant multi-subunit malaria vaccine candidate protein for production in the methylotrophic yeast Pichia pastoris by the identification and subsequent removal of two protease cleavage sites. After observing protein degradation in the culture supernatant of a fed-batch fermentation, the predominant proteolytic fragment of the secreted recombinant protein was analyzed by mass spectrometry. The MS data indicated the cleavage of an amino acid sequence matching the yeast KEX2-protease consensus motif EKRE. The cleavage in this region was completely abolished by the deletion of the EKRE motif in a modified variant. This modified variant was produced, purified, and used for immunization of rabbits, inducing high antigen specific antibody titers (2 × 10(6) ). Total IgG from rabbit immune sera recognized different stages of Plasmodium falciparum parasites in immunofluorescence assays, indicating native folding of the vaccine candidate. However, the modified variant was still degraded, albeit into different fragments. Further analysis by mass spectrometry and N-terminal sequencing revealed a second cleavage site downstream of the motif PEVK. We therefore removed a 17-amino-acid stretch including the PEVK motif, resulting in the subsequent production of the full-length recombinant vaccine candidate protein without significant degradation, with a yield of 53 mg per liter culture volume. We clearly demonstrate that the proteolytic degradation of recombinant proteins by endogenous P. pastoris proteases can be prevented by the identification and removal of such cleavage sites. This strategy is particularly relevant for the production of recombinant subunit vaccines, where product yield and stability play a more important role than for the production of a stringently-defined native sequence which is necessary for most therapeutic molecules.


Asunto(s)
Vacunas contra la Malaria/biosíntesis , Vacunas contra la Malaria/aislamiento & purificación , Péptido Hidrolasas/metabolismo , Animales , Anticuerpos Antiprotozoarios/sangre , Sitios de Unión , Biotecnología/métodos , Técnica del Anticuerpo Fluorescente Directa , Inmunización/métodos , Inmunoglobulina G/sangre , Vacunas contra la Malaria/química , Vacunas contra la Malaria/genética , Espectrometría de Masas , Ratones , Proteínas Mutantes/biosíntesis , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/aislamiento & purificación , Pichia/genética , Pichia/metabolismo , Plasmodium falciparum/inmunología , Proteolisis , Conejos , Eliminación de Secuencia , Tecnología Farmacéutica/métodos , Vacunas Sintéticas/biosíntesis , Vacunas Sintéticas/química , Vacunas Sintéticas/genética , Vacunas Sintéticas/aislamiento & purificación
5.
Plant Biotechnol J ; 10(8): 936-44, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22758383

RESUMEN

Plant cell suspension cultures can be used for the production of recombinant pharmaceutical proteins, but their potential is limited by modest production levels that may be unstable over long culture periods, reflecting initial culture heterogeneity and subsequent genetic and epigenetic changes. We used flow sorting to generate highly productive monoclonal cell lines from a heterogeneous population of tobacco BY-2 cells expressing the human antibody M12 by selecting the co-expressed fluorescent marker protein DsRed located on the same T-DNA. Separation yielded ∼35% wells containing single protoplasts and ∼15% wells with monoclonal microcolonies that formed within 2 weeks. Thus, enriching the population of fluorescent cells from initially 24% to 90-96% in the six monoclonal lines resulted in an up to 13-fold increase in M12 production that remained stable for 10-12 months. This is the first straightforward procedure allowing the generation of monoclonal plant cell suspension cultures by flow sorting, greatly increasing the potential of plant cells as an economical platform for the manufacture of recombinant pharmaceutical proteins.


Asunto(s)
Anticuerpos Monoclonales/biosíntesis , Citometría de Flujo/métodos , Nicotiana/citología , Nicotiana/metabolismo , Células Vegetales/metabolismo , Proteínas Recombinantes/biosíntesis , Biotecnología/métodos , Línea Celular , Células Cultivadas , Industria Farmacéutica/métodos , Humanos , Plantas Modificadas Genéticamente
6.
Plant Direct ; 5(5): e00329, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34095742

RESUMEN

Traditional breeding and molecular approaches have been used to develop tobacco varieties with reduced nicotine and secondary alkaloid levels. However, available low-alkaloid tobacco varieties have impaired leaf quality likely due to the metabolic consequences of nicotine biosynthesis downregulation. Recently, we found evidence that the unbalanced crosstalk between nicotine and polyamine pathways is involved in impaired leaf ripening of a low-alkaloid (LA) Burley 21 line having a mutation at the Nic1 and Nic2 loci, key biosynthetic regulators of nicotine biosynthesis. Since the Nic1 and Nic2 loci are comprised of several genes, all phenotypic changes seen in LA Burley 21 could be due to a mixture of genetics-based responses. Here, we investigated the commercial burley variety TN90 LC and its transgenic versions with only one downregulated gene, either putrescine methyl transferase (PMT-RNAi) or PR50-protein (PR50-RNAi). Nicotine levels of cured lamina of TN90 LC, TN90 PMT-RNAi and TN90 PR50-RNAi, were 70.5 ± 3.8, 2.4 ± 0.5, and 6.0 ± 1.1 mg/g dry weight, respectively. Low-alkaloid transgenic lines showed delayed leaf maturation and impaired leaf quality. We analyzed polyamine contents and ripening markers in wild-type TN90 control plants (WT) and the two transgenic lines. The ripening markers revealed that the PMT-RNAi line showed the most pronounced impaired leaf maturation phenotype at harvest, characterized by higher chlorophyll (19%) and glucose (173%) contents and more leaf mesophyll cells per area (25%), while the ripening markers revealed that maturation of PR50-RNAi plants was intermediate between PMT-RNAi and WT lines. Comparative polyamine analyses showed an increase in free and conjugated polyamines in roots of both transgenic lines, this being most pronounced in the PMT-RNAi plants. For PMT-RNAi plants, there were further perturbations of polyamine content in the leaves, which mirrored the general phenotype, as PR50-RNAi transgenic plants looked more similar to the WT than PMT-RNAi transgenic plants. Activity of ornithine decarboxylase, the enzyme that catalyzes the committing step of polyamine biosynthesis, was significantly higher in roots and mature leaves of PMT-RNAi plants in comparison to WT, while there was no increase observed for arginine decarboxylase. Treatment of both transgenic lines with polyamine biosynthesis inhibitors decreased the polyamine content and ameliorated the phenotype, confirming the intricate interplay of polyamine and nicotine biosynthesis in tobacco and the influence of this interplay on leaf ripening.

7.
J Microbiol Biotechnol ; 20(8): 1179-84, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20798578

RESUMEN

We report the generation of the first monoclonal antibody that specifically binds to the polysaccharide chitosan. Mice were immunized with a mixture of chitosans, and hybridoma clones were screened for specific binders resulting in the isolation of a single clone secreting a chitosan-specific IgM, mAbG7. In ELISAs, the antibody can bind to chitosans of varying composition, but demonstrates the highest affinity for chitosans with lower degrees of acetylation (DA) and very poor binding to chitin. We tested the ability of the antibody to bind to chitosan in situ, using preparations of fungal cell walls. Immunofluorescence microscopy confirmed that the antibody bound strongly to the cell walls of fungi with high levels of chitosan, whereas poor staining was observed in those species with cell walls of predominantly chitin or cellulose. The potential use of this antibody for the detection of fungal contamination and the protection of plants against fungal pathogens is discussed.


Asunto(s)
Anticuerpos Antibacterianos/análisis , Anticuerpos Monoclonales/análisis , Pared Celular/química , Quitosano/análisis , Hongos/química , Animales , Anticuerpos Antibacterianos/inmunología , Anticuerpos Monoclonales/inmunología , Pared Celular/inmunología , Quitosano/inmunología , Hongos/inmunología , Ratones , Ratones Endogámicos BALB C
8.
Plant Direct ; 3(7): e00153, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31360827

RESUMEN

Targeted integration of recombinant DNA fragments into plant genomes by DNA double-strand break (DSB) repair mechanisms has become a powerful tool for precision engineering of crops. However, many targeting platforms require the screening of many transgenic events to identify a low number of targeted events among many more random insertion events. We developed an engineered transgene integration platform (ETIP) that uses incomplete marker genes at the insertion site to enable rapid phenotypic screening and recovery of targeted events upon functional reconstitution of the marker genes. The two marker genes, encoding neomycin phosphotransferase II (nptII) and Discosoma sp. red fluorescent protein (DsRed) enable event selection on kanamycin-containing selective medium and subsequent screening for red fluorescent clones. The ETIP design allows targeted integration of donor DNA molecules either by homology-directed repair (HDR) or non-homologous end joining (NHEJ)-mediated mechanisms. Targeted donor DNA integration is facilitated by zinc finger nucleases (ZFN). The ETIP cassette was introduced into Nicotiana tabacum BY-2 suspension cells to generate target cell lines containing a single copy locus of the transgene construct. The utility of the ETIP platform has been demonstrated by targeting DNA constructs containing up to 25-kb payload. The success rate for clean targeted DNA integration was up to 21% for HDR and up to 41% for NHEJ based on the total number of calli analyzed by next-generation sequencing (NGS). The rapid generation of targeted events with large DNA constructs expands the utility of the nuclease-mediated gene addition platform both for academia and the commercial sector.

9.
Biotechnol Bioeng ; 99(1): 244-8, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17614330

RESUMEN

The functional analysis of plant cells at the cellular and subcellular levels requires novel technologies for the directed manipulation of individual cells. In this report, we demonstrate the use of an infrared (1,064 nm) picosecond laser for the perforation of tobacco cell protoplasts. A single pulse was sufficient to perforate the plasma membrane enabling the uptake of dye from the surrounding medium into the cytosol. Moreover, the procedure was shown to be suitable for the efficient delivery of DNA expression constructs to the nucleus, as demonstrated by the subsequent expression and correct targeting of a recombinant fluorescent protein. Single cell perforation using this novel optoporation method shows that isolated plant cells can be permeabilized without direct manipulation. This is a valuable procedure for cell-specific applications, particularly where the import of specific molecules into plant cells is required for functional analysis.


Asunto(s)
Permeabilidad de la Membrana Celular/efectos de la radiación , Membrana Celular/fisiología , Membrana Celular/efectos de la radiación , Electroporación/métodos , Rayos Láser , Nicotiana/fisiología , Nicotiana/efectos de la radiación , Células Cultivadas , Rayos Infrarrojos
10.
Plant Direct ; 2(7): e00077, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31245740

RESUMEN

The development of low-alkaloid (LA) tobacco varieties is an important target in the tobacco breeding industry. However, LA Burley 21 plants, in which the Nic1 and Nic2 loci controlling nicotine biosynthesis are deleted, are characterized by impaired leaf maturation that leads to poor leaf quality before and after curing. Polyamines are involved in key developmental, physiological, and metabolic processes in plants, and act as anti-senescence and anti-ripening regulators. We investigated the role of polyamines in tobacco leaf maturation by analyzing the free and conjugated polyamine fractions in the leaves and roots of four Burley 21 varieties: NA (normal alkaloid levels, wild-type control), HI (high intermediates, nic2 -), LI (low intermediates, nic1 -), and LA (nic1 - nic2 -). The pool of conjugated polyamines increased with plant age in the roots and leaves of all four varieties, but the levels of free and conjugated putrescine and spermidine were higher in the LI and LA plants than NA controls. The increase in the polyamine content correlated with delayed maturation and senescence, i.e., LA plants with the highest polyamine levels showed the most severe impaired leaf maturation phenotype, characterized by higher chlorophyll content and more mesophyll cells per unit leaf area. Treatment of LA plants with inhibitors of polyamine biosynthesis and/or the growth regulator Ethephon® reduced accumulation of polyamines, achieving a partial amelioration of the LA phenotype. Our data show that the regulation of polyamine homeostasis is strongly disrupted in LA plants, and that free and conjugated polyamines contribute to the observed impairment of leaf maturation.

11.
Oecologia ; 108(2): 207-214, 1996 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28307831

RESUMEN

15N natural abundances of soil total N, roots and mycorrhizas were studied in surface soil profiles in coniferous and broadleaved forests along a transect from central to northern Europe. Under conditions of N limitation in Sweden, there was an increase in δ15N of soil total N of up to 9% from the uppermost horizon of the organic mor layer down to the upper 0-5 cm of the mineral soil. The δ15N of roots was only slightly lower than that of soil total N in the upper organic horizon, but further down roots were up to 5% depleted under such conditions. In experimentally N-enriched forest in Sweden, i.e. in plots which have received an average of c. 100 kg N ha-1 year-1 for 20 years and which retain less than 50% of this added N in the stand and the soil down to 20 cm depth, and in some forests in central Europe, the increase in δ15N with depth in soil total N was smaller. An increase in δ15N of the surface soil was even observed on experimentally N-enriched plots, although other data suggest that the N fertilizer added was depleted in15N. In such cases roots could be enriched in15N relative to soil total N, suggesting that labelling of the surface soil is via the pathway: - available pools of N-plant N-litter N. Under N-limiting conditions roots of different species sampled from the same soil horizon showed similar δ15N. By contrast, in experimentally N-enriched forest δ15N of roots increased in the sequence: ericaceous dwarf shrubs

12.
PLoS One ; 8(11): e79920, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24278216

RESUMEN

Pf38 is a surface protein of the malarial parasite Plasmodium falciparum. In this study, we produced and purified recombinant Pf38 and a fusion protein composed of red fluorescent protein and Pf38 (RFP-Pf38) using a transient expression system in the plant Nicotiana benthamiana. To our knowledge, this is the first description of the production of recombinant Pf38. To verify the quality of the recombinant Pf38, plasma from semi-immune African donors was used to confirm specific binding to Pf38. ELISA measurements revealed that immune responses to Pf38 in this African subset were comparable to reactivities to AMA-1 and MSP119. Pf38 and RFP-Pf38 were successfully used to immunise mice, although titres from these mice were low (on average 1∶11.000 and 1∶39.000, respectively). In immune fluorescence assays, the purified IgG fraction from the sera of immunised mice recognised Pf38 on the surface of schizonts, gametocytes, macrogametes and zygotes, but not sporozoites. Growth inhibition assays using αPf38 antibodies demonstrated strong inhibition (≥60%) of the growth of blood-stage P. falciparum. The development of zygotes was also effectively inhibited by αPf38 antibodies, as determined by the zygote development assay. Collectively, these results suggest that Pf38 is an interesting candidate for the development of a malaria vaccine.


Asunto(s)
Antígenos de Protozoos/genética , Vacunas contra la Malaria/inmunología , Nicotiana/genética , Planticuerpos/genética , Plasmodium falciparum/inmunología , Animales , Antígenos de Protozoos/inmunología , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Planticuerpos/inmunología , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología
13.
Plant J ; 49(1): 135-48, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17233796

RESUMEN

Transgenic hybrid aspen (Populus tremula L. x P. tremuloides Michx.) plants expressing a high-isoelectric-point superoxide dismutase (hipI-SOD) gene in antisense orientation were generated to investigate its function. Immunolocalization studies showed the enzyme to be localized extracellularly, in the secondary cell wall of xylem vessels and phloem fibers. The antisense lines of hipI-SOD exhibited a distinct phenotype; growth rate was reduced, stems were thinner and leaves smaller than in wild-type (WT) plants. The abundance of hipI-SOD was reduced in the bark and xylem of plants from these antisense lines. The vascular tissue of transgenic lines became lignified earlier than in WT plants and also showed an increased accumulation of reactive oxygen species (ROS). Xylem fibers and vessels were shorter and thinner in the transgenic lines than in WT plants. The total phenolic content was enhanced in the antisense lines. Furthermore, microarray analysis indicated that several enzymes involved in cell signaling, lignin biosynthesis and stress responses were upregulated in apical vascular tissues of transgenic plants. The upregulation of selected genes involved in lignin biosynthesis was also verified by real-time PCR. The results suggest that, in the transgenic plants, a premature transition into maturation occurs and the process is discussed in terms of the effects of increased accumulation of ROS due to reduced expression of hipI-SOD during development and differentiation.


Asunto(s)
Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas , Populus/crecimiento & desarrollo , Populus/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/química , Superóxido Dismutasa/metabolismo , Secuencia de Aminoácidos , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Hibridación Genética , Punto Isoeléctrico , Lignina/metabolismo , Datos de Secuencia Molecular , Fenotipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tallos de la Planta/citología , Tallos de la Planta/metabolismo , Plantas Modificadas Genéticamente , Populus/enzimología , Populus/genética
14.
Biotechnol Bioeng ; 89(7): 848-58, 2005 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-15685597

RESUMEN

The high fibrin specificity of Desmodus rotundus salivary plasminogen activator alpha1 (DSPAalpha1 or desmoteplase (INN)) makes it a promising candidate for the treatment of acute ischemic stroke. In the current study we explored the use of transgenic tobacco plants and BY-2 suspension cells as alternative production platforms for this drug. Four different N-terminal signal peptides, from plants and animals, were used to translocate the recombinant DSPAalpha1 protein to the endomembrane system. Intact recombinant DSPAalpha1 was produced in transgenic plants and BY-2 cells, although a certain degree of degradation was observed in immunoblotted extracts. The choice of signal peptide had no major influence on the degradation pattern or recombinant protein accumulation, which reached a maximum level of 38 microg/g leaf material. N-terminal sequencing of purified, His6-tagged DSPAalpha1 revealed only minor changes in the position of signal peptide cleavage compared to the same protein expressed in Chinese hamster ovary cells. However, correctly processed recombinant DSPAalpha1 was also detected. The enzymatic activity of the recombinant protein was confirmed using an in vitro assay with unpurified and purified samples, demonstrating that plants are suitable for the production of functional DSPAalpha1. In contrast to whole plant cell extracts, no recombinant DSPAalpha1 was detected in the culture supernatant of transgenic BY-2 cells. Further analysis showed that recombinant DSPAalpha1 is subject to proteolysis and that endogenous secreted BY-2 proteases are responsible for DSPAalpha1 degradation in the culture medium. The addition of a highly concentrated protease inhibitor mixture or 5 mM EDTA reduced DSPAalpha1 proteolysis, improving the accumulation of intact product in the culture medium. Strategies to improve the plant cell suspension system for the production of secreted recombinant proteins are discussed.


Asunto(s)
Nicotiana/metabolismo , Plantas Tóxicas , Activadores Plasminogénicos/biosíntesis , Western Blotting , Estudios de Factibilidad , Histidina/química , Hidrólisis , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Activadores Plasminogénicos/química , Activadores Plasminogénicos/genética , Activadores Plasminogénicos/aislamiento & purificación , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Nicotiana/genética
15.
Transgenic Res ; 14(3): 251-9, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16145833

RESUMEN

Thrombomodulin is a membrane-bound protein that plays an active role in the blood coagulation system by binding thrombin and initiating the protein C anticoagulant pathway. Solulin is a recombinant soluble derivative of human thrombomodulin. It is used for the treatment of thrombotic disorders. To evaluate the production of this pharmaceutical protein in plants, expression vectors were generated using four different N-terminal signal peptides. Immunoblot analysis of transiently transformed tobacco leaves showed that intact Solulin could be detected using three of these signal peptides. Furthermore transgenic tobacco plants and BY2 cells producing Solulin were generated. Immunoblot experiments showed that Solulin accumulated to maximum levels of 115 and 27 microg g(-1) plant material in tobacco plants and BY2 cells, respectively. Activity tests performed on the culture supernatant of transformed BY2 cells showed that the secreted Solulin was functional. In contrast, thrombomodulin activity was not detected in total soluble protein extracts from BY2 cells, probably due to inhibitory effects of substances in the cell extract. N-terminal sequencing was carried out on partially purified Solulin from the BY2 culture supernatant. The sequence was identical to that of Solulin produced in Chinese hamster ovary cells, confirming correct processing of the N-terminal signal peptide. We have demonstrated that plants and plant cell cultures can be used as alternative systems for the production of an active recombinant thrombomodulin derivative.


Asunto(s)
Nicotiana/genética , Plantas Modificadas Genéticamente , Proteínas Recombinantes/genética , Trombomodulina/genética , Animales , Células CHO , Cricetinae , Cricetulus , Electroforesis en Gel de Poliacrilamida , Humanos , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Trombomodulina/aislamiento & purificación , Trombomodulina/metabolismo , Nicotiana/metabolismo
16.
Tree Physiol ; 18(12): 823-828, 1998 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12651404

RESUMEN

We measured fine root N concentration, root in vivo nitrate reductase activity (NRA) and root uptake capacity for (15)NH(4) (+) and (15)NO(3) (-) along an N-deposition gradient from northern Sweden to central Europe, encompassing a variation in N deposition rates of < 5 to about 40 kg N ha(-1) year(-1). The focus was on Picea abies (L.) Karst., but Fagus sylvatica L. in central Europe and Pinus sylvestris L. and Betula spp. in northern Sweden were also studied. We assumed that, with an increased supply of N, root N concentration would increase, activity of the inducible enzyme nitrate reductase (NR) in roots would increase, particularly with an increasing supply of NO(3) (-), and root uptake capacity for inorganic N would decline, reflecting a lower demand for N. As expected, fine root N concentration in P. abies increased along the gradient from 1.1% (d.w. basis) at the northern site to 2.1% at central European sites. This variation compared with an amplitude of 0.7-1.5% for foliage. Root in vivo NRA was low in northern Sweden, and higher in central Europe. Picea abies and broad-leaved species had similar root NRA. At one location in Denmark and one in France, however, root NRA in the spring was very high in F. sylvatica. Root uptake capacity for NO(3) (-), as measured in excised roots, was low throughout the transect, but in P. abies, it was high for NH(4) (+) in northern Sweden and decreased by a factor of 4 with increasing N deposition. A similar pattern was found in the broad-leaved species. Unless the higher availability of NO(3) (-) and lower specific root uptake capacity per unit root mass for inorganic N in central Europe (compared with northern Sweden) is balanced by a higher root biomass, the central European forests will be a weaker sink for N.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA