Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Chem Biol ; 20(3): 365-372, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37828400

RESUMEN

Stimulator of interferon genes (STING) is a dimeric transmembrane adapter protein that plays a key role in the human innate immune response to infection and has been therapeutically exploited for its antitumor activity. The activation of STING requires its high-order oligomerization, which could be induced by binding of the endogenous ligand, cGAMP, to the cytosolic ligand-binding domain. Here we report the discovery through functional screens of a class of compounds, named NVS-STGs, that activate human STING. Our cryo-EM structures show that NVS-STG2 induces the high-order oligomerization of human STING by binding to a pocket between the transmembrane domains of the neighboring STING dimers, effectively acting as a molecular glue. Our functional assays showed that NVS-STG2 could elicit potent STING-mediated immune responses in cells and antitumor activities in animal models.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas de la Membrana , Animales , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Bioensayo , Citosol , Inmunidad Innata , Ligandos , Proteínas de la Membrana/metabolismo
2.
Nat Chem Biol ; 18(4): 412-421, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35210618

RESUMEN

Many diseases are driven by proteins that are aberrantly ubiquitinated and degraded. These diseases would be therapeutically benefited by targeted protein stabilization (TPS). Here we present deubiquitinase-targeting chimeras (DUBTACs), heterobifunctional small molecules consisting of a deubiquitinase recruiter linked to a protein-targeting ligand, to stabilize the levels of specific proteins degraded in a ubiquitin-dependent manner. Using chemoproteomic approaches, we discovered the covalent ligand EN523 that targets a non-catalytic allosteric cysteine C23 in the K48-ubiquitin-specific deubiquitinase OTUB1. We showed that a DUBTAC consisting of our EN523 OTUB1 recruiter linked to lumacaftor, a drug used to treat cystic fibrosis that binds ΔF508-cystic fibrosis transmembrane conductance regulator (CFTR), robustly stabilized ΔF508-CFTR protein levels, leading to improved chloride channel conductance in human cystic fibrosis bronchial epithelial cells. We also demonstrated stabilization of the tumor suppressor kinase WEE1 in hepatoma cells. Our study showcases covalent chemoproteomic approaches to develop new induced proximity-based therapeutic modalities and introduces the DUBTAC platform for TPS.


Asunto(s)
Fibrosis Quística , Quimera/metabolismo , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Enzimas Desubicuitinizantes/uso terapéutico , Humanos , Ligandos , Ubiquitina/metabolismo
3.
Chembiochem ; 24(11): e202300116, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37069799

RESUMEN

While vaccines and antivirals are now being deployed for the current SARS-CoV-2 pandemic, we require additional antiviral therapeutics to not only effectively combat SARS-CoV-2 and its variants, but also future coronaviruses. All coronaviruses have relatively similar genomes that provide a potential exploitable opening to develop antiviral therapies that will be effective against all coronaviruses. Among the various genes and proteins encoded by all coronaviruses, one particularly "druggable" or relatively easy-to-drug target is the coronavirus Main Protease (3CLpro or Mpro), an enzyme that is involved in cleaving a long peptide translated by the viral genome into its individual protein components that are then assembled into the virus to enable viral replication in the cell. Inhibiting Mpro with a small-molecule antiviral would effectively stop the ability of the virus to replicate, providing therapeutic benefit. In this study, we have utilized activity-based protein profiling (ABPP)-based chemoproteomic approaches to discover and further optimize cysteine-reactive pyrazoline-based covalent inhibitors for the SARS-CoV-2 Mpro. Structure-guided medicinal chemistry and modular synthesis of di- and tri-substituted pyrazolines bearing either chloroacetamide or vinyl sulfonamide cysteine-reactive warheads enabled the expedient exploration of structure-activity relationships (SAR), yielding nanomolar potency inhibitors against Mpro from not only SARS-CoV-2, but across many other coronaviruses. Our studies highlight promising chemical scaffolds that may contribute to future pan-coronavirus inhibitors.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Cisteína , Antivirales/farmacología , Antivirales/química , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Simulación del Acoplamiento Molecular
4.
Nat Chem Biol ; 17(3): 280-290, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33462494

RESUMEN

Although most acute skin wounds heal rapidly, non-healing skin ulcers represent an increasing and substantial unmet medical need that urgently requires effective therapeutics. Keratinocytes resurface wounds to re-establish the epidermal barrier by transitioning to an activated, migratory state, but this ability is lost in dysfunctional chronic wounds. Small-molecule regulators of keratinocyte plasticity with the potential to reverse keratinocyte malfunction in situ could offer a novel therapeutic approach in skin wound healing. Utilizing high-throughput phenotypic screening of primary keratinocytes, we identify such small molecules, including bromodomain and extra-terminal domain (BET) protein family inhibitors (BETi). BETi induce a sustained activated, migratory state in keratinocytes in vitro, increase activation markers in human epidermis ex vivo and enhance skin wound healing in vivo. Our findings suggest potential clinical utility of BETi in promoting keratinocyte re-epithelialization of skin wounds. Importantly, this novel property of BETi is exclusively observed after transient low-dose exposure, revealing new potential for this compound class.


Asunto(s)
Proteínas de Ciclo Celular/genética , Epidermis/efectos de los fármacos , Repitelización/efectos de los fármacos , Úlcera Cutánea/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/farmacología , Factores de Transcripción/genética , Heridas no Penetrantes/tratamiento farmacológico , Animales , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Modelos Animales de Enfermedad , Epidermis/metabolismo , Epidermis/patología , Transferencia Resonante de Energía de Fluorescencia , Regulación de la Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Queratinocitos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Cultivo Primario de Células , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Precursores de Proteínas/antagonistas & inhibidores , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Repitelización/genética , Úlcera Cutánea/genética , Úlcera Cutánea/metabolismo , Úlcera Cutánea/patología , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Transcripción Genética , Heridas no Penetrantes/genética , Heridas no Penetrantes/metabolismo , Heridas no Penetrantes/patología
5.
J Am Chem Soc ; 144(2): 701-708, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34994556

RESUMEN

Proteolysis-targeting chimeras (PROTACs), heterobifunctional compounds that consist of protein-targeting ligands linked to an E3 ligase recruiter, have arisen as a powerful therapeutic modality for targeted protein degradation (TPD). Despite the popularity of TPD approaches in drug discovery, only a small number of E3 ligase recruiters are available for the >600 E3 ligases that exist in human cells. Here, we have discovered a cysteine-reactive covalent ligand, EN106, that targets FEM1B, an E3 ligase recently discovered as the critical component of the cellular response to reductive stress. By targeting C186 in FEM1B, EN106 disrupts recognition of the key reductive stress substrate of FEM1B, FNIP1. We further establish that EN106 can be used as a covalent recruiter for FEM1B in TPD applications by demonstrating that a PROTAC linking EN106 to the BET bromodomain inhibitor JQ1 or the kinase inhibitor dasatinib leads to the degradation of BRD4 and BCR-ABL, respectively. Our study showcases a covalent ligand that targets a natural E3 ligase-substrate binding site and highlights the utility of covalent ligand screening in expanding the arsenal of E3 ligase recruiters suitable for TPD applications.


Asunto(s)
Acetamidas/química , Proteínas de Ciclo Celular/metabolismo , Proteolisis , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Animales , Azepinas/química , Sitios de Unión , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Línea Celular , Cisteína/química , Dasatinib/química , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Proteínas de Fusión bcr-abl/metabolismo , Humanos , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Inhibidores de Proteínas Quinasas/química , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Triazoles/química , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Complejos de Ubiquitina-Proteína Ligasa/genética
6.
J Am Chem Soc ; 144(14): 6227-6236, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35364811

RESUMEN

Tryptophan (Trp) plays a variety of critical functional roles in protein biochemistry; however, owing to its low natural frequency and poor nucleophilicity, the design of effective methods for both single protein bioconjugation at Trp as well as for in situ chemoproteomic profiling remains a challenge. Here, we report a method for covalent Trp modification that is suitable for both scenarios by invoking photo-induced electron transfer (PET) as a means of driving efficient reactivity. We have engineered biaryl N-carbamoyl pyridinium salts that possess a donor-acceptor relationship that enables optical triggering with visible light whilst simultaneously attenuating the probe's photo-oxidation potential in order to prevent photodegradation. This probe was assayed against a small bank of eight peptides and proteins, where it was found that micromolar concentrations of the probe and short irradiation times (10-60 min) with violet light enabled efficient reactivity toward surface exposed Trp residues. The carbamate transferring group can be used to transfer useful functional groups to proteins including affinity tags and click handles. DFT calculations and other mechanistic analyses reveal correlations between excited state lifetimes, relative fluorescence quantum yields, and chemical reactivity. Biotinylated and azide-functionalized pyridinium salts were used for Trp profiling in HEK293T lysates and in situ in HEK293T cells using 440 nm LED irradiation. Peptide-level enrichment from live cell labeling experiments identified 290 Trp modifications, with 82% selectivity for Trp modification over other π-amino acids, demonstrating the ability of this method to identify and quantify reactive Trp residues from live cells.


Asunto(s)
Proteoma , Triptófano , Electrones , Células HEK293 , Humanos , Luz , Péptidos/química , Sales (Química) , Triptófano/química
7.
J Am Chem Soc ; 144(50): 22890-22901, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36484997

RESUMEN

Activity-based protein profiling (ABPP) is a versatile strategy for identifying and characterizing functional protein sites and compounds for therapeutic development. However, the vast majority of ABPP methods for covalent drug discovery target highly nucleophilic amino acids such as cysteine or lysine. Here, we report a methionine-directed ABPP platform using Redox-Activated Chemical Tagging (ReACT), which leverages a biomimetic oxidative ligation strategy for selective methionine modification. Application of ReACT to oncoprotein cyclin-dependent kinase 4 (CDK4) as a representative high-value drug target identified three new ligandable methionine sites. We then synthesized a methionine-targeting covalent ligand library bearing a diverse array of heterocyclic, heteroatom, and stereochemically rich substituents. ABPP screening of this focused library identified 1oxF11 as a covalent modifier of CDK4 at an allosteric M169 site. This compound inhibited kinase activity in a dose-dependent manner on purified protein and in breast cancer cells. Further investigation of 1oxF11 found prominent cation-π and H-bonding interactions stabilizing the binding of this fragment at the M169 site. Quantitative mass-spectrometry studies validated 1oxF11 ligation of CDK4 in breast cancer cell lysates. Further biochemical analyses revealed cross-talk between M169 oxidation and T172 phosphorylation, where M169 oxidation prevented phosphorylation of the activating T172 site on CDK4 and blocked cell cycle progression. By identifying a new mechanism for allosteric methionine redox regulation on CDK4 and developing a unique modality for its therapeutic intervention, this work showcases a generalizable platform that provides a starting point for engaging in broader chemoproteomics and protein ligand discovery efforts to find and target previously undruggable methionine sites.


Asunto(s)
Neoplasias de la Mama , Metionina , Humanos , Femenino , Quinasa 4 Dependiente de la Ciclina/metabolismo , Ligandos , Fosforilación , Oxidación-Reducción , Racemetionina/metabolismo
8.
Nat Chem Biol ; 16(11): 1189-1198, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32572277

RESUMEN

Molecular glues are an intriguing therapeutic modality that harness small molecules to induce interactions between proteins that typically do not interact. However, such molecules are rare and have been discovered fortuitously, thus limiting their potential as a general strategy for therapeutic intervention. We postulated that natural products bearing one or more electrophilic sites may be an unexplored source of new molecular glues, potentially acting through multicovalent attachment. Using chemoproteomic platforms, we show that members of the manumycin family of polyketides, which bear multiple potentially reactive sites, target C374 of the putative E3 ligase UBR7 in breast cancer cells, and engage in molecular glue interactions with the neosubstrate tumor-suppressor TP53, leading to p53 transcriptional activation and cell death. Our results reveal an anticancer mechanism of this natural product family, and highlight the potential for combining chemoproteomics and multicovalent natural products for the discovery of new molecular glues.


Asunto(s)
Antineoplásicos/química , Neoplasias de la Mama/tratamiento farmacológico , Polienos/química , Policétidos/química , Alcamidas Poliinsaturadas/química , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Reactivos de Enlaces Cruzados/química , Descubrimiento de Drogas , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Conformación Molecular , Estructura Molecular , Polienos/farmacología , Alcamidas Poliinsaturadas/farmacología , Electricidad Estática , Relación Estructura-Actividad , Proteína p53 Supresora de Tumor/genética , Ubiquitina-Proteína Ligasas/genética
10.
Nat Chem Biol ; 16(1): 50-59, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31819276

RESUMEN

The post-genomic era has seen many advances in our understanding of cancer pathways, yet resistance and tumor heterogeneity necessitate multiple approaches to target even monogenic tumors. Here, we combine phenotypic screening with chemical genetics to identify pre-messenger RNA endonuclease cleavage and polyadenylation specificity factor 3 (CPSF3) as the target of JTE-607, a small molecule with previously unknown target. We show that CPSF3 represents a synthetic lethal node in a subset of acute myeloid leukemia (AML) and Ewing's sarcoma cancer cell lines. Inhibition of CPSF3 by JTE-607 alters expression of known downstream effectors in AML and Ewing's sarcoma lines, upregulates apoptosis and causes tumor-selective stasis in mouse xenografts. Mechanistically, it prevents the release of newly synthesized pre-mRNAs, resulting in read-through transcription and the formation of DNA-RNA hybrid R-loop structures. This study implicates pre-mRNA processing, and specifically CPSF3, as a druggable target providing an avenue to therapeutic intervention in cancer.


Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Leucemia Mieloide Aguda/metabolismo , Precursores del ARN/metabolismo , Sarcoma de Ewing/metabolismo , Animales , Apoptosis/efectos de los fármacos , Sitios de Unión , Hidrolasas de Éster Carboxílico/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Células HEK293 , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Fenotipo , Fenilalanina/análogos & derivados , Fenilalanina/farmacología , Piperazinas/farmacología , Unión Proteica , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Sarcoma de Ewing/tratamiento farmacológico
11.
Expert Rev Proteomics ; 18(7): 503-526, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34320887

RESUMEN

INTRODUCTION: Pioneering technologies such as proteomics have helped fuel the biotechnology and pharmaceutical industry with the discovery of novel targets and an intricate understanding of the activity of therapeutics and their various activities in vitro and in vivo. The field of proteomics is undergoing an inflection point, where new sensitive technologies are allowing intricate biological pathways to be better understood, and novel biochemical tools are pivoting us into a new era of chemical proteomics and biomarker discovery. In this review, we describe these areas of innovation, and discuss where the fields are headed in terms of fueling biotechnological and pharmacological research and discuss current gaps in the proteomic technology landscape. AREAS COVERED: Single cell sequencing and single molecule sequencing. Chemoproteomics. Biological matrices and clinical samples including biomarkers. Computational tools including instrument control software, data analysis. EXPERT OPINION: Proteomics will likely remain a key technology in the coming decade, but will have to evolve with respect to type and granularity of data, cost and throughput of data generation as well as integration with other technologies to fulfill its promise in drug discovery.


Asunto(s)
Preparaciones Farmacéuticas , Proteómica , Biomarcadores , Biotecnología , Descubrimiento de Drogas
12.
Nat Chem Biol ; 15(7): 747-755, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31209351

RESUMEN

Nimbolide, a terpenoid natural product derived from the Neem tree, impairs cancer pathogenicity; however, the direct targets and mechanisms by which nimbolide exerts its effects are poorly understood. Here, we used activity-based protein profiling (ABPP) chemoproteomic platforms to discover that nimbolide reacts with a novel functional cysteine crucial for substrate recognition in the E3 ubiquitin ligase RNF114. Nimbolide impairs breast cancer cell proliferation in-part by disrupting RNF114-substrate recognition, leading to inhibition of ubiquitination and degradation of tumor suppressors such as p21, resulting in their rapid stabilization. We further demonstrate that nimbolide can be harnessed to recruit RNF114 as an E3 ligase in targeted protein degradation applications and show that synthetically simpler scaffolds are also capable of accessing this unique reactive site. Our study highlights the use of ABPP platforms in uncovering unique druggable modalities accessed by natural products for cancer therapy and targeted protein degradation applications.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Productos Biológicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Proteínas Portadoras/metabolismo , Limoninas/farmacología , Proteolisis/efectos de los fármacos , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Limoninas/química , Limoninas/aislamiento & purificación , Ubiquitina-Proteína Ligasas
13.
Nat Chem Biol ; 15(7): 666-668, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31209353

RESUMEN

The complement pathway is an important part of the immune system, and uncontrolled activation is implicated in many diseases. The human complement component 5 protein (C5) is a validated drug target within the complement pathway, as an anti-C5 antibody (Soliris) is an approved therapy for paroxysmal nocturnal hemoglobinuria. Here, we report the identification, optimization and mechanism of action for the first small-molecule inhibitor of C5 complement protein.


Asunto(s)
Complemento C5/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Complemento C5/metabolismo , Humanos , Conformación Molecular , Bibliotecas de Moléculas Pequeñas/química
14.
Nat Chem Biol ; 15(2): 179-188, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30643281

RESUMEN

The identification of activating mutations in NOTCH1 in 50% of T cell acute lymphoblastic leukemia has generated interest in elucidating how these mutations contribute to oncogenic transformation and in targeting the pathway. A phenotypic screen identified compounds that interfere with trafficking of Notch and induce apoptosis via an endoplasmic reticulum (ER) stress mechanism. Target identification approaches revealed a role for SLC39A7 (ZIP7), a zinc transport family member, in governing Notch trafficking and signaling. Generation and sequencing of a compound-resistant cell line identified a V430E mutation in ZIP7 that confers transferable resistance to the compound NVS-ZP7-4. NVS-ZP7-4 altered zinc in the ER, and an analog of the compound photoaffinity labeled ZIP7 in cells, suggesting a direct interaction between the compound and ZIP7. NVS-ZP7-4 is the first reported chemical tool to probe the impact of modulating ER zinc levels and investigate ZIP7 as a novel druggable node in the Notch pathway.


Asunto(s)
Proteínas de Transporte de Catión/genética , Estrés del Retículo Endoplásmico/fisiología , Receptor Notch1/genética , Animales , Apoptosis , Proteínas Portadoras/metabolismo , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/fisiología , Línea Celular , Transformación Celular Neoplásica , Retículo Endoplásmico/fisiología , Humanos , Mutación , Transporte de Proteínas , Receptor Notch1/fisiología , Transducción de Señal , Zinc/metabolismo
15.
Nature ; 512(7512): 49-53, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25043012

RESUMEN

In the 1950s, the drug thalidomide, administered as a sedative to pregnant women, led to the birth of thousands of children with multiple defects. Despite the teratogenicity of thalidomide and its derivatives lenalidomide and pomalidomide, these immunomodulatory drugs (IMiDs) recently emerged as effective treatments for multiple myeloma and 5q-deletion-associated dysplasia. IMiDs target the E3 ubiquitin ligase CUL4-RBX1-DDB1-CRBN (known as CRL4(CRBN)) and promote the ubiquitination of the IKAROS family transcription factors IKZF1 and IKZF3 by CRL4(CRBN). Here we present crystal structures of the DDB1-CRBN complex bound to thalidomide, lenalidomide and pomalidomide. The structure establishes that CRBN is a substrate receptor within CRL4(CRBN) and enantioselectively binds IMiDs. Using an unbiased screen, we identified the homeobox transcription factor MEIS2 as an endogenous substrate of CRL4(CRBN). Our studies suggest that IMiDs block endogenous substrates (MEIS2) from binding to CRL4(CRBN) while the ligase complex is recruiting IKZF1 or IKZF3 for degradation. This dual activity implies that small molecules can modulate an E3 ubiquitin ligase and thereby upregulate or downregulate the ubiquitination of proteins.


Asunto(s)
Péptido Hidrolasas/química , Talidomida/química , Ubiquitina-Proteína Ligasas/química , Proteínas Adaptadoras Transductoras de Señales , Cristalografía por Rayos X , Proteínas de Unión al ADN/agonistas , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Lenalidomida , Modelos Moleculares , Complejos Multiproteicos/agonistas , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Péptido Hidrolasas/metabolismo , Unión Proteica , Relación Estructura-Actividad , Especificidad por Sustrato , Talidomida/análogos & derivados , Talidomida/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/metabolismo
16.
Angew Chem Int Ed Engl ; 58(4): 1007-1012, 2019 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-30589164

RESUMEN

Bromodomain-containing proteins are epigenetic modulators involved in a wide range of cellular processes, from recruitment of transcription factors to pathological disruption of gene regulation and cancer development. Since the druggability of these acetyl-lysine reader domains was established, efforts were made to develop potent and selective inhibitors across the entire family. Here we report the development of a small molecule-based approach to covalently modify recombinant and endogenous bromodomain-containing proteins by targeting a conserved lysine and a tyrosine residue in the variable ZA or BC loops. Moreover, the addition of a reporter tag allowed in-gel visualization and pull-down of the desired bromodomains.


Asunto(s)
Carbamatos/química , Histonas/química , Lisina/química , Dominios Proteicos , Piridazinas/química , Triazoles/química , Acetilación , Secuencia de Aminoácidos , Sitios de Unión , Secuencia Conservada , Simulación del Acoplamiento Molecular , Unión Proteica
18.
J Biol Chem ; 291(29): 15256-66, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27231341

RESUMEN

YAP signaling pathway plays critical roles in tissue homeostasis, and aberrant activation of YAP signaling has been implicated in cancers. To identify tractable targets of YAP pathway, we have performed a pathway-based pooled CRISPR screen and identified tankyrase and its associated E3 ligase RNF146 as positive regulators of YAP signaling. Genetic ablation or pharmacological inhibition of tankyrase prominently suppresses YAP activity and YAP target gene expression. Using a proteomic approach, we have identified angiomotin family proteins, which are known negative regulators of YAP signaling, as novel tankyrase substrates. Inhibition of tankyrase or depletion of RNF146 stabilizes angiomotins. Angiomotins physically interact with tankyrase through a highly conserved motif at their N terminus, and mutation of this motif leads to their stabilization. Tankyrase inhibitor-induced stabilization of angiomotins reduces YAP nuclear translocation and decreases downstream YAP signaling. We have further shown that knock-out of YAP sensitizes non-small cell lung cancer to EGFR inhibitor Erlotinib. Tankyrase inhibitor, but not porcupine inhibitor, which blocks Wnt secretion, enhances growth inhibitory activity of Erlotinib. This activity is mediated by YAP inhibition and not Wnt/ß-catenin inhibition. Our data suggest that tankyrase inhibition could serve as a novel strategy to suppress YAP signaling for combinatorial targeted therapy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Receptores ErbB/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Proteínas de la Membrana/metabolismo , Fosfoproteínas/antagonistas & inhibidores , Tanquirasas/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Angiomotinas , Antineoplásicos/farmacología , Sistemas CRISPR-Cas , Línea Celular Tumoral , Regulación hacia Abajo , Clorhidrato de Erlotinib/farmacología , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de Microfilamentos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica/efectos de los fármacos , ARN Interferente Pequeño/genética , Transducción de Señal/efectos de los fármacos , Tanquirasas/química , Tanquirasas/genética , Factores de Transcripción , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Señalizadoras YAP
19.
Nat Chem Biol ; 10(5): 343-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24633354

RESUMEN

Hedgehog (Hh) signaling determines cell fate during development and can drive tumorigenesis. We performed a screen for new compounds that can impinge on Hh signaling downstream of Smoothened (Smo). A series of cyclohexyl-methyl aminopyrimidine chemotype compounds ('CMAPs') were identified that could block pathway signaling in a Smo-independent manner. In addition to inhibiting Hh signaling, the compounds generated inositol phosphates through an unknown GPCR. Correlation of GPCR mRNA expression levels with compound activity across cell lines suggested the target to be the orphan receptor GPR39. RNA interference or cDNA overexpression of GPR39 demonstrated that the receptor is necessary for compound activity. We propose a model in which CMAPs activate GPR39, which signals to the Gli transcription factors and blocks signaling. In addition to the discovery of GPR39 as a new target that impinges on Hh signaling, we report on small-molecule modulators of the receptor that will enable in vitro interrogation of GPR39 signaling in different cellular contexts.


Asunto(s)
Proteínas Hedgehog/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/metabolismo , Cromatografía de Afinidad , Proteómica , Transducción de Señal , Espectrometría de Masas en Tándem
20.
Proteome Sci ; 15: 17, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28725163

RESUMEN

BACKGROUND: Identifying selective kinase inhibitors remains a major challenge. The design of bivalent inhibitors provides a rational strategy for accessing potent and selective inhibitors. While bivalent kinase inhibitors have been successfully designed, no comprehensive assessment of affinity and selectivity for a series of bivalent inhibitors has been performed. Here, we present an evaluation of the structure activity relationship for bivalent kinase inhibitors targeting ABL1. METHODS: Various SNAPtag constructs bearing different specificity ligands were expressed in vitro. Bivalent inhibitor formation was accomplished by synthesizing individual ATP-competitive kinase inhibitors containing a SNAPtag targeting moiety, enabling the spontaneous self-assembly of the bivalent inhibitor. Assembled bivalent inhibitors were incubated with K562 lysates, and then subjected to affinity enrichment using various ATP-competitive inhibitors immobilized to sepharose beads. Resulting eluents were analyzed using Tandem Mass Tag (TMT) labeling and two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS). Relative binding affinity of the bivalent inhibitor was determined by calculating the concentration at which 50% of a given kinase remained bound to the affinity matrix. RESULTS: The profiling of three parental ATP-competitive inhibitors and nine SNAPtag conjugates led to the identification of 349 kinase proteins. In all cases, the bivalent inhibitors exhibited enhanced binding affinity and selectivity for ABL1 when compared to the parental compound conjugated to SNAPtag alone. While the rank order of binding affinity could be predicted by considering the binding affinities of the individual specificity ligands, the resulting affinity of the assembled bivalent inhibitor was not predictable. The results from this study suggest that as the potency of the ATP-competitive ligand increases, the contribution of the specificity ligand towards the overall binding affinity of the bivalent inhibitor decreases. However, the affinity of the specificity components in its interaction with the target is essential for achieving selectivity. CONCLUSION: Through comprehensive chemical proteomic profiling, this work provides the first insight into the influence of ATP-competitive and specificity ligands binding to their intended target on a proteome-wide scale. The resulting data suggest a subtle interplay between the ATP-competitive and specificity ligands that cannot be accounted for by considering the specificity or affinity of the individual components alone.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA