RESUMEN
BACKGROUND: Femoral version deformities have recently been identified as a major contributor to femoroacetabular impingement (FAI). An in-depth understanding of the specific labral damage patterns caused by femoral version deformities may help to understand the underlying pathomorphologies in symptomatic patients and select the appropriate surgical treatment. QUESTIONS/PURPOSES: We asked: (1) Is there a correlation between femoral version and the mean cross-sectional area of the acetabular labrum? (2) Is there a difference in the location of lesions of the acetabular labrum between hips with increased femoral version and hips with decreased femoral version? (3) Is there a difference in the pattern of lesions of the acetabular labrum between hips with increased femoral version and hips with decreased femoral version? METHODS: This was a retrospective, comparative study. Between November 2009 and September 2016, we evaluated 640 hips with FAI. We considered patients with complete diagnostic imaging including magnetic resonance arthrography (MRA) of the affected hip with radial slices of the proximal femur and axial imaging of the distal femoral condyles (allowing for calculation of femoral version) as eligible. Based on that, 97% (620 of 640 hips) were eligible; a further 77% (491 of 640 hips) were excluded because they had either normal femoral version (384 hips), incomplete imaging (20 hips), a lateral center-edge angle < 22° (43 hips) or > 39° (16 hips), age > 50 years (8 hips), or a history of pediatric hip disease (20 hips), leaving 20% (129 of 640 hips) of patients with a mean age of 27 ± 9 years for analysis, and 61% (79 of 129 hips) were female. Patients were assigned to either the increased (> 30°) or decreased (< 5°) femoral version group. The labral cross-sectional area was measured on radial MR images in all patients. The location-dependent labral cross-sectional area, presence of labral tears, and labral tear patterns were assessed using the acetabular clockface system and compared among groups. RESULTS: In hips with increased femoral version, the labrum was normal in size (21 ± 6 mm 2 [95% confidence interval 20 to 23 mm 2 ]), whereas hips with decreased femoral version showed labral hypotrophy (14 ± 4 mm 2 [95% CI 13 to 15 mm 2 ]; p < 0.01). In hips with increased femoral version, labral tears were located more anteriorly (median 1:30 versus 12:00; p < 0.01). Hips with increased femoral version exhibited damage of the anterior labrum with more intrasubstance tears anterosuperiorly (17% [222 of 1322] versus 9% [93 of 1084]; p < 0.01) and partial tears anteroinferiorly (22% [36 of 165] versus 6% [8 of 126]; p < 0.01). Hips with decreased femoral version showed superior labral damage consisting primarily of partial labral tears. CONCLUSION: In the evaluation of patients with FAI, the term "labral tear" is not accurate enough to describe labral pathology. Based on high-quality radial MR images, surgeons should always evaluate the combination of labral tear location and labral tear pattern, because these may provide insight into associated femoral version abnormalities, which can inform appropriate surgical treatment. Future studies should examine symptomatic patients with normal femoral version, as well as an asymptomatic control group, to describe the effect of femoral version on labral morphology across the entire spectrum of pathomorphologies. LEVEL OF EVIDENCE: Level III, prognostic study.
Asunto(s)
Acetábulo , Pinzamiento Femoroacetabular , Fémur , Imagen por Resonancia Magnética , Humanos , Estudios Retrospectivos , Pinzamiento Femoroacetabular/diagnóstico por imagen , Pinzamiento Femoroacetabular/patología , Femenino , Acetábulo/diagnóstico por imagen , Acetábulo/patología , Masculino , Adulto , Fémur/diagnóstico por imagen , Fémur/patología , Adulto Joven , Articulación de la Cadera/diagnóstico por imagen , Articulación de la Cadera/patología , Persona de Mediana Edad , AdolescenteRESUMEN
BACKGROUND: Hip arthroscopy with initial access to the peripheral compartment could reduce the risk of iatrogenic injury to the labrum and cartilage; furthermore, it avoids the need for large capsulotomies with separate portals for peripheral and central (intra-articular) arthroscopy. Clinical results of the peripheral-compartment-first technique remain sparse, in contrast to those of conventional hip arthroscopy starting in the intra-articular central compartment. The purpose of this study was to assess outcome of hip arthroscopy with the peripheral-compartment-first technique, including complication rates, revision rates and patient-reported outcome scores. MATERIALS AND METHODS: This outcome study included 704 hips with femoroacetabular impingement. All arthroscopies were performed using the peripheral-compartment-first technique. A joint replacement registry and the institutional database were used to assess the revision and complication rates, while patient-reported outcome measures were used to assess functional outcomes and patient satisfaction. RESULTS: In total, 704 hips (615 patients) were followed up for a mean of 6.2 years (range 1 to 9 years). The mean age of the patients was 32.1 ± 9.2 years. During the follow-up period, 26 of 704 (3.7%) hips underwent total hip arthroplasty (THA) after a mean of 1.8 ± 1.2 years, and 18 of the 704 (2.6%) hips required revision hip arthroscopy after a mean of 1.2 ± 2.1 years. 9.8% of the hips had an unsatisfactory patient-reported outcome at final follow-up. CONCLUSIONS: The results for the peripheral-compartment-first technique were promising. We recommend a well-conducted randomized controlled clinical trial to guide future therapeutic recommendations regarding the most favorable hip arthroscopy technique. LEVEL OF EVIDENCE: Level IV, therapeutic study. TRIAL REGISTRATION: This study was registered at ClinicalTrials.gov (U.S. National Library of Medicine; ID: NCT05310240).
Asunto(s)
Artroscopía , Pinzamiento Femoroacetabular , Medición de Resultados Informados por el Paciente , Humanos , Pinzamiento Femoroacetabular/cirugía , Artroscopía/métodos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Resultado del Tratamiento , Reoperación , Adulto Joven , Adolescente , Satisfacción del Paciente , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/prevención & control , Estudios Retrospectivos , Articulación de la Cadera/cirugíaRESUMEN
OBJECTIVE: To compare image quality and diagnostic performance of preoperative direct hip magnetic resonance arthrography (MRA) performed with gadolinium contrast agent and saline solution. METHODS: IRB-approved retrospective study of 140 age and sex-matched symptomatic patients with femoroacetabular impingement, who either underwent intra-articular injection of 15-20 mL gadopentetate dimeglumine (GBCA), 2.0 mmol/L ("GBCA-MRA" group, n = 70), or 0.9% saline solution ("Saline-MRA" group, n = 70) for preoperative hip MRA and subsequent hip arthroscopy. 1.5 T hip MRA was performed including leg traction. Two readers assessed image quality using a 5-point Likert scale (1-5, excellent-poor), labrum and femoroacetabular cartilage lesions. Arthroscopic diagnosis was used to calculate diagnostic accuracy which was compared between groups with Fisher's exact tests. Image quality was compared with the Mann-Whitney U tests. RESULTS: Mean age was 33 years ± 9, 21% female patients. Image quality was excellent (GBCA-MRA mean range, 1.1-1.3 vs 1.1-1.2 points for Saline-MRA) and not different between groups (all p > 0.05) except for image contrast which was lower for Saline-MRA group (GBCA-MRA 1.1 ± 0.4 vs Saline-MRA 1.8 ± 0.5; p < 0.001). Accuracy was high for both groups for reader 1/reader 2 for labrum (GBCA-MRA 94%/ 96% versus Saline-MRA 96%/93%; p > 0.999/p = 0.904) and acetabular (GBCA-MRA 86%/ 83% versus Saline-MRA 89%/87%; p = 0.902/p = 0.901) and femoral cartilage lesions (GBCA-MRA 97%/ 99% versus Saline-MRA 97%/97%; both p > 0.999). CONCLUSION: Diagnostic accuracy and image quality of Saline-MRA and GBCA-MRA is high in assessing chondrolabral lesions underlining the potential role of non-gadolinium-based hip MRA. KEY POINTS: ⢠Image quality of Saline-MRA and GBCA-MRA was excellent for labrum, acetabular and femoral cartilage, ligamentum teres, and the capsule (all p > 0.18). ⢠The overall image contrast was lower for Saline-MRA (Saline-MRA 1.8 ± 0.5 vs. GBCA-MRA 1.1 ± 0.4; p < 0.001). ⢠Diagnostic accuracy was high for Saline-MRA and GBCA-MRA for labrum (96% vs. 94%; p > 0.999), acetabular cartilage damage (89% vs. 86%; p = 0.902), femoral cartilage damage (97% vs. 97%; p > 0.999), and extensive cartilage damage (97% vs. 93%; p = 0.904).
Asunto(s)
Artrografía , Cartílago Articular , Humanos , Femenino , Adulto , Masculino , Artrografía/métodos , Articulación de la Cadera/diagnóstico por imagen , Articulación de la Cadera/patología , Medios de Contraste/farmacología , Proyectos Piloto , Gadolinio/farmacología , Estudios Retrospectivos , Solución Salina , Cartílago Articular/diagnóstico por imagen , Cartílago Articular/patología , Acetábulo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Artroscopía/métodosRESUMEN
OBJECTIVES: To identify preoperative degenerative features on traction MR arthrography associated with failure after arthroscopic femoroacetabular impingement (FAI) surgery. METHODS: Retrospective study including 102 patients (107 hips) undergoing traction magnetic resonance arthrography (MRA) of the hip at 1.5 T and subsequent hip arthroscopic FAI surgery performed (01/2016 to 02/2020) with complete follow-up. Clinical outcomes were assessed using the International Hip Outcome Tool (iHOT-12) score. Clinical endpoint for failure was defined as an iHOT-12 of < 60 points or conversion to total hip arthroplasty. MR images were assessed by two radiologists for presence of 9 degenerative lesions including osseous, chondrolabral/ligamentum teres lesions. Uni- and multivariate Cox regression analysis was performed to assess the association between MRI findings and failure of FAI surgery. RESULTS: Of the 107 hips, 27 hips (25%) met at least one endpoint at a mean 3.7 ± 0.9 years follow-up. Osteophytic changes of femur or acetabulum (hazard ratio [HR] 2.5-5.0), acetabular cysts (HR 3.4) and extensive cartilage (HR 5.1) and labral damage (HR 5.5) > 2 h on the clockface were univariate risk factors (all p < 0.05) for failure. Three risk factors for failure were identified in multivariate analysis: Acetabular cartilage damage > 2 h on the clockface (HR 3.2, p = 0.01), central femoral osteophyte (HR 3.1, p = 0.02), and femoral cartilage damage with ligamentum teres damage (HR 3.0, p = 0.04). CONCLUSION: Joint damage detected by preoperative traction MRA is associated with failure 4 years following arthroscopic FAI surgery and yields promise in preoperative risk stratification. CLINICAL RELEVANCE STATEMENT: Evaluation of negative predictors on preoperative traction MR arthrography holds the potential to improve risk stratification based on the already present joint degeneration ahead of FAI surgery. KEY POINTS: ⢠Osteophytes, acetabular cysts, and extensive chondrolabral damage are risk factors for failure of FAI surgery. ⢠Extensive acetabular cartilage damage, central femoral osteophytes, and combined femoral cartilage and ligamentum teres damage represent independent negative predictors. ⢠Survival rates following hip arthroscopy progressively decrease with increasing prevalence of these three degenerative findings.
RESUMEN
BACKGROUND: Acetabular retroversion is observed frequently in healed Legg-Calvé-Perthes disease (LCPD). Currently, it is unknown at which stage and with what prevalence retroversion occurs because in non-ossified hips, retroversion cannot be measured with standard radiographic parameters. METHODS: In a retrospective, observational study; we examined pelvic radiographs in children with LCPD the time point of occurrence of acetabular retroversion and calculated predictive factors for retroversion. Between 2004 and 2017, we included 55 children with a mean age of 5.7 ± 2.4 years at diagnosis. The mean radiographic follow-up was 7.0 ± 4.4 years. We used two new radiographic parameters which allow assessment of acetabular version in non-ossified hips: the pelvic width index and the ilioischial angle. They are based on the fact that the pelvic morphology differs depending on the acetabular version. These parameters were compared among the four Waldenström stages and to the contralateral side. Logistic regression analysis was performed to determine predictive factors for acetabular retroversion. RESULTS: Both parameters differed significantly among the stages of Waldenström (p < 0.003 und 0.038, respectively). A more retroverted acetabulum was found in stage II and III (prevalence ranging from 54 to 56%) compared to stage I and IV (prevalence ranging from 23 to 39%). In hips of the contralateral side without LCPD, the prevalence of acetabular retroversion was 0% in all stages for both parameters. Predictive factors for retroversion were younger age at stage II and IV, collapse of the lateral pillar in stage II or a non-dysplastic hip. CONCLUSIONS: This is the first study evaluating acetabular version in children with LCPD from early stage to healing. In the developing hip, LCPD may result in acetabular retroversion and is most prevalent in the fragmentation (stage II) and early healing stage (stage III). Partial correction of acetabular retroversion can occur after healing. This has a potential clinical impact on the timing and type of surgical correction, especially in pelvic osteotomies for correction of acetabular version. LEVEL OF EVIDENCE: Level III, retrospective observational study.
Asunto(s)
Acetábulo , Enfermedad de Legg-Calve-Perthes , Niño , Humanos , Preescolar , Acetábulo/diagnóstico por imagen , Acetábulo/cirugía , Enfermedad de Legg-Calve-Perthes/diagnóstico por imagen , Estudios Retrospectivos , Cadera , Articulación de la Cadera/cirugíaRESUMEN
OBJECTIVES: To compare the prevalence of pre- and postoperative osseous deformities and intra-articular lesions in patients with persistent pain following arthroscopic femoroacetabular impingement (FAI) correction and to identify imaging findings associated with progressive cartilage damage. METHODS: Retrospective study evaluating patients with hip pain following arthroscopic FAI correction between 2010 and 2018. Pre- and postoperative imaging studies were analyzed independently by two blinded readers for osseous deformities (cam-deformity, hip dysplasia, acetabular overcoverage, femoral torsion) and intra-articular lesions (chondro-labral damage, capsular lesions). Prevalence of osseous deformities and intra-articular lesions was compared with paired t-tests/McNemar tests for continuous/dichotomous data. Association between imaging findings and progressive cartilage damage was assessed with logistic regression. RESULTS: Forty-six patients (mean age 29 ± 10 years; 30 female) were included. Postoperatively, 74% (34/46) of patients had any osseous deformity including 48% (22/46) acetabular and femoral deformities. Ninety-six percent (44/46) had an intra-articular lesion ranging from 20% (9/46) for femoral to 65% (30/46) for acetabular cartilage lesions. Prevalence of hip dysplasia increased (2 to 20%, p = 0.01) from pre- to postoperatively while prevalence of cam-deformity decreased (83 to 28%, p < 0.001). Progressive cartilage damage was detected in 37% (17/46) of patients and was associated with extensive preoperative cartilage damage > 2 h, i.e., > 60° (OR 7.72; p = 0.02) and an incremental increase in postoperative alpha angles (OR 1.18; p = 0.04). CONCLUSION: Prevalence of osseous deformities secondary to over- or undercorrrection was high. Extensive preoperative cartilage damage and higher postoperative alpha angles increase the risk for progressive degeneration. KEY POINTS: ⢠The majority of patients presented with osseous deformities of the acetabulum or femur (74%) and with intra-articular lesions (96%) on postoperative imaging. ⢠Prevalence of hip dysplasia increased (2 to 20%, p = 0.01) from pre- to postoperatively while prevalence of a cam deformity decreased (83 to 28%, p < 0.001). ⢠Progressive cartilage damage was present in 37% of patients and was associated with extensive preoperative cartilage damage > 2 h (OR 7.72; p = 0.02) and with an incremental increase in postoperative alpha angles (OR 1.18; p = 0.04).
Asunto(s)
Cartílago Articular , Pinzamiento Femoroacetabular , Luxación Congénita de la Cadera , Luxación de la Cadera , Acetábulo/patología , Acetábulo/cirugía , Adulto , Artroscopía/métodos , Cartílago Articular/diagnóstico por imagen , Cartílago Articular/patología , Femenino , Pinzamiento Femoroacetabular/diagnóstico por imagen , Pinzamiento Femoroacetabular/epidemiología , Pinzamiento Femoroacetabular/cirugía , Luxación de la Cadera/diagnóstico por imagen , Luxación de la Cadera/epidemiología , Luxación de la Cadera/cirugía , Articulación de la Cadera/diagnóstico por imagen , Articulación de la Cadera/patología , Articulación de la Cadera/cirugía , Humanos , Masculino , Dolor Postoperatorio , Prevalencia , Estudios Retrospectivos , Adulto JovenRESUMEN
The etiology of hallux rigidus remains a controversial issue in foot and ankle surgery, i.e., the relationship between metatarsus primus elevatus (MPE) and hallux rigidus. The purpose of this study was to evaluate several radiographic parameters including first metatarsal elevation in patients with hallux rigidus compared to a matched control group. A retrospective case control study was performed including 50 feet, 25 feet with and 25 feet without hallux rigidus. In the patients with hallux rigidus, the first metatarsal was more elevated than in the control group (8.3 ± 1.7 mm vs 3.0 ± 2.0 mm, p < .001) and in 60% of patients with hallux rigidus MPE was diagnosed, compared to zero patients in the control group (p < .001). The lateral 1 to 2 intermetatarsal angle was higher in patients with hallux rigidus (3.6 ± 2.5 vs -0.7 ± 2.8; p < .001). The first metatarsal declination angle was not different between the 2 groups. Intraclass correlation coefficient between 2 observers for measuring the first metatarsal elevation was 0.929 (p < .001). In the current study, increased elevation of the first metatarsal, a higher incidence of MPE and increased lateral 1 to 2 intermetatarsal angle were found in patients with hallux rigidus compared to the control group. These findings support the theory of an association between MPE and hallux rigidus. Further high reliability of first metatarsal elevation measurement was found in our study.
Asunto(s)
Deformidades del Pie , Hallux Rigidus , Hallux Valgus , Huesos Metatarsianos , Estudios de Casos y Controles , Hallux Rigidus/diagnóstico por imagen , Hallux Rigidus/cirugía , Hallux Valgus/diagnóstico por imagen , Humanos , Huesos Metatarsianos/diagnóstico por imagen , Metatarso/diagnóstico por imagen , Radiografía , Reproducibilidad de los Resultados , Estudios RetrospectivosRESUMEN
Background Often used for T1 mapping of hip cartilage, three-dimensional (3D) dual-flip-angle (DFA) techniques are highly sensitive to flip angle variations related to B1 inhomogeneities. The authors hypothesized that 3D magnetization-prepared 2 rapid gradient-echo (MP2RAGE) MRI would help provide more accurate T1 mapping of hip cartilage at 3.0 T than would 3D DFA techniques. Purpose To compare 3D MP2RAGE MRI with 3D DFA techniques using two-dimensional (2D) inversion recovery T1 mapping as a standard of reference for hip cartilage T1 mapping in phantoms, healthy volunteers, and participants with hip pain. Materials and Methods T1 mapping at 3.0 T was performed in phantoms and in healthy volunteers using 3D MP2RAGE MRI and 3D DFA techniques with B1 field mapping for flip angle correction. Participants with hip pain prospectively (July 2019-January 2020) underwent indirect MR arthrography (with intravenous administration of 0.2 mmol/kg of gadoterate meglumine), including 3D MP2RAGE MRI. A 2D inversion recovery-based sequence served as a T1 reference in phantoms and in participants with hip pain. In healthy volunteers, cartilage T1 was compared between 3D MP2RAGE MRI and 3D DFA techniques. Paired t tests and Bland-Altman analysis were performed. Results Eleven phantoms, 10 healthy volunteers (median age, 27 years; range, 26-30 years; five men), and 20 participants with hip pain (mean age, 34 years ± 10 [standard deviation]; 17 women) were evaluated. In phantoms, T1 bias from 2D inversion recovery was lower for 3D MP2RAGE MRI than for 3D DFA techniques (mean, 3 msec ± 11 vs 253 msec ± 85; P < .001), and, unlike 3D DFA techniques, the deviation found with MP2RAGE MRI did not correlate with increasing B1 deviation. In healthy volunteers, regional cartilage T1 difference (109 msec ± 163; P = .008) was observed only for the 3D DFA technique. In participants with hip pain, the mean T1 bias of 3D MP2RAGE MRI from 2D inversion recovery was -23 msec ± 31 (P < .001). Conclusion Compared with three-dimensional (3D) dual-flip-angle techniques, 3D magnetization-prepared 2 rapid gradient-echo MRI enabled more accurate T1 mapping of hip cartilage, was less affected by B1 inhomogeneities, and showed high accuracy against a T1 reference in participants with hip pain. © RSNA, 2021.
Asunto(s)
Cartílago Articular/diagnóstico por imagen , Articulación de la Cadera/diagnóstico por imagen , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Medios de Contraste , Femenino , Gadolinio DTPA , Voluntarios Sanos , Humanos , Masculino , Dimensión del Dolor , Fantasmas de Imagen , Estudios ProspectivosRESUMEN
OBJECTIVES: Imaging assessment for the clinical management of femoroacetabular impingement (FAI) is controversial because of a paucity of evidence-based guidance and notable variability among practitioners. Hence, expert consensus is needed because standardised imaging assessment is critical for clinical practice and research. We aimed to establish expert-based statements on FAI imaging by using formal methods of consensus building. METHODS: The Delphi method was used to formally derive consensus among 30 panel members from 13 countries. Forty-four questions were agreed upon, and relevant seminal literature was circulated and classified in major topics to produce answering statements. The level of evidence was noted for all statements, and panel members were asked to score their level of agreement (0-10). This is the second part of a three-part consensus series and focuses on 'General issues' and 'Parameters and reporting'. RESULTS: Forty-seven statements were generated and group consensus was reached for 45. Twenty-five statements pertaining to 'General issues' (9 addressing diagnosis, differential diagnosis, and postoperative imaging) and 'Parameters and reporting' (16 addressing femoral/acetabular parameters) were produced. CONCLUSIONS: The available evidence was reviewed critically, recommended criteria for diagnostic imaging highlighted, and the roles/values of different imaging parameters assessed. Radiographic evaluation (AP pelvis and a Dunn 45° view) is the cornerstone of hip-imaging assessment and the minimum imaging study that should be performed when evaluating adult patients for FAI. In most cases, cross-sectional imaging is warranted because MRI is the 'gold standard' imaging modality for the comprehensive evaluation, differential diagnosis assessment, and FAI surgical planning. KEY POINTS: ⢠Diagnostic imaging for FAI is not standardised due to scarce evidence-based guidance on which imaging modalities and diagnostic criteria/parameters should be used. ⢠Radiographic evaluation is the cornerstone of hip assessment and the minimum study that should be performed when assessing suspected FAI. Cross-sectional imaging is justified in most cases because MRI is the 'gold standard' modality for comprehensive FAI evaluation. ⢠For acetabular morphology, coverage (Wiberg's angle and acetabular index) and version (crossover, posterior wall, and ischial spine signs) should be assessed routinely. On the femoral side, the head-neck junction morphology (α° and offset), neck morphology (NSA), and torsion should be assessed.
Asunto(s)
Pinzamiento Femoroacetabular , Acetábulo , Adulto , Pinzamiento Femoroacetabular/diagnóstico por imagen , Fémur , Articulación de la Cadera/diagnóstico por imagen , Humanos , Imagen por Resonancia MagnéticaRESUMEN
OBJECTIVES: Imaging diagnosis of femoroacetabular impingement (FAI) remains controversial due to a lack of high-level evidence, leading to significant variability in patient management. Optimizing protocols and technical details is essential in FAI imaging, although challenging in clinical practice. The purpose of this agreement is to establish expert-based statements on FAI imaging, using formal consensus techniques driven by relevant literature review. Recommendations on the selection and use of imaging techniques for FAI assessment, as well as guidance on relevant radiographic and MRI classifications, are provided. METHODS: The Delphi method was used to assess agreement and derive consensus among 30 panel members (musculoskeletal radiologists and orthopedic surgeons). Forty-four questions were agreed on and classified into five major topics and recent relevant literature was circulated, in order to produce answering statements. The level of evidence was assessed for all statements and panel members scored their level of agreement with each statement during 4 Delphi rounds. Either "group consensus," "group agreement," or "no agreement" was achieved. RESULTS: Forty-seven statements were generated and group consensus was reached for 45. Twenty-two statements pertaining to "Imaging techniques" were generated. Eight statements on "Radiographic assessment" and 12 statements on "MRI evaluation" gained consensus. No agreement was reached for the 2 "Ultrasound" related statements. CONCLUSION: The first international consensus on FAI imaging was developed. Researchers and clinicians working with FAI and hip-related pain may use these recommendations to guide, develop, and implement comprehensive, evidence-based imaging protocols and classifications. KEY POINTS: ⢠Radiographic evaluation is recommended for the initial assessment of FAI, while MRI with a dedicated protocol is the gold standard imaging technique for the comprehensive evaluation of this condition. ⢠The MRI protocol for FAI evaluation should include unilateral small FOV with radial imaging, femoral torsion assessment, and a fluid sensitive sequence covering the whole pelvis. ⢠The definite role of other imaging methods in FAI, such as ultrasound or CT, is still not well defined.
Asunto(s)
Pinzamiento Femoroacetabular , Consenso , Pinzamiento Femoroacetabular/diagnóstico por imagen , Cadera , Articulación de la Cadera/diagnóstico por imagen , Humanos , Imagen por Resonancia MagnéticaRESUMEN
OBJECTIVE. Imaging plays a critical role in the assessment of patients with femoroacetabular impingement (FAI). With better understanding of the underlying pathomechanics and advances in joint-preserving surgery, there is an increasing need to define the most appropriate imaging workup. The purpose of this article is to provide guidance on best practices for imaging of patients with FAI in light of recent advances in corrective FAI surgery. CONCLUSION. Pelvic radiography with dedicated hip projections is the basis of the diagnostic workup of patients with suspected FAI to assess arthritic changes and acetabular coverage and to screen for cam deformities. Chondrolabral lesions should be evaluated with unenhanced MRI or MR arthrography. The protocol should include a large-FOV fluid-sensitive sequence to exclude conditions that can mimic or coexist with FAI, radial imaging to accurately determine the presence of a cam deformity, and imaging of the distal femoral condyles for measurement of femoral torsion. CT remains a valuable tool for planning of complex surgical corrections. Advanced imaging, such as 3D simulation, biochemical MRI, and MR arthrography with application of leg traction, has great potential to improve surgical decision-making. Further research is needed to assess the added clinical value of these techniques.
Asunto(s)
Artrografía/métodos , Pinzamiento Femoroacetabular/diagnóstico por imagen , Cuello Femoral/diagnóstico por imagen , Guías de Práctica Clínica como Asunto , Acetábulo/diagnóstico por imagen , Adulto , Diagnóstico Diferencial , Medicina Basada en la Evidencia , Femenino , Pinzamiento Femoroacetabular/complicaciones , Pinzamiento Femoroacetabular/cirugía , Cabeza Femoral/diagnóstico por imagen , Luxación Congénita de la Cadera/diagnóstico por imagen , Articulación de la Cadera/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Tratamientos Conservadores del Órgano/métodos , Osteoartritis de la Cadera/diagnóstico por imagen , Osteoartritis de la Cadera/etiología , Tomografía Computarizada por Rayos X/métodos , Anomalía Torsional/diagnóstico por imagen , Tracción/métodos , Adulto JovenRESUMEN
BACKGROUND: Cam morphologies seem to develop with an increased prevalence in adolescent boys performing high-impact sports. The crucial question is at what age the cam morphology actually develops and whether there is an association with an aberration of the shape of the growth plate at the cam morphology site. QUESTIONS/PURPOSES: (1) What is the frequency of cam morphologies in adolescent ice hockey players, and when do they appear? (2) Is there an association between an extension of the physeal growth plate and the development of a cam morphology? (3) How often do these players demonstrate clinical findings like pain and lack of internal rotation? METHODS: A prospective, longitudinal MRI study was done to monitor the proximal femoral development and to define the appearance of cam morphologies in adolescent ice hockey players during the final growth spurt. Young ice hockey players from the local boys' league up to the age of 13 years (mean age 12 ± 0.5 years) were invited to participate. From 35 players performing on the highest national level, 25 boys and their parents consented to participate. None of these 25 players had to be excluded for known disease or previous surgery or hip trauma. At baseline examination as well as 1.5 and 3 years later, we performed a prospective noncontrast MRI scan and a clinical examination. The three-dimensional morphology of the proximal femur was assessed by one of the authors using radial images of the hip in a clockwise manner. The two validated parameters were: (1) the alpha angle for head asphericity (abnormal > 60°) and (2) the epiphyseal extension for detecting an abnormality in the shape of the capital physis and a potential correlation at the site of the cam morphology. The clinical examination was performed by one of the authors evaluating (1) internal rotation in 90° of hip and knee flexion and (2) hip pain during the anterior impingement test. RESULTS: Cam morphologies were most apparent at the 1.5-year follow-up interval (10 of 25; baseline versus 1.5-year follow-up: p = 0.007) and a few more occurred between 1.5 and 3 years (12 of 23; 1.5-year versus 3-year follow-up: p = 0.14). At 3-year follow-up, there was a positive correlation between increased epiphyseal extension and a high alpha angle at the anterosuperior quadrant (1 o'clock to 3 o'clock) (Spearman correlation coefficient = 0.341; p < 0.003). The prevalence of pain on the impingement test and/or restricted internal rotation less than 20° increased most between 1.5-year (1 of 25) and the 3-year follow-up (6 of 22; 1.5-year versus 3-year follow-up: p = 0.02). CONCLUSION: Our data suggest that a cam morphology develops early during the final growth spurt of the femoral head in adolescent ice hockey players predominantly between 13 to 16 years of age. A correlation between an increased extension of the growth plate and an increased alpha angle at the site of the cam morphology suggests a potential underlying growth disturbance. This should be further followed by high-resolution or biochemical MRI methods. Considering the high number of cam morphologies that correlated with abnormal clinical findings, we propose that adolescents performing high-impact sports should be screened for signs of cam impingement, such as by asking about hip pain and/or examining the patient for limited internal hip rotation. LEVEL OF EVIDENCE: Level I, prognostic study.
Asunto(s)
Desarrollo del Adolescente , Desarrollo Infantil , Pinzamiento Femoroacetabular/diagnóstico por imagen , Lesiones de la Cadera/diagnóstico por imagen , Articulación de la Cadera/diagnóstico por imagen , Hockey/lesiones , Imagen por Resonancia Magnética , Adolescente , Factores de Edad , Artralgia/diagnóstico , Artralgia/etiología , Artralgia/fisiopatología , Fenómenos Biomecánicos , Niño , Pinzamiento Femoroacetabular/etiología , Pinzamiento Femoroacetabular/fisiopatología , Lesiones de la Cadera/etiología , Lesiones de la Cadera/fisiopatología , Articulación de la Cadera/crecimiento & desarrollo , Humanos , Estudios Longitudinales , Masculino , Dimensión del Dolor , Valor Predictivo de las Pruebas , Estudios Prospectivos , Rango del Movimiento ArticularRESUMEN
BACKGROUND: Although femoral retroversion has been linked to the onset of slipped capital femoral epiphysis (SCFE), and may result from a rotation of the femoral epiphysis around the epiphyseal tubercle leading to femoral retroversion, femoral version has rarely been described in patients with SCFE. Furthermore, the prevalence of actual femoral retroversion and the effect of different measurement methods on femoral version angles has yet to be studied in SCFE. QUESTIONS/PURPOSES: (1) Do femoral version and the prevalence of femoral retroversion differ between hips with SCFE and the asymptomatic contralateral side? (2) How do the mean femoral version angles and the prevalence of femoral retroversion change depending on the measurement method used? (3) What is the interobserver reliability and intraobserver reproducibility of these measurement methods? METHODS: For this retrospective, controlled, single-center study, we reviewed our institutional database for patients who were treated for unilateral SCFE and who had undergone a pelvic CT scan. During the period in question, the general indication for obtaining a CT scan was to define the surgical strategy based on the assessment of deformity severity in patients with newly diagnosed SCFE or with previous in situ fixation. After applying prespecified inclusion and exclusion criteria, we included 79 patients. The mean age was 15 ± 4 years, 48% (38 of 79) of the patients were male, and 56% (44 of 79) were obese (defined as a BMI > 95th percentile (mean BMI 34 ± 9 kg/m2). One radiology resident (6 years of experience) measured femoral version of the entire study group using five different methods. Femoral neck version was measured as the orientation of the femoral neck. Further measurement methods included the femoral head's center and differed regarding the level of landmarks for the proximal femoral reference axis. From proximal to distal, this included the most-proximal methods (Lee et al. and Reikerås et al.) and most-distal methods (Tomczak et al. and Murphy et al.). Most proximally (Lee et al. method), we used the most cephalic junction of the greater trochanter as the landmark and, most distally, we used the center base of the femoral neck superior to the lesser trochanter (Murphy et al.). The orientation of the distal femoral condyles served as the distal reference axis for all five measurement methods. All five methods were compared side-by-side (involved versus uninvolved hip), and comparisons among all five methods were performed using paired t-tests. The prevalence of femoral retroversion (< 0°) was compared using a chi-square test. A subset of patients was measured twice by the first observer and by a second orthopaedic resident (2 years of experience) to assess intraobserver reproducibility and interobserver reliability; for this assessment, we used intraclass correlation coefficients. RESULTS: The mean femoral neck version was lower in hips with SCFE than in the contralateral side (-2° ± 13° versus 7° ± 11°; p < 0.001). This yielded a mean side-by side difference of -8° ± 11° (95% CI -11° to -6°; p < 0.001) and a higher prevalence of femoral retroversion in hips with SCFE (58% [95% CI 47% to 69%]; p < 0.001) than on the contralateral side (29% [95% CI 19% to 39%]). These differences between hips with SCFE and the contralateral side were higher and ranged from -17° ± 11° (95% CI -20° to -15°; p < 0.001) based on the method of Tomczak et al. to -22° ± 13° (95% CI -25° to -19°; p < 0.001) according to the method of Murphy et al. The mean overall femoral version angles increased for hips with SCFE using more-distal landmarks compared with more-proximal landmarks. The prevalence of femoral retroversion was higher in hips with SCFE for the proximal methods of Lee et al. and Reikerås et al. (91% [95% CI 85% to 97%] and 84% [95% CI 76% to 92%], respectively) than for the distal measurement methods of Tomczak et al. and Murphy et al. (47% [95% CI 36% to 58%] and 60% [95% CI 49% to 71%], respectively [all p < 0.001]). We detected mean differences ranging from -19° to 4° (all p < 0.005) for 8 of 10 pairwise comparisons in hips with SCFE. Among these, the greatest differences were between the most-proximal methods and the more-distal methods, with a mean difference of -19° ± 7° (95% CI -21° to -18°; p < 0.001), comparing the methods of Lee et al. and Tomczak et al. In hips with SCFE, we found excellent agreement (intraclass correlation coefficient [ICC] > 0.80) for intraobserver reproducibility (reader 1, ICC 0.93 to 0.96) and interobserver reliability (ICC 0.95 to 0.98) for all five measurement methods. Analogously, we found excellent agreement (ICC > 0.80) for intraobserver reproducibility (reader 1, range 0.91 to 0.96) and interobserver reliability (range 0.89 to 0.98) for all five measurement methods in healthy contralateral hips. CONCLUSION: We showed that femoral neck version is asymmetrically decreased in unilateral SCFE, and that differences increase when including the femoral head's center. Thus, to assess the full extent of an SCFE deformity, femoral version measurements should consider the position of the displaced epiphysis. The prevalence of femoral retroversion was high in patients with SCFE and increased when using proximal anatomic landmarks. Since the range of femoral version angles was wide, femoral version cannot be predicted in a given hip and must be assessed individually. Based on these findings, we believe it is worthwhile to add evaluation of femoral version to the diagnostic workup of children with SCFE. Doing so may better inform surgeons as they contemplate when to use isolated offset correction or to perform an additional femoral osteotomy for SCFE correction based on the severity of the slip and the rotational deformity. To facilitate communication among physicians and for the design of future studies, we recommend consistently reporting the applied measurement technique. LEVEL OF EVIDENCE: Level III, prognostic study.
Asunto(s)
Retroversión Ósea/diagnóstico por imagen , Fémur/diagnóstico por imagen , Articulación de la Cadera/diagnóstico por imagen , Epífisis Desprendida de Cabeza Femoral/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Adolescente , Fenómenos Biomecánicos , Retroversión Ósea/fisiopatología , Niño , Bases de Datos Factuales , Epífisis/diagnóstico por imagen , Femenino , Fémur/fisiopatología , Articulación de la Cadera/fisiopatología , Humanos , Masculino , Variaciones Dependientes del Observador , Valor Predictivo de las Pruebas , Rango del Movimiento Articular , Reproducibilidad de los Resultados , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Epífisis Desprendida de Cabeza Femoral/fisiopatología , Adulto JovenRESUMEN
BACKGROUND: Arthroscopic surgery for femoroacetabular impingement syndrome (FAI) is known to lead to self-reported symptom improvement. In the context of surgical interventions with known contextual effects and no true sham comparator trials, it is important to ascertain outcomes that are less susceptible to placebo effects. The primary aim of this trial was to determine if study participants with FAI who have hip arthroscopy demonstrate greater improvements in delayed gadolinium-enhanced magnetic resonance imaging (MRI) of cartilage (dGEMRIC) index between baseline and 12 months, compared to participants who undergo physiotherapist-led management. METHODS: Multi-centre, pragmatic, two-arm superiority randomised controlled trial comparing physiotherapist-led management to hip arthroscopy for FAI. FAI participants were recruited from participating orthopaedic surgeons clinics, and randomly allocated to receive either physiotherapist-led conservative care or surgery. The surgical intervention was arthroscopic FAI surgery. The physiotherapist-led conservative management was an individualised physiotherapy program, named Personalised Hip Therapy (PHT). The primary outcome measure was change in dGEMRIC score between baseline and 12 months. Secondary outcomes included a range of patient-reported outcomes and structural measures relevant to FAI pathoanatomy and hip osteoarthritis development. Interventions were compared by intention-to-treat analysis. RESULTS: Ninety-nine participants were recruited, of mean age 33 years and 58% male. Primary outcome data were available for 53 participants (27 in surgical group, 26 in PHT). The adjusted group difference in change at 12 months in dGEMRIC was -59 ms (95%CI - 137.9 to - 19.6) (p = 0.14) favouring PHT. Hip-related quality of life (iHOT-33) showed improvements in both groups with the adjusted between-group difference at 12 months showing a statistically and clinically important improvement in arthroscopy of 14 units (95% CI 5.6 to 23.9) (p = 0.003). CONCLUSION: The primary outcome of dGEMRIC showed no statistically significant difference between PHT and arthroscopic hip surgery at 12 months of follow-up. Patients treated with surgery reported greater benefits in symptoms at 12 months compared to PHT, but these benefits are not explained by better hip cartilage metabolism. TRIAL REGISTRATION DETAILS: Australia New Zealand Clinical Trials Registry reference: ACTRN12615001177549 . Trial registered 2/11/2015.
Asunto(s)
Pinzamiento Femoroacetabular , Fisioterapeutas , Adulto , Artroscopía , Australia , Femenino , Pinzamiento Femoroacetabular/diagnóstico por imagen , Pinzamiento Femoroacetabular/cirugía , Articulación de la Cadera/diagnóstico por imagen , Articulación de la Cadera/cirugía , Humanos , Masculino , Calidad de Vida , Resultado del TratamientoRESUMEN
Background Assessment of femoral torsion at preoperative hip imaging is commonly recommended. However, it is unclear whether MRI is as accurate as CT and how different methods affect femoral torsion measurements. Purpose To compare MRI- and CT-based assessment of femoral torsion by using four commonly used measurement methods in terms of agreement, reproducibility, and reliability and to compare femoral torsion angles between the four different measurement methods. Materials and Methods This retrospective study evaluated patients with hip pain who underwent CT and 3-T MRI of the hip including sequences of the pelvis and distal condyles between May 2017 and June 2018. The four measurement methods differed regarding the landmark levels for the proximal femoral reference axis and included measurements at the level of the greater trochanter, femoral neck, base of the femoral neck, and level of the lesser trochanter. Intraclass correlation coefficients (ICCs) were calculated, and Bland-Altman analysis was performed. Results Forty-five patients (mean age ± standard deviation, 19 years ± 5; 27 female) and 57 hips were evaluated. Inter- and intrarater reliability were excellent for each of the four CT- and MRI-based measurement methods (ICC range, 0.97-0.99). Mean difference between CT- and MRI-based measurement ranged from 0.3° ± 3.4 (P = .58) to 2.1° ± 4.1 (P < .001). Differences between CT and MRI were within the corresponding ICC variation for all four measurement methods. Mean torsion angles were greater by 17.6° for CT and 18.7° for MRI (all P < .001) between the most proximal to the most distal measurement methods. Conclusion MRI- and CT-based femoral torsion measurements showed high agreement and comparable reliability and reproducibility but were dependent on the level of selected landmarks used to define the proximal reference axis. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Zoga in this issue.
Asunto(s)
Fémur , Imagen por Resonancia Magnética/métodos , Tomografía Computarizada por Rayos X/métodos , Adolescente , Adulto , Femenino , Fémur/anatomía & histología , Fémur/diagnóstico por imagen , Fémur/fisiología , Humanos , Masculino , Rango del Movimiento Articular/fisiología , Adulto JovenRESUMEN
The original version of this article, published on 14 May 2020, unfortunately contained a mistake.
RESUMEN
OBJECTIVES: Imaging assessment for the clinical management of femoroacetabular impingement (FAI) syndrome remains controversial because of a paucity of evidence-based guidance and notable variability in clinical practice, ultimately requiring expert consensus. The purpose of this agreement is to establish expert-based statements on FAI imaging, using formal techniques of consensus building. METHODS: A validated Delphi method and peer-reviewed literature were used to formally derive consensus among 30 panel members (21 musculoskeletal radiologists and 9 orthopaedic surgeons) from 13 countries. Forty-four questions were agreed on, and recent relevant seminal literature was circulated and classified in five major topics ('General issues', 'Parameters and reporting', 'Radiographic assessment', 'MRI' and 'Ultrasound') in order to produce answering statements. The level of evidence was noted for all statements, and panel members were asked to score their level of agreement with each statement (0 to 10) during iterative rounds. Either 'consensus', 'agreement' or 'no agreement' was achieved. RESULTS: Forty-seven statements were generated, and group consensus was reached for 45 (95.7%). Seventeen of these statements were selected as most important for dissemination in advance. There was no agreement for the two statements pertaining to 'Ultrasound'. CONCLUSION: Radiographic evaluation is the cornerstone of hip evaluation. An anteroposterior pelvis radiograph and a Dunn 45° view are recommended for the initial assessment of FAI although MRI with a dedicated protocol is the gold standard imaging technique in this setting. The resulting consensus can serve as a tool to reduce variability in clinical practices and guide further research for the clinical management of FAI. KEY POINTS: ⢠FAI imaging literature is extensive although often of low level of evidence. ⢠Radiographic evaluation with a reproducible technique is the cornerstone of hip imaging assessment. ⢠MRI with a dedicated protocol is the gold standard imaging technique for FAI assessment.
Asunto(s)
Consenso , Pinzamiento Femoroacetabular/diagnóstico , Imagen por Resonancia Magnética/métodos , HumanosRESUMEN
BACKGROUND: Torsional deformities of the femur include femoral retrotorsion and increased femoral torsion, which are possible causes for hip pain and osteoarthritis. For patients with femoroacetabular impingement (FAI), torsional deformities of the femur represent an additional cause of FAI in addition to cam and pincer-type FAI. OBJECTIVES: The aim of this article is to provide an overview of measurement techniques and normal values of femoral torsion. The clinical presentation, possible combinations and surgical therapy of patients with torsional deformities of the femur will be discussed. METHODS: For measurement of femoral torsion, CT or MRI represent the method of choice. The various definitions should be taken into account, because they can lead to differing values and misdiagnosis. This is the case especially for patients with high femoral torsion. Dynamic 3D impingement simulation using 3D-CT can help to differentiate between intra und extra-articular FAI. RESULTS AND DISCUSSION: Femoral retrotorsion (< 5°) can lead to anterior intra- and extraarticular (subspine) FAI, between the anterior iliac inferior spine (AIIS) and the proximal femur. Increased femoral torsion (> 35°) can lead to posterior intra- and extra-articular ischiofemoral FAI, between the lesser/greater trochanter and the ischial tuberosity. During clinical examination, a patient with femoral retrotorsion exhibits loss of internal rotation and a positive anterior impingement test. Hips with increased femoral torsion show high internal rotation if examined in prone position and have a positive FABER and posterior impingement test. During surgical therapy for patients with torsional deformities, intra and extra-articular causes for FAI in addition to cam and pincer-deformities should be considered. In addition to hip arthroscopy and surgical hip dislocation, also femoral rotational or derotational osteotomies should be evaluated during surgical planning of these patients.
Asunto(s)
Artroscopía/métodos , Pinzamiento Femoroacetabular/diagnóstico por imagen , Fémur/diagnóstico por imagen , Luxación de la Cadera/cirugía , Imagenología Tridimensional , Desviación Ósea/etiología , Luxación de la Cadera/complicaciones , Luxación de la Cadera/diagnóstico por imagen , Articulación de la Cadera/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Rango del Movimiento Articular , Estudios Retrospectivos , Anomalía Torsional/diagnóstico por imagen , Anomalía Torsional/etiologíaRESUMEN
Over the last 2 decades, the definition of pathomechanical concepts that link osseous deformities to chondrolabral damage and expose young and active patients to the risk of early osteoarthritis has led to a tremendous increase in the number of joint-preserving surgeries performed. The rise in arthroscopic procedures has led to an increasing demand for comprehensive preoperative magnetic resonance imaging (MRI) assessment of the hip joint. This includes conventional MRI for the assessment of extra-articular and periarticular pathologies such as greater trochanteric pain, deep gluteal pain syndrome, and sports injuries. Magnetic resonance arthrography with or without traction is reserved for the accurate evaluation of deformities associated with impingement and hip instability and for detecting the resulting intra-articular lesions. This article summarizes the current standard imaging techniques that the radiologist should know. It also explores the potential of computer-assisted analysis of three-dimensional MRI for virtual impingement simulation and volumetric analysis of cartilage composition and geometry.
Asunto(s)
Artrografía/métodos , Articulación de la Cadera/diagnóstico por imagen , Artropatías/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , HumanosRESUMEN
BACKGROUND: Correct quantification of femoral torsion is crucial to diagnose torsional deformities, make an indication for surgical treatment, or plan the amount of correction. However, no clear evaluation of different femoral torsion measurement methods for hips with excessive torsion has been performed to date. QUESTIONS/PURPOSES: (1) How does CT-based measurement of femoral torsion differ among five commonly used measurement methods? (2) Do differences in femoral torsion among measurement methods increase in hips with excessive femoral torsion? (3) What is the reliability and reproducibility of each of the five torsion measurement methods? METHODS: Between March and August 2016, we saw 86 new patients (95 hips) with hip pain and physical findings suggestive for femoroacetabular impingement at our outpatient tertiary clinic. Of those, 56 patients (62 hips) had a pelvic CT scan including the distal femur for measurement of femoral torsion. We excluded seven patients (seven hips) with previous hip surgery, two patients (two hips) with sequelae of Legg-Calvé-Perthes disease, and one patient (one hip) with a posttraumatic deformity. This resulted in 46 patients (52 hips) in the final study group with a mean age of 28 ± 9 years (range, 17-51 years) and 27 female patients (59%). Torsion was compared among five commonly used assessment measures, those of Lee et al., Reikerås et al., Jarrett et al., Tomczak et al., and Murphy et al. They differed regarding the level of the anatomic landmark for the proximal femoral neck axis; the method of Lee had the most proximal definition followed by the methods of Reikerås, Jarrett, and Tomczak at the base of the femoral neck and the method of Murphy with the most distal definition at the level of the lesser trochanter. The definition of the femoral head center and of the distal reference was consistent for all five measurement methods. We used the method described by Murphy et al. as our baseline measurement method for femoral torsion because it reportedly most closely reflects true anatomic femoral torsion. With this method we found a mean femoral torsion of 28 ± 13°. Mean values of femoral torsion were compared among the five methods using multivariate analysis of variance. All differences between two of the measurement methods were plotted over the entire range of femoral torsion to evaluate a possible increase in hips with excessive femoral torsion. All measurements were performed by two blinded orthopaedic residents (FS, TDL) at two different occasions to measure intraobserver reproducibility and interobserver reliability using intraclass correlation coefficients (ICCs). RESULTS: We found increasing values for femoral torsion using measurement methods with a more distal definition of the proximal femoral neck axis: Lee et al. (most proximal definition: 11° ± 11°), Reikerås et al. (15° ± 11°), Jarrett et al. (19° ± 11°), Tomczak et al. (25° ± 12°), and Murphy et al. (most distal definition: 28° ± 13°). The most pronounced difference was found for the comparison between the methods of Lee et al. and Murphy et al. with a mean difference of 17° ± 5° (95% confidence interval, 16°-19°; p < 0.001). For six of 10 possible pairwise comparisons, the difference between two methods increased with increasing femoral torsion and decreased with decreasing femoral torsion. We observed a fair-to-strong linear correlation (R range, 0.306-0.622; all p values < 0.05) for any method compared with the Murphy method and for the Reikerås and Jarrett methods when compared with the Tomczak method. For example, a hip with 10° of femoral antetorsion according Murphy had a torsion of 1° according to Reikerås, which corresponds to a difference of 9°. This difference increased to 20° in hips with excessive torsion; for example, a hip with 60° of torsion according to Murphy had 40° of torsion according to Reikerås. All five methods for measuring femoral torsion showed excellent agreement for both intraobserver reproducibility (ICC, 0.905-0.973) and interobserver reliability (ICC, 0.938-0.969). CONCLUSIONS: Because the quantification of femoral torsion in hips with excessive femoral torsion differs considerably among measurement methods, it is crucial to state the applied methods when reporting femoral torsion and to be consistent regarding the used measurement method. These differences have to be considered for surgical decision-making and planning the degree of correction. Neglecting the differences among measurement methods to quantify femoral torsion can potentially lead to misdiagnosis and surgical planning errors. LEVEL OF EVIDENCE: Level IV, diagnostic study.