Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 88(1): e0158321, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34644162

RESUMEN

Distinct Burkholderia strains were isolated from soil samples collected in tropical northern Australia (Northern Territory and the Torres Strait Islands, Queensland). Phylogenetic analysis of 16S rRNA and whole genome sequences revealed these strains were distinct from previously described Burkholderia species and assigned them to two novel clades within the B. pseudomallei complex (Bpc). Because average nucleotide identity and digital DNA-DNA hybridization calculations are consistent with these clades representing distinct species, we propose the names Burkholderia mayonis sp. nov. and Burkholderia savannae sp. nov. Strains assigned to B. mayonis sp. nov. include type strain BDU6T (=TSD-80; LMG 29941; ASM152374v2) and BDU8. Strains assigned to B. savannae sp. nov. include type strain MSMB266T (=TSD-82; LMG 29940; ASM152444v2), MSMB852, BDU18, and BDU19. Comparative genomics revealed unique coding regions for both putative species, including clusters of orthologous genes associated with phage. Type strains of both B. mayonis sp. nov. and B. savannae sp. nov. yielded biochemical profiles distinct from each other and from other species in the Bpc, and profiles also varied among strains within B. mayonis sp. nov. and B. savannae sp. nov. Matrix-assisted laser desorption ionization time-of-flight (MLST) analysis revealed a B. savannae sp. nov. cluster separate from other species, whereas B. mayonis sp. nov. strains did not form a distinct cluster. Neither B. mayonis sp. nov. nor B. savannae sp. nov. caused mortality in mice when delivered via the subcutaneous route. The addition of B. mayonis sp. nov. and B. savannae sp. nov. results in a total of eight species currently within the Bpc. IMPORTANCEBurkholderia species can be important sources of novel natural products, and new species are of interest to diverse scientific disciplines. Although many Burkholderia species are saprophytic, Burkholderia pseudomallei is the causative agent of the disease melioidosis. Understanding the genomics and virulence of the closest relatives to B. pseudomallei, i.e., the other species within the B. pseudomallei complex (Bpc), is important for identifying robust diagnostic targets specific to B. pseudomallei and for understanding the evolution of virulence in B. pseudomallei. Two proposed novel species, B. mayonis sp. nov. and B. savannae sp. nov., were isolated from soil samples collected from multiple locations in northern Australia. The two proposed species belong to the Bpc but are phylogenetically distinct from all other members of this complex. The addition of B. mayonis sp. nov. and B. savannae sp. nov. results in a total of eight species within this significant complex of bacteria that are available for future studies.


Asunto(s)
Burkholderia pseudomallei , Burkholderia , Animales , Técnicas de Tipificación Bacteriana , Burkholderia/genética , Burkholderia pseudomallei/genética , ADN Bacteriano/genética , Ratones , Tipificación de Secuencias Multilocus , Northern Territory , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
2.
Antonie Van Leeuwenhoek ; 113(10): 1531-1537, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32699967

RESUMEN

Atypical brucellae show deviant phenotypes and/or genotypes. Besides Brucella inopinata, B. microti and B. vulpis, atypical strains have been described infecting humans, rodents, amphibians and fish. They represent potential zoonotic agents. Here, we provide evidence that reptiles as the remaining poikilothermic vertebrate class also represent susceptible hosts for atypical Brucella.


Asunto(s)
Brucella/clasificación , Brucella/fisiología , Especificidad del Huésped , Lagartos/microbiología , Animales , Femenino , Genoma Bacteriano , Genómica/métodos , Tipificación Molecular , Filogenia
3.
Infection ; 47(5): 863-868, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31073709

RESUMEN

In July 2018, brucellosis was diagnosed in a German patient without a travel history to regions endemic for Brucella. Microbiological analysis, including whole-genome sequencing, revealed Brucella suis biovar 1 as the etiologic agent. Core-genome-based multilocus sequence-typing analysis placed the isolate in close proximity to strains originating from Argentina. Notably, despite a strong IgM response, the patient did not develop Brucella-specific IgG antibodies during infection. Here, we describe the clinical course of infection, the extensive epidemiological investigations, and discuss possible routes of transmission.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Brucella suis/aislamiento & purificación , Brucelosis/líquido cefalorraquídeo , Brucelosis/diagnóstico por imagen , Cefalea/microbiología , Brucella suis/genética , Fiebre/microbiología , Genotipo , Alemania , Hepatomegalia/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Tipificación de Secuencias Multilocus , Filogenia , Ultrasonografía , Secuenciación Completa del Genoma
4.
Mol Biol Evol ; 33(11): 2911-2923, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27578768

RESUMEN

The Justinianic Plague, which started in the sixth century and lasted to the mid eighth century, is thought to be the first of three historically documented plague pandemics causing massive casualties. Historical accounts and molecular data suggest the bacterium Yersinia pestis as its etiological agent. Here we present a new high-coverage (17.9-fold) Y. pestis genome obtained from a sixth-century skeleton recovered from a southern German burial site close to Munich. The reconstructed genome enabled the detection of 30 unique substitutions as well as structural differences that have not been previously described. We report indels affecting a lacl family transcription regulator gene as well as nonsynonymous substitutions in the nrdE, fadJ, and pcp genes, that have been suggested as plague virulence determinants or have been shown to be upregulated in different models of plague infection. In addition, we identify 19 false positive substitutions in a previously published lower-coverage Y. pestis genome from another archaeological site of the same time period and geographical region that is otherwise genetically identical to the high-coverage genome sequence reported here, suggesting low-genetic diversity of the plague during the sixth century in rural southern Germany.


Asunto(s)
ADN Antiguo/análisis , Peste/microbiología , Yersinia pestis/genética , Secuencia de Bases , ADN Bacteriano/genética , Variación Genética , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Pandemias , Virulencia/genética
5.
Antonie Van Leeuwenhoek ; 110(2): 221-234, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27785661

RESUMEN

A pleomorphic Gram-negative, motile coccobacillus was isolated from the gills of a wild-caught bluespotted ribbontail ray after its sudden death during quarantine. Strain 141012304 was observed to grow aerobically, to be clearly positive for cytochrome oxidase, catalase, urease and was initially identified as "Brucella melitensis" or "Ochrobactrum anthropi" by Matrix-assisted laser desorption/ionization-time of flight mass spectrometry and VITEK2-compact®, respectively. Affiliation to the genus Brucella was confirmed by bcsp31 and IS711 PCR as well as by Brucella species-specific multiplex PCR, therein displaying a characteristic banding pattern recently described for Brucella strains obtained from amphibian hosts. Likewise, based on recA sequencing, strain 141012304 was found to form a separate lineage, within the so called 'atypical' Brucella, consisting of genetically more distantly related strains. The closest similarity was detected to brucellae, which have recently been isolated from edible bull frogs. Subsequent next generation genome sequencing and phylogenetic analysis confirmed that the ray strain represents a novel Brucella lineage within the atypical group of Brucella and in vicinity to Brucella inopinata and Brucella strain BO2, both isolated from human patients. This is the first report of a natural Brucella infection in a saltwater fish extending the host range of this medically important genus.


Asunto(s)
Brucella/clasificación , Brucella/genética , Rajidae/microbiología , Animales , Organismos Acuáticos/microbiología , Brucella/aislamiento & purificación , ADN Bacteriano/genética , Filogenia , Especificidad de la Especie
6.
Proc Natl Acad Sci U S A ; 111(18): 6768-73, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24753568

RESUMEN

The genus Yersinia has been used as a model system to study pathogen evolution. Using whole-genome sequencing of all Yersinia species, we delineate the gene complement of the whole genus and define patterns of virulence evolution. Multiple distinct ecological specializations appear to have split pathogenic strains from environmental, nonpathogenic lineages. This split demonstrates that contrary to hypotheses that all pathogenic Yersinia species share a recent common pathogenic ancestor, they have evolved independently but followed parallel evolutionary paths in acquiring the same virulence determinants as well as becoming progressively more limited metabolically. Shared virulence determinants are limited to the virulence plasmid pYV and the attachment invasion locus ail. These acquisitions, together with genomic variations in metabolic pathways, have resulted in the parallel emergence of related pathogens displaying an increasingly specialized lifestyle with a spectrum of virulence potential, an emerging theme in the evolution of other important human pathogens.


Asunto(s)
Evolución Molecular , Virulencia/genética , Yersinia/genética , Yersinia/patogenicidad , Genoma Bacteriano , Humanos , Redes y Vías Metabólicas/genética , Filogenia , Especificidad de la Especie , Yersinia/metabolismo , Yersinia enterocolitica/genética , Yersinia enterocolitica/metabolismo , Yersinia enterocolitica/patogenicidad
7.
Int J Syst Evol Microbiol ; 66(5): 2090-2098, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26928956

RESUMEN

Two slow-growing, Gram-negative, non-motile, non-spore-forming, coccoid bacteria (strains F60T and F965), isolated in Austria from mandibular lymph nodes of two red foxes (Vulpes vulpes), were subjected to a polyphasic taxonomic analysis. In a recent study, both isolates were assigned to the genus Brucella but could not be attributed to any of the existing species. Hence, we have analysed both strains in further detail to determine their exact taxonomic position and genetic relatedness to other members of the genus Brucella. The genome sizes of F60T and F965 were 3 236 779 and 3 237 765 bp, respectively. Each genome consisted of two chromosomes, with a DNA G+C content of 57.2 %. A genome-to-genome distance of >80 %, an average nucleotide identity (ANI) of 97 % and an average amino acid identity (AAI) of 98 % compared with the type species Brucella melitensis confirmed affiliation to the genus. Remarkably, 5 % of the entire genetic information of both strains was of non-Brucella origin, including as-yet uncharacterized bacteriophages and insertion sequences as well as ABC transporters and other genes of metabolic function from various soil-living bacteria. Core-genome-based phylogenetic reconstructions placed the novel species well separated from all hitherto-described species of the genus Brucella, forming a long-branched sister clade to the classical species of Brucella. In summary, based on phenotypic and molecular data, we conclude that strains F60T and F965 are members of a novel species of the genus Brucella, for which the name Brucella vulpis sp. nov. is proposed, with the type strain F60T ( = BCCN 09-2T = DSM 101715T).


Asunto(s)
Brucella/clasificación , Zorros/microbiología , Ganglios Linfáticos/microbiología , Filogenia , Animales , Austria , Técnicas de Tipificación Bacteriana , Tipificación de Bacteriófagos , Composición de Base , Brucella/genética , Brucella/aislamiento & purificación , ADN Bacteriano/genética , Análisis de Secuencia de ADN
8.
Emerg Infect Dis ; 21(1): 8-15, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25530466

RESUMEN

Yersinia pestis, the causative agent of plague, is endemic to Madagascar, particularly to the central highlands. Although plague has not been previously reported in northern Madagascar, an outbreak of pneumonic plague occurred in this remote area in 2011. Over a 27-day period, 17 suspected, 2 presumptive, and 3 confirmed human cases were identified, and all 15 untreated 20 patients died. Molecular typing of Y. pestis isolated from 2 survivors and 5 Rattus rattus rat samples identified the Madagascar-specific 1.ORI3-k single-nucleotide polymorphism genotype and 4 clustered regularly interspaced short palindromic repeat patterns. This outbreak had a case-fatality rate of 100% for nontreated patients. The Y. pestis 1.ORI3-k single-nucleotide polymorphism genotype might cause larger epidemics. Multidrug-resistant strains and persistence of the pathogen in natural foci near human settlements pose severe risks to populations in plague-endemic regions and require outbreak response strategies.


Asunto(s)
Brotes de Enfermedades , Enfermedades Endémicas , Peste/mortalidad , Adolescente , Animales , Secuencia de Bases , Trazado de Contacto , Femenino , Genes Bacterianos , Humanos , Madagascar/epidemiología , Masculino , Tipificación Molecular , Polimorfismo de Nucleótido Simple , Ratas , Yersinia pestis/genética , Yersinia pestis/aislamiento & purificación
9.
PLoS Pathog ; 9(5): e1003349, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23658525

RESUMEN

Yersinia pestis, the etiologic agent of the disease plague, has been implicated in three historical pandemics. These include the third pandemic of the 19(th) and 20(th) centuries, during which plague was spread around the world, and the second pandemic of the 14(th)-17(th) centuries, which included the infamous epidemic known as the Black Death. Previous studies have confirmed that Y. pestis caused these two more recent pandemics. However, a highly spirited debate still continues as to whether Y. pestis caused the so-called Justinianic Plague of the 6(th)-8(th) centuries AD. By analyzing ancient DNA in two independent ancient DNA laboratories, we confirmed unambiguously the presence of Y. pestis DNA in human skeletal remains from an Early Medieval cemetery. In addition, we narrowed the phylogenetic position of the responsible strain down to major branch 0 on the Y. pestis phylogeny, specifically between nodes N03 and N05. Our findings confirm that Y. pestis was responsible for the Justinianic Plague, which should end the controversy regarding the etiology of this pandemic. The first genotype of a Y. pestis strain that caused the Late Antique plague provides important information about the history of the plague bacillus and suggests that the first pandemic also originated in Asia, similar to the other two plague pandemics.


Asunto(s)
Huesos/microbiología , ADN Bacteriano/genética , Pandemias/historia , Filogenia , Peste , Yersinia pestis/genética , Secuencia de Bases , Femenino , Genotipo , Historia del Siglo XV , Historia del Siglo XVI , Historia del Siglo XVII , Historia del Siglo XIX , Historia del Siglo XX , Historia Medieval , Humanos , Masculino , Datos de Secuencia Molecular , Peste/epidemiología , Peste/etiología , Peste/genética , Peste/historia , Peste/microbiología
10.
Int J Med Microbiol ; 304(3-4): 452-63, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24598372

RESUMEN

The genus Yersinia contains three species pathogenic for humans, one of which is the enteropathogen Yersinia pseudotuberculosis. A recent analysis by Multi Locus Sequence Typing (MLST) of the 'Y. pseudotuberculosis complex' revealed that this complex comprises three distinct populations: the Y. pestis/Y. pseudotuberculosis group, the recently described species Yersinia similis, and a third not yet characterized population designated 'Korean Group', because most strains were isolated in Korea. The aim of this study was to perform an in depth phenotypic and genetic characterization of the three populations composing the Y. pseudotuberculosis complex (excluding Y. pestis, which belonged to the Y. pseudotuberculosis cluster in the MLST analysis). Using a set of strains representative of each group, we found that the three populations had close metabolic properties, but were nonetheless distinguishable based on D-raffinose and D-melibiose fermentation, and on pyrazinamidase activity. Moreover, high-resolution electrospray mass spectrometry highlighted protein peaks characteristic of each population. Their 16S rRNA gene sequences shared high identity (≥99.5%), but specific nucleotide signatures for each group were identified. Multi-Locus Sequence Analysis also identified three genetically closely related but distinct populations. Finally, an Average Nucleotide Identity (ANI) analysis performed after sequencing the genomes of a subset of strains of each group also showed that intragroup identity (average for each group ≥99%) was higher than intergroup diversity (94.6-97.4%). Therefore, all phenotypic and genotypic traits studied concurred with the initial MLST data indicating that the Y. pseudotuberculosis complex comprises a third and clearly distinct population of strains forming a novel Yersinia species that we propose to designate Yersinia wautersii sp. nov. The isolation of some strains from humans, the detection of virulence genes (on the pYV and pVM82 plasmids, or encoding the superantigen ypmA) in some isolates, and the absence of pyrazinamidase activity (a hallmark of pathogenicity in the genus Yersinia) argue for the pathogenic potential of Y. wautersii.


Asunto(s)
Yersinia/clasificación , Proteínas Bacterianas/análisis , Técnicas de Tipificación Bacteriana , Análisis por Conglomerados , Genotipo , Humanos , Corea (Geográfico) , Espectrometría de Masas , Redes y Vías Metabólicas , Tipificación de Secuencias Multilocus , ARN Ribosómico 16S/genética , Yersinia/química , Yersinia/genética , Yersinia/fisiología
11.
Int J Syst Evol Microbiol ; 64(Pt 12): 4120-4128, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25242540

RESUMEN

Two Gram-negative, non-motile, non-spore-forming coccoid bacteria (strains F8/08-60(T) and F8/08-61) isolated from clinical specimens obtained from baboons (Papio spp.) that had delivered stillborn offspring were subjected to a polyphasic taxonomic study. On the basis of 16S rRNA gene sequence similarities, both strains, which possessed identical sequences, were assigned to the genus Brucella. This placement was confirmed by extended multilocus sequence analysis (MLSA), where both strains possessed identical sequences, and whole-genome sequencing of a representative isolate. All of the above analyses suggested that the two strains represent a novel lineage within the genus Brucella. The strains also possessed a unique profile when subjected to the phenotyping approach classically used to separate species of the genus Brucella, reacting only with Brucella A monospecific antiserum, being sensitive to the dyes thionin and fuchsin, being lysed by bacteriophage Wb, Bk2 and Fi phage at routine test dilution (RTD) but only partially sensitive to bacteriophage Tb, and with no requirement for CO2 and no production of H2S but strong urease activity. Biochemical profiling revealed a pattern of enzyme activity and metabolic capabilities distinct from existing species of the genus Brucella. Molecular analysis of the omp2 locus genes showed that both strains had a novel combination of two highly similar omp2b gene copies. The two strains shared a unique fingerprint profile of the multiple-copy Brucella-specific element IS711. Like MLSA, a multilocus variable number of tandem repeat analysis (MLVA) showed that the isolates clustered together very closely, but represent a distinct group within the genus Brucella. Isolates F8/08-60(T) and F8/08-61 could be distinguished clearly from all known species of the genus Brucella and their biovars by both phenotypic and molecular properties. Therefore, by applying the species concept for the genus Brucella suggested by the ICSP Subcommittee on the Taxonomy of Brucella, they represent a novel species within the genus Brucella, for which the name Brucella papionis sp. nov. is proposed, with the type strain F8/08-60(T) ( = NCTC 13660(T) = CIRMBP 0958(T)).


Asunto(s)
Brucella/clasificación , Papio/microbiología , Filogenia , Animales , Técnicas de Tipificación Bacteriana , Brucella/genética , Brucella/aislamiento & purificación , ADN Bacteriano/genética , Femenino , Genes Bacterianos , Datos de Secuencia Molecular , Tipificación de Secuencias Multilocus , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
12.
Int J Syst Evol Microbiol ; 63(Pt 10): 3628-3635, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23606480

RESUMEN

Four strains (08HL01032(T), 09HG994, 10HP82-6 and 10HL1960) were isolated from water of air-conditioning systems of various cooling towers in Guangzhou city, China. Cells were Gram-stain-negative coccobacilli without flagella, catalase-positive and oxidase-negative, showing no reduction of nitrate, no hydrolysis of urea and no production of H2S. Growth was characteristically enhanced in the presence of l-cysteine, which was consistent with the properties of members of the genus Francisella. The quinone system was composed of ubiquinone Q-8 with minor amounts of Q-9. The polar lipid profile consisted of the predominant lipids phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, two unidentified phospholipids (PL2, PL3), an unidentified aminophospholipid and an unidentified glycolipid (GL2). The polyamine pattern consisted of the major compounds spermidine, cadaverine and spermine. The major cellular fatty acids were C10 : 0, C14 : 0, C16 : 0, C18 : 1ω9c and C18 : 1 3-OH. A draft whole-genome sequence of the proposed type strain 08HL01032(T) was generated. Comparative sequence analysis of the complete 16S and 23S rRNA genes confirmed affiliation to the genus Francisella, with 95 % sequence identity to the closest relatives in the database, the type strains of Francisella philomiragia and Francisella noatunensis subsp. orientalis. Full-length deduced amino acid sequences of various housekeeping genes, recA, gyrB, groEL, dnaK, rpoA, rpoB, rpoD, rpoH, fopA and sdhA, exhibited similarities of 67-92 % to strains of other species of the genus Francisella. Strains 08HL01032(T), 09HG994, 10HP82-6 and 10HL1960 exhibited highly similar pan-genome PCR profiles. Both the phenotypic and molecular data support the conclusion that the four strains belong to the genus Francisella but exhibit considerable divergence from all recognized Francisella species. Therefore, we propose the name Francisella guangzhouensis sp. nov., with the type strain 08HL01032(T) ( = CCUG 60119(T) = NCTC 13503(T)).


Asunto(s)
Francisella/clasificación , Filogenia , Microbiología del Agua , Aire Acondicionado , Técnicas de Tipificación Bacteriana , China , Cisteína/metabolismo , ADN Bacteriano/genética , Ácidos Grasos/análisis , Francisella/genética , Francisella/aislamiento & purificación , Genes Bacterianos , Datos de Secuencia Molecular , Fosfolípidos/análisis , Poliaminas/análisis , ARN Ribosómico 16S/genética , ARN Ribosómico 23S/genética , Análisis de Secuencia de ADN , Ubiquinona/análisis
13.
Front Microbiol ; 14: 1282135, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38075873

RESUMEN

Global warming has caused an increase in the emergence of Vibrio species in marine and estuarine environments as well as fresh water bodies. Over the past decades, antimicrobial resistance (AMR) has evolved among Vibrio species toward various antibiotics commonly used for the treatment of Vibrio infections. In this study, we assessed virulence and resistance patterns of Vibrio cholerae non-O1/non-O139 strains derived from Germany and other European countries. A total of 63 clinical and 24 environmental Vibrio cholerae non-O1/non-O139 strains, collected between 2011 and 2021, were analyzed. In silico antibiotic resistances were compared with resistance phenotypes according to EUCAST breakpoints. Additionally, genetic relatedness between isolates was assessed by two cgMLST schemes (SeqSphere +, pubMLST). Both cgMLST schemes yielded similar results, indicating high genetic diversity among V. cholerae non-O1/non-O139 isolates. Some isolates were found to be genetically closely related (allelic distance < 20), which suggests an epidemiological link. Thirty-seven virulence genes (VGs) were identified among 87 V. cholerae non-O1/non-O139 isolates, which resulted in 38 virulence profiles (VPs). VPs were similar between clinical and environmental isolates, with the exception of one clinical isolate that displayed a higher abundance of VGs. Also, a cluster of 11 environmental isolates was identified to have the lowest number of VGs. Among all strains, the predominant virulence factors were quorum sensing protein (luxS), repeats-in-toxins (rtxC/rtxD), hemolysin (hlyA) and different type VI secretion systems (T6SS) genes. The genotypic profiles revealed antibiotic resistance genes (ARGs) associated with resistance to beta-lactams, quinolones, macrolides, tetracycline, antifolate, aminoglycosides, fosfomycin, phenicols and sulfonamide. Carbapenemase gene VCC-1 was detected in 10 meropenem-resistant V. cholerae non-O1/non-O139 isolates derived from surface water in Germany. The proportion of resistance among V. cholerae non-O1/non-O139 species isolates against first line treatment (3rd generation cephalosporin, tetracycline and fluoroquinolone) was low. Empirical treatment would likely have been effective for all of the clinical V. cholerae non-O1/non-O139 isolates examined. Nevertheless, carbapenem-resistant isolates have been present in fresh water in Germany and might represent a reservoir for ARGs. Monitoring antimicrobial resistance is crucial for public health authorities to minimize the risks for the human population.

14.
Front Microbiol ; 14: 1173252, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37362939

RESUMEN

Introduction: Cold-blooded hosts, particularly exotic frogs, have become a newly recognized reservoir for atypical Brucella species and strains worldwide, but their pathogenicity to humans remains largely unknown. Here we report the isolation and molecular characterization of a B. inopinata strain (FO700662) cultured from clinical samples taken from a captive diseased White's Tree Frog (Litoria caerulea) in Switzerland. The isolation of B. inopinata from a frog along with other reports of human infection by atypical Brucella raises the question of whether atypical Brucella could pose a risk to human health and deserves further attention. Methods: The investigations included histopathological analysis of the frog, bacterial culture and in-depth molecular characterization of strain FO700662 based on genome sequencing data. Results and Discussion: Originally identified as Ochrobactrum based on its rapid growth and biochemical profile, strain FO700622 was positive for the Brucella- specific markers bcsp31 and IS711. It showed the specific banding pattern of B. inopinata in conventional Bruce-ladder multiplex PCR and also had identical 16S rRNA and recA gene sequences as B. inopinata. Subsequent genome sequencing followed by core genome-based MLST (cgMLST) analysis using 2704 targets (74% of the total chromosome) revealed only 173 allelic differences compared to the type strain of B. inopinata BO1T, while previously considered the closest related strain BO2 differed in 2046 alleles. The overall average nucleotide identity (ANI) between the type strain BO1T and FO700622 was 99,89%, confirming that both strains were almost identical. In silico MLST-21 and MLVA-16 also identified strain FO700662 as B. inopinata. The nucleotide and amino acid-based phylogenetic reconstruction and comparative genome analysis again placed the isolate together with B. inopinata with 100% support. In conclusion, our data unequivocally classified strain FO700622, isolated from an exotic frog, as belonging to B. inopinata.

15.
Pathogens ; 12(12)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38133325

RESUMEN

Bacillus cereus biovar anthracis (Bcbva) is an untypical pathogen causing a fatal anthrax-like disease in a variety of wildlife species in African rainforest areas. In contrast to Bacillus anthracis and most species of the B. cereus group, all strains of the Bcbva cluster contain a 22 kb insertion in the sigK gene which encodes the essential late sporulation sigma factor σK. This insertion is excised during sporulation in a site-specific recombination process resulting in an intact sigK gene and a circular molecule. The sporulation kinetics of two strains each of Bcbva and B. anthracis were compared by the expression analysis of eight sporulation-associated genes, including sigK, using reverse transcriptase quantitative real-time PCR. In addition, morphological sporulation stages were analyzed and quantified by electron microscopy. Our results indicated that the necessary excision of the insertion in Bcbva neither delayed nor inhibited its sporulation. In two spontaneous mutants of Bcbva, the excision of the sigK insertion and sporulation were impeded due to mutations in the spo0A and spoVG regulator genes, respectively. The spo0A frameshift mutation was overcome by intragenic suppression in a revertant which was able to sporulate normally, despite an M171S amino acid exchange in the global regulator Spo0A. A screening of the NCBI database identified further strains of the B. cereus group which possess unrelated insertions in the sigK gene, and two strains containing almost identical insertions at the same gene position. Some of the sigK insertions encode putative prophages, whereas the Bcbva insertion encoded a type I restriction-modification system. The function of these insertions and if they are possibly essential for sporulation remains to be assessed.

16.
PLoS Negl Trop Dis ; 17(1): e0011006, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36607891

RESUMEN

BACKGROUND: Burkholderia mallei and Burkholderia pseudomallei are both potential biological threat agents. Melioidosis caused by B. pseudomallei is endemic in Southeast Asia and Northern Australia, while glanders caused by B. mallei infections are rare. Here we studied the proteomes of different B. mallei and B. pseudomallei isolates to determine species specific characteristics. METHODS: The expressed proteins of 5 B. mallei and 6 B. pseudomallei strains were characterized using liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS). Subsequently, expression of potential resistance and virulence related characteristics were analyzed and compared. RESULTS: Proteome analysis can be used for the identification of B. mallei and B. pseudomallei. Both species were identified based on >60 discriminative peptides. Expression of proteins potentially involved in antimicrobial resistance, AmrAB-OprA, BpeAB-OprB, BpeEF-OprC, PenA as well as several other efflux pump related proteins and putative ß-lactamases was demonstrated. Despite, the fact that efflux pump BpeAB-OprB was expressed in all isolates, no clear correlation with an antimicrobial phenotype and the efflux-pump could be established. Also consistent with the phenotypes, no amino acid mutations in PenA known to result in ß-lactam resistance could be identified. In all studied isolates, the expression of virulence (related) factors Capsule-1 and T2SS was demonstrated. The expression of T6SS-1 was demonstrated in all 6 B. pseudomallei isolates and in 2 of the 5 B. mallei isolates. In all, except one B. pseudomallei isolate, poly-beta-1,6 N-acetyl-D-glucosamine export porin (Pga), important for biofilm formation, was detected, which were absent in the proteomes of B. mallei. Siderophores, iron binding proteins, malleobactin and malleilactone are possibly expressed in both species under standard laboratory growth conditions. Expression of multiple proteins from both the malleobactin and malleilactone polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) clusters was demonstrated in both species. All B. pseudomallei expressed at least seven of the nine proteins of the bactobolin synthase cluster (bactobolin, is a ribosome targeting antibiotic), while only in one B. mallei isolate expression of two proteins of this synthase cluster was identified. CONCLUSIONS: Analyzing the expressed proteomes revealed differences between B. mallei and B. pseudomallei but also between isolates from the same species. Proteome analysis can be used not only to identify B. mallei and B. pseudomallei but also to characterize the presence of important factors that putatively contribute to the pathogenesis of B. mallei and B. pseudomallei.


Asunto(s)
Burkholderia mallei , Burkholderia pseudomallei , Melioidosis , Animales , Burkholderia mallei/genética , Proteoma/metabolismo , Virulencia , Antibacterianos/farmacología
17.
J Antimicrob Chemother ; 67(10): 2429-33, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22763567

RESUMEN

OBJECTIVES: Tularaemia is a widespread zoonosis in Europe caused by Francisella tularensis subsp. holarctica. Because of a lack of standardized CLSI-approved antibiotic susceptibility data from European Francisella strains, the antibiotic susceptibilities of a selection of F. tularensis subsp. holarctica isolates originating from Germany, Austria, France, Spain and other European countries were determined. Rarely isolated species and subspecies of Francisella such as Francisella philomiragia, F. tularensis subsp. novicida and F. tularensis subsp. mediasiatica as well as the type strain of Francisella hispaniensis were included in this study. METHODS: MIC data were obtained using cation-adjusted Mueller-Hinton broth with a 2% growth supplement. The broth microdilution testing system comprised 14 antibiotics, including gentamicin, streptomycin, ciprofloxacin and tetracycline. RESULTS: All of the 91 strains tested were susceptible to aminoglycosides, quinolones, tetracycline and chloramphenicol. The antimicrobial susceptibility of rare Francisellae was similar to the antibiotic profile of F. tularensis subsp. holarctica strains. For erythromycin, we detected two geographically distinct groups of F. tularensis subsp. holarctica isolates in western Europe. One group was resistant and the other one was susceptible. Both groups overlapped in a small region in Germany. CONCLUSIONS: Being performed in accordance with CLSI criteria, this study provides reliable data on antibiotic susceptibility patterns of European Francisella isolates. The standardized methodology of this study can be used for testing of suspicious colonies from clinical specimens for therapeutic guidance. Based on the results, aminoglycosides or quinolones are recommended as first-choice antibiotics for the therapy of F. hispaniensis, F. philomiragia or F. tularensis subsp. novicida infections in immunocompromised patients.


Asunto(s)
Antibacterianos/farmacología , Francisella/efectos de los fármacos , Pruebas de Sensibilidad Microbiana/métodos , Pruebas de Sensibilidad Microbiana/normas , Tularemia/microbiología , Tularemia/veterinaria , Animales , Microbiología Ambiental , Europa (Continente) , Francisella/clasificación , Francisella/aislamiento & purificación , Humanos
18.
Appl Environ Microbiol ; 78(10): 3753-5, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22407680

RESUMEN

Bacterial isolates from frogs were phenotypically identified as Ochrobactrum anthropi, but 16S rRNA sequencing showed up to 100% identity with Brucella inopinata. Further analysis of recA, omp2a, omp2b, bcsp31, and IS711 and multilocus sequence analysis (MLSA) verified a close relationship with Brucella, suggesting the isolates may actually represent novel members of this growing genus of zoonotic pathogens.


Asunto(s)
Anuros/microbiología , Brucella/clasificación , Brucella/aislamiento & purificación , Animales , Técnicas de Tipificación Bacteriana , Brucella/genética , Brucella/fisiología , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Genes Bacterianos , Datos de Secuencia Molecular , Tipificación de Secuencias Multilocus , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
19.
Appl Environ Microbiol ; 78(5): 1534-43, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22210211

RESUMEN

Brucellosis is one of the major bacterial zoonoses worldwide. In the past decade, an increasing number of atypical Brucella strains and species have been described. Brucella microti in particular has attracted attention, because this species not only infects mammalian hosts but also persists in soil. An environmental reservoir may pose a new public health risk, leading to the reemergence of brucellosis. In a polyphasic approach, comprising conventional microbiological techniques and extensive biochemical and molecular techniques, all currently available Brucella microti strains were characterized. While differing in their natural habitats and host preferences, B. microti isolates were found to possess identical 16S rRNA, recA, omp2a, and omp2b gene sequences and identical multilocus sequence analysis (MLSA) profiles at 21 different genomic loci. Only highly variable microsatellite markers of multiple-locus variable-number tandem repeat (VNTR) analysis comprising 16 loci (MLVA-16) showed intraspecies discriminatory power. In contrast, biotyping demonstrated striking differences within the genetically homologous species. The majority of the mammalian isolates agglutinated only with monospecific anti-M serum, whereas soil isolates agglutinated with anti-A, anti-M, and anti-R sera. Bacteria isolated from animal sources were lysed by phages F1, F25, Tb, BK2, Iz, and Wb, whereas soil isolates usually were not. Rough strains of environmental origin were lysed only by phage R/C. B. microti exhibited high metabolic activities similar to those of closely related soil organisms, such as Ochrobactrum spp. Each strain was tested with 93 different substrates and showed an individual metabolic profile. In summary, the adaptation of Brucella microti to a specific habitat or host seems to be a matter of gene regulation rather than a matter of gene configuration.


Asunto(s)
Biodiversidad , Brucella/clasificación , Animales , Técnicas de Tipificación Bacteriana , Bacteriólisis , Bacteriófagos/crecimiento & desarrollo , Brucella/genética , Brucella/aislamiento & purificación , Brucella/fisiología , Brucelosis/microbiología , Brucelosis/veterinaria , Genes Bacterianos , Genotipo , Mamíferos/microbiología , Tipificación de Secuencias Multilocus , Fenotipo , Análisis de Secuencia de ADN , Microbiología del Suelo
20.
BMC Microbiol ; 12: 229, 2012 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-23046611

RESUMEN

BACKGROUND: Burkholderia (B.) pseudomallei and B. mallei are genetically closely related species. B. pseudomallei causes melioidosis in humans and animals, whereas B. mallei is the causative agent of glanders in equines and rarely also in humans. Both agents have been classified by the CDC as priority category B biological agents. Rapid identification is crucial, because both agents are intrinsically resistant to many antibiotics. Matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-TOF MS) has the potential of rapid and reliable identification of pathogens, but is limited by the availability of a database containing validated reference spectra. The aim of this study was to evaluate the use of MALDI-TOF MS for the rapid and reliable identification and differentiation of B. pseudomallei and B. mallei and to build up a reliable reference database for both organisms. RESULTS: A collection of ten B. pseudomallei and seventeen B. mallei strains was used to generate a library of reference spectra. Samples of both species could be identified by MALDI-TOF MS, if a dedicated subset of the reference spectra library was used. In comparison with samples representing B. mallei, higher genetic diversity among B. pseudomallei was reflected in the higher average Eucledian distances between the mass spectra and a broader range of identification score values obtained with commercial software for the identification of microorganisms. The type strain of B. pseudomallei (ATCC 23343) was isolated decades ago and is outstanding in the spectrum-based dendrograms probably due to massive methylations as indicated by two intensive series of mass increments of 14 Da specifically and reproducibly found in the spectra of this strain. CONCLUSIONS: Handling of pathogens under BSL 3 conditions is dangerous and cumbersome but can be minimized by inactivation of bacteria with ethanol, subsequent protein extraction under BSL 1 conditions and MALDI-TOF MS analysis being faster than nucleic amplification methods. Our spectra demonstrated a higher homogeneity in B. mallei than in B. pseudomallei isolates. As expected for closely related species, the identification process with MALDI Biotyper software (Bruker Daltonik GmbH, Bremen, Germany) requires the careful selection of spectra from reference strains. When a dedicated reference set is used and spectra of high quality are acquired, it is possible to distinguish both species unambiguously. The need for a careful curation of reference spectra databases is stressed.


Asunto(s)
Técnicas Bacteriológicas/métodos , Burkholderia mallei/química , Burkholderia mallei/clasificación , Burkholderia pseudomallei/química , Burkholderia pseudomallei/clasificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Burkholderia mallei/aislamiento & purificación , Burkholderia pseudomallei/aislamiento & purificación , Alemania , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA