Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nature ; 576(7786): 253-256, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31827290

RESUMEN

Limiting the increase of CO2 in the atmosphere is one of the largest challenges of our generation1. Because carbon capture and storage is one of the few viable technologies that can mitigate current CO2 emissions2, much effort is focused on developing solid adsorbents that can efficiently capture CO2 from flue gases emitted from anthropogenic sources3. One class of materials that has attracted considerable interest in this context is metal-organic frameworks (MOFs), in which the careful combination of organic ligands with metal-ion nodes can, in principle, give rise to innumerable structurally and chemically distinct nanoporous MOFs. However, many MOFs that are optimized for the separation of CO2 from nitrogen4-7 do not perform well when using realistic flue gas that contains water, because water competes with CO2 for the same adsorption sites and thereby causes the materials to lose their selectivity. Although flue gases can be dried, this renders the capture process prohibitively expensive8,9. Here we show that data mining of a computational screening library of over 300,000 MOFs can identify different classes of strong CO2-binding sites-which we term 'adsorbaphores'-that endow MOFs with CO2/N2 selectivity that persists in wet flue gases. We subsequently synthesized two water-stable MOFs containing the most hydrophobic adsorbaphore, and found that their carbon-capture performance is not affected by water and outperforms that of some commercial materials. Testing the performance of these MOFs in an industrial setting and consideration of the full capture process-including the targeted CO2 sink, such as geological storage or serving as a carbon source for the chemical industry-will be necessary to identify the optimal separation material.

2.
J Am Chem Soc ; 145(46): 25401-25410, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37948677

RESUMEN

Nanosized particles of liquid metals are emerging materials that hold promise for applications spanning from microelectronics to catalysis. Yet, knowledge of their chemical reactivity is largely unknown. Here, we study the reactivity of liquid Ga and Cu nanoparticles under the application of a cathodic voltage. We discover that the applied voltage and the spatial proximity of these two particle precursors dictate the reaction outcome. In particular, we find that a gradual voltage ramp is crucial to reduce the native oxide skin of gallium and enable reactive wetting between the Ga and Cu nanoparticles; instead, a voltage step causes dewetting between the two. We determine that the use of liquid Ga/Cu nanodimer precursors, which consist of an oxide-covered Ga domain interfaced with a metallic Cu domain, provides a more uniform mixing and results in more homogeneous reaction products compared to a physical mixture of Ga and Cu NPs. Having learned this, we obtain CuGa2 alloys or solid@liquid CuGa2@Ga core@shell nanoparticles by tuning the stoichiometry of Ga and Cu in the nanodimer precursors. These products reveal an interesting complementarity of thermal and voltage-driven syntheses to expand the compositional range of bimetallic NPs. Finally, we extend the voltage-driven synthesis to the combination of Ga with other elements (Ag, Sn, Co, and W). By rationalizing the impact of the native skin reduction rate, the wetting properties, and the chemical reactivity between Ga and other metals on the results of such voltage-driven chemical manipulation, we define the criteria to predict the outcome of this reaction and set the ground for future studies targeting various applications for multielement nanomaterials based on liquid Ga.

3.
J Am Chem Soc ; 144(40): 18286-18295, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36173602

RESUMEN

The compositional and structural diversity of bimetallic nanocrystals (NCs) provides a superior tunability of their physico-chemical properties, making them attractive for a variety of applications, including sensing and catalysis. Nevertheless, the manipulation of the properties-determining features of bimetallic NCs still remains a challenge, especially when moving away from noble metals. In this work, we explore the galvanic replacement reaction (GRR) of In NCs and a copper molecular precursor to obtain Cu-In bimetallic NCs with an unprecedented variety of morphologies and distribution of the two metals. We obtain spherical Cu11In9 intermetallic and patchy phase-segregated Cu-In NCs, as well as dimer-like Cu-Cu11In9 and Cu-In NCs. In particular, we find that segregation of the two metals occurs as the GRR progresses with time or with a higher copper precursor concentration. We discover size-dependent reaction kinetics, with the smaller In NCs undergoing a slower transition across the different Cu-In configurations. We compare the obtained results with the bulk Cu-In phase diagram and, interestingly, find that the bigger In NCs stabilize the bulk-like Cu-Cu11In9 configuration before their complete segregation into Cu-In NCs. Finally, we also prove the utility of the new family of Cu-In NCs as model catalysts to elucidate the impact of the metal elemental distribution on the selectivity of these bimetallics toward the electrochemical CO2 reduction reaction. Generally, we demonstrate that the GRR is a powerful synthetic approach beyond noble metal-containing bimetallic structures, yet that the current knowledge on this reaction is challenged when oxophilic and poorly miscible metal pairs are used.


Asunto(s)
Cobre , Nanopartículas , Dióxido de Carbono , Catálisis , Cobre/química , Metales , Nanopartículas/química
4.
Nat Mater ; 20(3): 362-369, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33020610

RESUMEN

The synthesis of molecular-sieving zeolitic membranes by the assembly of building blocks, avoiding the hydrothermal treatment, is highly desired to improve reproducibility and scalability. Here we report exfoliation of the sodalite precursor RUB-15 into crystalline 0.8-nm-thick nanosheets, that host hydrogen-sieving six-membered rings (6-MRs) of SiO4 tetrahedra. Thin films, fabricated by the filtration of a suspension of exfoliated nanosheets, possess two transport pathways: 6-MR apertures and intersheet gaps. The latter were found to dominate the gas transport and yielded a molecular cutoff of 3.6 Å with a H2/N2 selectivity above 20. The gaps were successfully removed by the condensation of the terminal silanol groups of RUB-15 to yield H2/CO2 selectivities up to 100. The high selectivity was exclusively from the transport across 6-MR, which was confirmed by a good agreement between the experimentally determined apparent activation energy of H2 and that computed by ab initio calculations. The scalable fabrication and the attractive sieving performance at 250-300 °C make these membranes promising for precombustion carbon capture.

5.
Angew Chem Int Ed Engl ; 61(40): e202207457, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-35906967

RESUMEN

Poly(triazine imide) or PTI is an ordered graphitic carbon nitride hosting Å-scale pores attractive for selective molecular transport. AA'-stacked PTI layers are synthesized by ionothermal route during which ions occupy the framework and occlude the pores. Synthesis of ion-free PTI hosting AB-stacked layers has been reported, however, pores in this configuration are blocked by the neighboring layer. The unavailability of open pore limits application of PTI in molecular transport. Herein, we demonstrate acid treatment for ion depletion which maintains AA' stacking and results in open pore structure. We provide first direct evidence of ion-depleted open pores by imaging with the atomic resolution using integrated differential phase-contrast scanning transmission electron microscopy. Depending on the extent of ion-exchange, AA' stacking with open channels and AB stacking with closed channels are obtained and imaged for the first time. The accessibility of open channels is demonstrated by enhanced proton transport through ion depleted PTI.

6.
J Am Chem Soc ; 142(4): 1792-1800, 2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-31865703

RESUMEN

Four spirobisacridine (SBA) hole-transporting materials were synthesized and employed in perovskite solar cells (PSCs). The molecules bear electronically inert alkyl chains of different length and bulkiness, attached to in-plane N atoms of nearly orthogonal spiro-connected acridines. Di-p-methoxyphenylamine (DMPA) substituents tailored to the central SBA-platform define electronic properties of the materials mimicking the structure of the benchmark 2,2',7,7'-tetrakis(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (spiro-MeOTAD), while the alkyl pending groups affect molecular packing in thin films and affect the long-term performance of PSCs. Devices with SBA-based hole transporting layers (HTL) attain efficiencies on par with spiro-MeOTAD. More importantly, solar cells with the new HTMs are hysteresis-free and demonstrate good operational stability, despite being doped as spiro-MeOTAD. The best performing MeSBA-DMPA retained 88% of the initial efficiency after a 1000 h aging test under constant illumination. The results clearly demonstrate that SBA-based compounds are potent candidates for a design of new HTMs for PSCs with improved longevity.

7.
Angew Chem Int Ed Engl ; 59(27): 10797-10801, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32227541

RESUMEN

The hydroxide-exchange membrane fuel cell (HEMFC) is a promising energy conversion device. However, the development of HEMFC is hampered by the lack of platinum-group-metal-free (PGM-free) electrocatalysts for the hydrogen oxidation reaction (HOR). Now, a Ni catalyst is reported that exhibits the highest mass activity in HOR for a PGM-free catalyst as well as excellent activity in the hydrogen evolution reaction (HER). This catalyst, Ni-H2 -2 %, was optimized through pyrolysis of a Ni-containing metal-organic framework precursor under a mixed N2 /H2 atmosphere, which yielded carbon-supported Ni nanoparticles with different levels of strains. The Ni-H2 -2 % catalyst has an optimal level of strain, which leads to an optimal hydrogen binding energy and a high number of active sites.

8.
Eur J Inorg Chem ; 2019(8)2019.
Artículo en Inglés | MEDLINE | ID: mdl-38903611

RESUMEN

Herein we present a detailed study of the hydrogen adsorption properties of Cu-BTTri, a robust crystalline metal-organic framework containing open metal-coordination sites. Diffraction techniques, carried out on the activated framework, reveal a structure that is different from what was previously reported. Further, combining standard hydrogen adsorption measurements with in-situ neutron diffraction techniques provides molecular level insight into the hydrogen adsorption process. The diffraction experiments unveil the location of four D2 adsorption sites in Cu-BTTri and shed light on the structural features that promote hydrogen adsorption in this material. Density functional theory (DFT), used to predict the location and strength of binding sites, corroborate the experimental findings. By decomposing binding energies in different sites in various energetic contributions, we show that van der Waals interactions play a crucial role, suggesting a possible route to enhancing the binding energy around open metal coordination sites.

9.
Angew Chem Int Ed Engl ; 58(36): 12632-12639, 2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-31287203

RESUMEN

The tunable chemistry linked to the organic/inorganic components in colloidal nanocrystals (NCs) and metal-organic frameworks (MOFs) offers a rich playground to advance the fundamental understanding of materials design for various applications. Herein, we combine these two classes of materials by synthesizing NC/MOF hybrids comprising Ag NCs that are in intimate contact with Al-PMOF ([Al2 (OH)2 (TCPP)]) (tetrakis(4-carboxyphenyl)porphyrin (TCPP)), to form Ag@Al-PMOF. In our hybrids, the NCs are embedded in the MOF while still preserving electrical contact with a conductive substrate. This key feature allows the investigation of the Ag@Al-PMOFs as electrocatalysts for the CO2 reduction reaction (CO2 RR). We show that the pristine interface between the NCs and the MOFs accounts for electronic changes in the Ag, which suppress the hydrogen evolution reaction (HER) and promote the CO2 RR. We also demonstrate a minor contribution of mass-transfer effects imposed by the porous MOF layer under the chosen testing conditions. Furthermore, we find an increased morphological stability of the Ag NCs when combined with the Al-PMOF. The synthesis method is general and applicable to other metal NCs, thus revealing a new way to think about rationally tailored electrocatalytic materials to steer selectivity and improve stability.

10.
Chem Soc Rev ; 46(5): 1565-1634, 2017 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-28218318

RESUMEN

A wide variety of metal borohydrides, MBH4, have been discovered and characterized during the past decade, revealing an extremely rich chemistry including fascinating structural flexibility and a wide range of compositions and physical properties. Metal borohydrides receive increasing interest within the energy storage field due to their extremely high hydrogen density and possible uses in batteries as solid state ion conductors. Recently, new types of physical properties have been explored in lanthanide-bearing borohydrides related to solid state phosphors and magnetic refrigeration. Two major classes of metal borohydride derivatives have also been discovered: anion-substituted compounds where the complex borohydride anion, BH4-, is replaced by another anion, i.e. a halide or amide ion; and metal borohydrides modified with neutral molecules, such as NH3, NH3BH3, N2H4, etc. Here, we review new synthetic strategies along with structural, physical and chemical properties for metal borohydrides, revealing a number of new trends correlating composition, structure, bonding and thermal properties. These new trends provide general knowledge and may contribute to the design and discovery of new metal borohydrides with tailored properties towards the rational design of novel functional materials. This review also demonstrates that there is still room for discovering new combinations of light elements including boron and hydrogen, leading to complex hydrides with extreme flexibility in composition, structure and properties.

11.
Chemistry ; 23(68): 17209-17212, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29064135

RESUMEN

Methods for effective synthesis for the four possible isomeric 3,9-diphenylullazine carboxaldehydes and reactive halogen intermediates are described. Ullazine donor-acceptor (D-A) dyes were studied using UV/Vis, photoluminescence (PL) spectroscopy and cyclic voltammetry. X-ray single crystal diffraction analysis independently confirmed the structures of two key intermediates. A D-A dye based on ullazine with dihexylmalonate acceptor was tested as a dopant-free hole-transporting material (HTM) in a perovskite solar cell, exhibiting promising power conversion efficiency (PCE) reaching 13.07 %.

12.
Inorg Chem ; 56(9): 5006-5016, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28398061

RESUMEN

Three different types of anion packing, i.e., hexagonal close packed (hcp), cubic close packed (ccp), and body centered cubic (bcc), are investigated experimentally and with ab initio calculations in the model system Na2B12H12. Solvent free and water assisted mechanical grinding provide polycrystalline samples for temperature-dependent synchrotron radiation X-ray powder diffraction and electrochemical impedance spectroscopy. It is shown that among the common close packed lattices, the hcp anionic backbone creates very favorable conditions for three-dimensional ionic conduction pathways, comprised of O-O, T-T, and T-O-T (O for octahedral, T for tetrahedral) cation hops. The hcp lattice is stable with respect to ccp and bcc lattices only at higher volumes per formula unit, which is achieved either by cationic substitution with larger cations or partial substitution of hydrogen by iodine on the closo-anion. It is found that the partial cationic substitution of sodium with lithium, potassium, or cesium does not lead to enhanced conductivity due to the obstruction of the conduction pathway by the larger cation located on the octahedral site. Substitution on the closo-anion itself shows remarkable positive effects, the ionic conductivity of Na2B12H12-xIx reaching values of close to 10-1 S cm-1 at a rather low temperature of 360 K. While the absolute value of σ is comparable to that of NaCB11H12, the temperature at which it is attained is approximately 20 K lower. The activation energy of 140 meV is determined from the Arrhenius relation and among the lowest ever reported for a Na-conducting solid.

13.
Chimia (Aarau) ; 68(1): 38-44, 2014 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-28982436

RESUMEN

'Real life' energy-related materials such as solid-state hydrogen storage compounds or components of electrochemical cells are usually polycrystalline, poorly crystallized, highly reactive and dynamic systems. Powder diffraction at modern high brilliance X-ray sources is the most useful tool to investigate such systems because it is easy, fast and extremely versatile with respect to measurement conditions as well as in situ setups. However, it is in the nature of these systems that they undergo processes that cannot be investigated by diffraction alone. The central role in hydrogen storage materials is played by hydrogen itself, the worst X-ray scatterer in the periodic system. Gas release, the purpose of a hydrogen storage material, is not detected by diffraction. Amorphous components are badly characterized. We want to show how a complementary approach combining different methods allows to overcome limitations imposed on powder diffraction by the sample nature of 'real' hydrogen storage materials.

14.
Chimia (Aarau) ; 68(1-2): 38-44, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24801695

RESUMEN

'Real life' energy-related materials such as solid-state hydrogen storage compounds or components of electrochemical cells are usually polycrystalline, poorly crystallized, highly reactive and dynamic systems. Powder diffraction at modern high brilliance X-ray sources is the most useful tool to investigate such systems because it is easy, fast and extremely versatile with respect to measurement conditions as well as in situ setups. However, it is in the nature of these systems that they undergo processes that cannot be investigated by diffraction alone. The central role in hydrogen storage materials is played by hydrogen itself, the worst X-ray scatterer in the periodic system. Gas release, the purpose of a hydrogen storage material, is not detected by diffraction. Amorphous components are badly characterized. We want to show how a complementary approach combining different methods allows to overcome limitations imposed on powder diffraction by the sample nature of 'real' hydrogen storage materials.

15.
Nat Commun ; 15(1): 5632, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965276

RESUMEN

The power conversion efficiency of perovskite solar cells continues to increase. However, defects in perovskite materials are detrimental to their carrier dynamics and structural stability, ultimately limiting the photovoltaic characteristics and stability of perovskite solar cells. Herein, we report that 6H polytype perovskite effectively engineers defects at the interface with cubic polytype FAPbI3, which facilitates radiative recombination and improves the stability of the polycrystalline film. We particularly show the detrimental effects of shallow-level defect that originates from the formation of the most dominant iodide vacancy (VI+) in FAPbI3. Furthermore, additional surface passivation on top of the hetero-polytypic perovskite film results in an ultra-long carrier lifetime exceeding 18 µs, affords power conversion efficiencies of 24.13% for perovskite solar cells, 21.92% (certified power conversion efficiency: 21.44%) for a module, and long-term stability. The hetero-polytypic perovskite configuration may be considered as close to the ideal polycrystalline structure in terms of charge carrier dynamics and stability.

16.
Inorg Chem ; 52(17): 9941-7, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23968549

RESUMEN

The compounds, Li3MZn5(BH4)15, M = Mg and Mn, represent the first trimetallic borohydrides and are also new cationic solid solutions. These materials were prepared by mechanochemical synthesis from LiBH4, MCl2 or M(BH4)2, and ZnCl2. The compounds are isostructural, and their crystal structure was characterized by in situ synchrotron radiation powder X-ray and neutron diffraction and DFT calculations. While diffraction provides an average view of the structure as hexagonal (a = 15.371(3), c = 8.586(2) Å, space group P63/mcm for Mg-compound at room temperature), the DFT optimization of locally ordered models suggests a related ortho-hexagonal cell. Ordered models that maximize Mg-Mg separation have the lowest DFT energy, suggesting that the hexagonal structure seen by diffraction is a superposition of three such orthorhombic structures in three orientations along the hexagonal c-axis. No conclusion about the coherent length of the orthorhombic structure can be however done. The framework in Li3MZn5(BH4)15 is of a new type. It contains channels built from face-sharing (BH4)6 octahedra. While X-ray and neutron powder diffraction preferentially localize lithium in the center of the octahedra, thus resulting in two weakly interconnected frameworks of a new type, the DFT calculations clearly favor lithium inside the shared triangular faces, leading to two interpenetrated mco-nets (mco-c type) with the basic tile being built from three tfa tiles, which is the framework type of the related bimetallic LiZn2(BH4)5. The new borohydrides Li3MZn5(BH4)15 are potentially interesting as solid-state electrolytes, if the lithium mobility within the octahedral channels is improved by disordering the site via heterovalent substitution. From a hydrogen storage point of view, their application seems to be limited as the compounds decompose to three known metal borohydrides.

17.
JACS Au ; 2(1): 136-149, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35098230

RESUMEN

Lead-free perovskites are attracting increasing interest as nontoxic materials for advanced optoelectronic applications. Here, we report on a family of silver/bismuth bromide double perovskites with lower dimensionality obtained by incorporating phenethylammonium (PEA) as an organic spacer, leading to the realization of two-dimensional double perovskites in the form of (PEA)4AgBiBr8 (n = 1) and the first reported (PEA)2CsAgBiBr7 (n = 2). In contrast to the situation prevailing in lead halide perovskites, we find a rather weak influence of electronic and dielectric confinement on the photophysics of the lead-free double perovskites, with both the 3D Cs2AgBiBr6 and the 2D n = 1 and n = 2 materials being dominated by strong excitonic effects. The large measured Stokes shift is explained by the inherent soft character of the double-perovskite lattices, rather than by the often-invoked band to band indirect recombination. We discuss the implications of these results for the use of double perovskites in light-emitting applications.

18.
Nanoscale ; 14(18): 6771-6776, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35403184

RESUMEN

Layered hybrid perovskites are based on organic spacers separating hybrid perovskite slabs. We employ arene and perfluoroarene moieties based on 1,4-phenylenedimethylammonium (PDMA) and its perfluorinated analogue (F-PDMA) in the assembly of hybrid layered Dion-Jacobson perovskite phases. The resulting materials are investigated by X-ray diffraction, UV-vis absorption, photoluminescence, and solid-state NMR spectroscopy to demonstrate the formation of layered perovskite phases. Moreover, their behaviour was probed in humid environments to reveal nanoscale segregation of layered perovskite species based on PDMA and F-PDMA components, along with enhanced stabilities of perfluoroarene systems, which is relevant to their application.

19.
ChemSusChem ; 14(14): 3001-3009, 2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34075712

RESUMEN

Incorporating extended pi-conjugated organic cations in layered lead halide perovskites is a recent trend promising to merge the fields of organic semiconductors and lead halide perovskites. Herein, we integrate benzodithiophene (BDT) into Ruddlesden-Popper (RP) layered and quasi-layered lead iodide thin films (with methylammonium, MA) of the form (BDT)2 MAn-1 Pbn I3n+1 . The importance of tuning the ligand chemical structure is shown as an alkyl chain length of at least six carbon atoms is required to form a photoactive RP (n=1) phase. With N=20 or 100, as prepared in the precursor solution following the formula (BDT)2 MAN-1 PbN I3N+1 , the performance and stability of devices surpassed those with phenylethylammonium (PEA). For N=100, the BDT cation gave a power conversion efficiency of up to 14.7 % vs. 13.7 % with PEA. Transient photocurrent, UV photoelectron spectroscopy, and Fourier transform infrared spectroscopy point to improved charge transport in the device active layer and additional electronic states close to the valence band, suggesting the formation of a Lewis adduct between the BDT and surface iodide vacancies.

20.
Chem Mater ; 33(11): 4035-4044, 2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34121808

RESUMEN

The flexibility of the ZIF-8 aperture, which inhibits a molecular cutoff of 3.4 Å, can be reduced by rapid heat treatment to obtain CO2-selective membranes. However, the early stages of the structural, morphological, and chemical changes responsible for the lattice rigidification remain elusive. Herein, using ex situ and in situ experiments, we determine that a small shrinkage of the unit-cell parameter, ∼0.2%, is mainly responsible for this transformation. Systematic gas permeation studies show that one needs to achieve this shrinkage without a disproportionately large shrinkage in the grain size of the polycrystalline film to avoid the formation of cracks. We show that this condition is uniquely achieved in a short time by exposure of ZIF-8 to a mildly humid environment where lattice parameter shrinkage is accelerated by the incorporation of linker vacancy defects, while the shrinkage in grain size is limited. The water-vapor-led incorporation of linker vacancy defects takes place with an energy barrier of 123 kJ mol-1, much higher than that for the thermal degradation of ZIF-8, <80 kJ mol-1. The latter is promoted by heat treatment in a dry environment at a relatively higher temperature; however, this condition does not shrink the lattice parameters at short exposure time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA