Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brief Bioinform ; 24(5)2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37670505

RESUMEN

A key problem in systems biology is the discovery of regulatory mechanisms that drive phenotypic behaviour of complex biological systems in the form of multi-level networks. Modern multi-omics profiling techniques probe these fundamental regulatory networks but are often hampered by experimental restrictions leading to missing data or partially measured omics types for subsets of individuals due to cost restrictions. In such scenarios, in which missing data is present, classical computational approaches to infer regulatory networks are limited. In recent years, approaches have been proposed to infer sparse regression models in the presence of missing information. Nevertheless, these methods have not been adopted for regulatory network inference yet. In this study, we integrated regression-based methods that can handle missingness into KiMONo, a Knowledge guided Multi-Omics Network inference approach, and benchmarked their performance on commonly encountered missing data scenarios in single- and multi-omics studies. Overall, two-step approaches that explicitly handle missingness performed best for a wide range of random- and block-missingness scenarios on imbalanced omics-layers dimensions, while methods implicitly handling missingness performed best on balanced omics-layers dimensions. Our results show that robust multi-omics network inference in the presence of missing data with KiMONo is feasible and thus allows users to leverage available multi-omics data to its full extent.


Asunto(s)
Benchmarking , Multiómica , Humanos , Biología de Sistemas
2.
Thorax ; 79(6): 524-537, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38286613

RESUMEN

INTRODUCTION: Environmental pollutants injure the mucociliary elevator, thereby provoking disease progression in chronic obstructive pulmonary disease (COPD). Epithelial resilience mechanisms to environmental nanoparticles in health and disease are poorly characterised. METHODS: We delineated the impact of prevalent pollutants such as carbon and zinc oxide nanoparticles, on cellular function and progeny in primary human bronchial epithelial cells (pHBECs) from end-stage COPD (COPD-IV, n=4), early disease (COPD-II, n=3) and pulmonary healthy individuals (n=4). After nanoparticle exposure of pHBECs at air-liquid interface, cell cultures were characterised by functional assays, transcriptome and protein analysis, complemented by single-cell analysis in serial samples of pHBEC cultures focusing on basal cell differentiation. RESULTS: COPD-IV was characterised by a prosecretory phenotype (twofold increase in MUC5AC+) at the expense of the multiciliated epithelium (threefold reduction in Ac-Tub+), resulting in an increased resilience towards particle-induced cell damage (fivefold reduction in transepithelial electrical resistance), as exemplified by environmentally abundant doses of zinc oxide nanoparticles. Exposure of COPD-II cultures to cigarette smoke extract provoked the COPD-IV characteristic, prosecretory phenotype. Time-resolved single-cell transcriptomics revealed an underlying COPD-IV unique basal cell state characterised by a twofold increase in KRT5+ (P=0.018) and LAMB3+ (P=0.050) expression, as well as a significant activation of Wnt-specific (P=0.014) and Notch-specific (P=0.021) genes, especially in precursors of suprabasal and secretory cells. CONCLUSION: We identified COPD stage-specific gene alterations in basal cells that affect the cellular composition of the bronchial elevator and may control disease-specific epithelial resilience mechanisms in response to environmental nanoparticles. The identified phenomena likely inform treatment and prevention strategies.


Asunto(s)
Células Epiteliales , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/etiología , Células Epiteliales/metabolismo , Masculino , Persona de Mediana Edad , Células Cultivadas , Bronquios/patología , Femenino , Anciano , Óxido de Zinc , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Cilios , Nanopartículas , Diferenciación Celular
3.
Am J Physiol Lung Cell Mol Physiol ; 324(2): L114-L122, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36410026

RESUMEN

Neonatal chronic lung disease lacks standardized assessment of lung structural changes. We addressed this clinical need by the development of a novel scoring system [UNSEAL BPD (UNiforme Scoring of the disEAsed Lung in BPD)] using T2-weighted single-shot fast-spin-echo sequences from 3 T MRI in very premature infants with and without bronchopulmonary dysplasia (BPD). Quantification of interstitial and airway remodeling, emphysematous changes, and ventilation inhomogeneity was achieved by consensus scoring on a five-point Likert scale. We successfully identified moderate and severe disease by logistic regression [area under the curve (AUC), 0.89] complemented by classification tree analysis revealing gestational age-specific structural changes. We demonstrated substantial interreader reproducibility (weighted Cohen's κ 0.69) and disease specificity (AUC = 0.91). Our novel MRI score enables the standardized assessment of disease-characteristic structural changes in the preterm lung exhibiting significant potential as a quantifiable endpoint in early intervention clinical trials and long-term disease monitoring.


Asunto(s)
Displasia Broncopulmonar , Recien Nacido Prematuro , Lactante , Humanos , Recién Nacido , Displasia Broncopulmonar/diagnóstico por imagen , Displasia Broncopulmonar/patología , Reproducibilidad de los Resultados , Pulmón/diagnóstico por imagen , Pulmón/patología , Edad Gestacional , Imagen por Resonancia Magnética
4.
Eur Respir J ; 62(6)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37678954

RESUMEN

BACKGROUND: Pulmonary vascular disease (PVD) affects the majority of preterm neonates with bronchopulmonary dysplasia (BPD) and significantly determines long-term mortality through undetected progression into pulmonary hypertension. Our objectives were to associate characteristics of pulmonary artery (PA) flow and cardiac function with BPD-associated PVD near term using advanced magnetic resonance imaging (MRI) for improved risk stratification. METHODS: Preterms <32 weeks postmenstrual age (PMA) with/without BPD were clinically monitored including standard echocardiography and prospectively enrolled for 3 T MRI in spontaneous sleep near term (AIRR (Attention to Infants at Respiratory Risks) study). Semi-manual PA flow quantification (phase-contrast MRI; no BPD n=28, mild BPD n=35 and moderate/severe BPD n=25) was complemented by cardiac function assessment (cine MRI). RESULTS: We identified abnormalities in PA flow and cardiac function, i.e. increased net forward volume right/left ratio, decreased mean relative area change and pathological right end-diastolic volume, to sensitively detect BPD-associated PVD while correcting for PMA (leave-one-out area under the curve 0.88, sensitivity 0.80 and specificity 0.81). We linked these changes to increased right ventricular (RV) afterload (RV-arterial coupling (p=0.02), PA mid-systolic notching (t2; p=0.015) and cardiac index (p=1.67×10-8)) and correlated echocardiographic findings. Identified in moderate/severe BPD, we successfully applied the PA flow model in heterogeneous mild BPD cases, demonstrating strong correlation of PVD probability with indicators of BPD severity, i.e. duration of mechanical ventilation (rs=0.63, p=2.20×10-4) and oxygen supplementation (rs=0.60, p=6.00×10-4). CONCLUSIONS: Abnormalities in MRI PA flow and cardiac function exhibit significant, synergistic potential to detect BPD-associated PVD, advancing the possibilities of risk-adapted monitoring.


Asunto(s)
Displasia Broncopulmonar , Hipertensión Pulmonar , Enfermedades Vasculares , Recién Nacido , Lactante , Humanos , Arteria Pulmonar/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Displasia Broncopulmonar/diagnóstico por imagen , Imagen por Resonancia Magnética , Enfermedades Vasculares/complicaciones
5.
PLoS Pathog ; 17(10): e1009742, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34614036

RESUMEN

Disease manifestations in COVID-19 range from mild to severe illness associated with a dysregulated innate immune response. Alterations in function and regeneration of dendritic cells (DCs) and monocytes may contribute to immunopathology and influence adaptive immune responses in COVID-19 patients. We analyzed circulating DC and monocyte subsets in 65 hospitalized COVID-19 patients with mild/moderate or severe disease from acute illness to recovery and in healthy controls. Persisting reduction of all DC subpopulations was accompanied by an expansion of proliferating Lineage-HLADR+ cells lacking DC markers. Increased frequency of CD163+ CD14+ cells within the recently discovered DC3 subpopulation in patients with more severe disease was associated with systemic inflammation, activated T follicular helper cells, and antibody-secreting cells. Persistent downregulation of CD86 and upregulation of programmed death-ligand 1 (PD-L1) in conventional DCs (cDC2 and DC3) and classical monocytes associated with a reduced capacity to stimulate naïve CD4+ T cells correlated with disease severity. Long-lasting depletion and functional impairment of DCs and monocytes may have consequences for susceptibility to secondary infections and therapy of COVID-19 patients.


Asunto(s)
COVID-19/inmunología , Células Dendríticas/inmunología , Regeneración/inmunología , SARS-CoV-2/inmunología , Adulto , Antígenos CD/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , COVID-19/patología , Células Dendríticas/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Monocitos/inmunología , Monocitos/patología , Receptor de Muerte Celular Programada 1/inmunología
6.
Bioinformatics ; 36(Suppl_2): i643-i650, 2020 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-33381831

RESUMEN

MOTIVATION: Conceptually, epitope-based vaccine design poses two distinct problems: (i) selecting the best epitopes to elicit the strongest possible immune response and (ii) arranging and linking them through short spacer sequences to string-of-beads vaccines, so that their recovery likelihood during antigen processing is maximized. Current state-of-the-art approaches solve this design problem sequentially. Consequently, such approaches are unable to capture the inter-dependencies between the two design steps, usually emphasizing theoretical immunogenicity over correct vaccine processing, thus resulting in vaccines with less effective immunogenicity in vivo. RESULTS: In this work, we present a computational approach based on linear programming, called JessEV, that solves both design steps simultaneously, allowing to weigh the selection of a set of epitopes that have great immunogenic potential against their assembly into a string-of-beads construct that provides a high chance of recovery. We conducted Monte Carlo cleavage simulations to show that a fixed set of epitopes often cannot be assembled adequately, whereas selecting epitopes to accommodate proper cleavage requirements substantially improves their recovery probability and thus the effective immunogenicity, pathogen and population coverage of the resulting vaccines by at least 2-fold. AVAILABILITY AND IMPLEMENTATION: The software and the data analyzed are available at https://github.com/SchubertLab/JessEV. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Vacunas , Epítopos , Epítopos de Linfocito T , Programas Informáticos
7.
Mol Syst Biol ; 16(8): e9416, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32779888

RESUMEN

It has recently become possible to simultaneously assay T-cell specificity with respect to large sets of antigens and the T-cell receptor sequence in high-throughput single-cell experiments. Leveraging this new type of data, we propose and benchmark a collection of deep learning architectures to model T-cell specificity in single cells. In agreement with previous results, we found that models that treat antigens as categorical outcome variables outperform those that model the TCR and antigen sequence jointly. Moreover, we show that variability in single-cell immune repertoire screens can be mitigated by modeling cell-specific covariates. Lastly, we demonstrate that the number of bound pMHC complexes can be predicted in a continuous fashion providing a gateway to disentangle cell-to-dextramer binding strength and receptor-to-pMHC affinity. We provide these models in the Python package TcellMatch to allow imputation of antigen specificities in single-cell RNA-seq studies on T cells without the need for MHC staining.


Asunto(s)
Biología Computacional/métodos , Antígenos de Histocompatibilidad/metabolismo , Complejo Receptor-CD3 del Antígeno de Linfocito T/metabolismo , Análisis de la Célula Individual/métodos , Linfocitos T/inmunología , Secuencia de Aminoácidos , Animales , Aprendizaje Profundo , Antígenos de Histocompatibilidad/genética , Humanos , Complejo Receptor-CD3 del Antígeno de Linfocito T/genética , Análisis de Secuencia de ARN , Aprendizaje Automático Supervisado
8.
PLoS Comput Biol ; 16(10): e1008237, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33095790

RESUMEN

Epitope-based vaccines have revolutionized vaccine research in the last decades. Due to their complex nature, bioinformatics plays a pivotal role in their development. However, existing algorithms address only specific parts of the design process or are unable to provide formal guarantees on the quality of the solution. We present a unifying formalism of the general epitope vaccine design problem that tackles all phases of the design process simultaneously and combines all prevalent design principles. We then demonstrate how to formulate the developed formalism as an integer linear program, which guarantees optimality of the designs. This makes it possible to explore new regions of the vaccine design space, analyze the trade-offs between the design phases, and balance the many requirements of vaccines.


Asunto(s)
Biología Computacional/métodos , Epítopos de Linfocito T , Vacunas , Vacunas contra el SIDA/genética , Vacunas contra el SIDA/inmunología , Algoritmos , Epítopos de Linfocito T/química , Epítopos de Linfocito T/inmunología , Genoma Viral/genética , VIH-1/genética , Humanos , Inmunogenicidad Vacunal/inmunología , Proyectos de Investigación
9.
Bioinformatics ; 35(24): 5171-5181, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31038669

RESUMEN

MOTIVATION: Breast cancer is the second leading cause of cancer death among women. Tumors, even of the same histopathological subtype, exhibit a high genotypic diversity that impedes therapy stratification and that hence must be accounted for in the treatment decision-making process. RESULTS: Here, we present ClinOmicsTrailbc, a comprehensive visual analytics tool for breast cancer decision support that provides a holistic assessment of standard-of-care targeted drugs, candidates for drug repositioning and immunotherapeutic approaches. To this end, our tool analyzes and visualizes clinical markers and (epi-)genomics and transcriptomics datasets to identify and evaluate the tumor's main driver mutations, the tumor mutational burden, activity patterns of core cancer-relevant pathways, drug-specific biomarkers, the status of molecular drug targets and pharmacogenomic influences. In order to demonstrate ClinOmicsTrailbc's rich functionality, we present three case studies highlighting various ways in which ClinOmicsTrailbc can support breast cancer precision medicine. ClinOmicsTrailbc is a powerful integrated visual analytics tool for breast cancer research in general and for therapy stratification in particular, assisting oncologists to find the best possible treatment options for their breast cancer patients based on actionable, evidence-based results. AVAILABILITY AND IMPLEMENTATION: ClinOmicsTrailbc can be freely accessed at https://clinomicstrail.bioinf.uni-sb.de. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Neoplasias de la Mama , Mama , Biología Computacional , Femenino , Genómica , Humanos , Medicina de Precisión
10.
Bioinformatics ; 35(9): 1582-1584, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30304492

RESUMEN

SUMMARY: Coevolutionary sequence analysis has become a commonly used technique for de novo prediction of the structure and function of proteins, RNA, and protein complexes. We present the EVcouplings framework, a fully integrated open-source application and Python package for coevolutionary analysis. The framework enables generation of sequence alignments, calculation and evaluation of evolutionary couplings (ECs), and de novo prediction of structure and mutation effects. The combination of an easy to use, flexible command line interface and an underlying modular Python package makes the full power of coevolutionary analyses available to entry-level and advanced users. AVAILABILITY AND IMPLEMENTATION: https://github.com/debbiemarkslab/evcouplings.


Asunto(s)
Análisis de Secuencia , Programas Informáticos , Proteínas , ARN , Alineación de Secuencia
11.
PLoS Pathog ; 14(10): e1007368, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30335851

RESUMEN

Infection with human BK polyomavirus, a small double-stranded DNA virus, potentially results in severe complications in immunocompromised patients. Here, we describe the in vivo variability and evolution of the BK polyomavirus by deep sequencing. Our data reveal the highest genomic evolutionary rate described in double-stranded DNA viruses, i.e., 10(-3)-10(-5) substitutions per nucleotide site per year. High mutation rates in viruses allow their escape from immune surveillance and adaptation to new hosts. By combining mutational landscapes across viral genomes with in silico prediction of viral peptides, we demonstrate the presence of significantly more coding substitutions within predicted cognate HLA-C-bound viral peptides than outside. This finding suggests a role for HLA-C in antiviral immunity, perhaps through the action of killer cell immunoglobulin-like receptors. The present study provides a comprehensive view of viral evolution and immune escape in a DNA virus.


Asunto(s)
Virus BK/genética , Antígenos HLA-C/metabolismo , Mutación , Trasplante de Órganos , Fragmentos de Péptidos/metabolismo , Infecciones por Polyomavirus/virología , Sustitución de Aminoácidos , Virus BK/inmunología , Genoma Viral , Antígenos HLA-C/genética , Antígenos HLA-C/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/inmunología , Filogenia , Infecciones por Polyomavirus/genética , Infecciones por Polyomavirus/inmunología
12.
PLoS Comput Biol ; 14(3): e1005983, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29499035

RESUMEN

Immunogenicity is a major problem during the development of biotherapeutics since it can lead to rapid clearance of the drug and adverse reactions. The challenge for biotherapeutic design is therefore to identify mutants of the protein sequence that minimize immunogenicity in a target population whilst retaining pharmaceutical activity and protein function. Current approaches are moderately successful in designing sequences with reduced immunogenicity, but do not account for the varying frequencies of different human leucocyte antigen alleles in a specific population and in addition, since many designs are non-functional, require costly experimental post-screening. Here, we report a new method for de-immunization design using multi-objective combinatorial optimization. The method simultaneously optimizes the likelihood of a functional protein sequence at the same time as minimizing its immunogenicity tailored to a target population. We bypass the need for three-dimensional protein structure or molecular simulations to identify functional designs by automatically generating sequences using probabilistic models that have been used previously for mutation effect prediction and structure prediction. As proof-of-principle we designed sequences of the C2 domain of Factor VIII and tested them experimentally, resulting in a good correlation with the predicted immunogenicity of our model.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Biología Computacional/métodos , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/uso terapéutico , Secuencia de Aminoácidos , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/genética , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
13.
BMC Bioinformatics ; 18(1): 242, 2017 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-28482806

RESUMEN

BACKGROUND: Immunoinformatics has become a crucial part in biomedical research. Yet many immunoinformatics tools have command line interfaces only and can be difficult to install. Web-based immunoinformatics tools, on the other hand, are difficult to integrate with other tools, which is typically required for the complex analysis and prediction pipelines required for advanced applications. RESULT: We present ImmunoNodes, an immunoinformatics toolbox that is fully integrated into the visual workflow environment KNIME. By dragging and dropping tools and connecting them to indicate the data flow through the pipeline, it is possible to construct very complex workflows without the need for coding. CONCLUSION: ImmunoNodes allows users to build complex workflows with an easy to use and intuitive interface with a few clicks on any desktop computer.


Asunto(s)
Alergia e Inmunología , Biología Computacional/métodos , Gráficos por Computador , Programas Informáticos , Flujo de Trabajo , Secuencia de Aminoácidos , Epítopos/química , Antígenos HLA/inmunología , Humanos , Ligandos , Vacunas Virales/inmunología , Virus Zika/inmunología
14.
Bioinformatics ; 32(13): 2044-6, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27153717

RESUMEN

UNLABELLED: Immunoinformatics approaches are widely used in a variety of applications from basic immunological to applied biomedical research. Complex data integration is inevitable in immunological research and usually requires comprehensive pipelines including multiple tools and data sources. Non-standard input and output formats of immunoinformatics tools make the development of such applications difficult. Here we present FRED 2, an open-source immunoinformatics framework offering easy and unified access to methods for epitope prediction and other immunoinformatics applications. FRED 2 is implemented in Python and designed to be extendable and flexible to allow rapid prototyping of complex applications. AVAILABILITY AND IMPLEMENTATION: FRED 2 is available at http://fred-2.github.io CONTACT: schubert@informatik.uni-tuebingen.de SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional/métodos , Epítopos de Linfocito T/química , Programas Informáticos , Humanos , Almacenamiento y Recuperación de la Información , Vacunas/química , Vacunas/inmunología
15.
Bioinformatics ; 31(13): 2211-3, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25712691

RESUMEN

UNLABELLED: EpiToolKit is a virtual workbench for immunological questions with a focus on vaccine design. It offers an array of immunoinformatics tools covering MHC genotyping, epitope and neo-epitope prediction, epitope selection for vaccine design, and epitope assembly. In its recently re-implemented version 2.0, EpiToolKit provides a range of new functionality and for the first time allows combining tools into complex workflows. For inexperienced users it offers simplified interfaces to guide the users through the analysis of complex immunological data sets. AVAILABILITY AND IMPLEMENTATION: http://www.epitoolkit.de CONTACT: schubert@informatik.uni-tuebingen.de SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional/métodos , Epítopos/química , Internet , Complejo Mayor de Histocompatibilidad/inmunología , Proteínas/inmunología , Programas Informáticos , Vacunas/inmunología , Humanos , Complejo Mayor de Histocompatibilidad/genética , Vacunas/química
16.
Bioinformatics ; 30(23): 3310-6, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25143287

RESUMEN

MOTIVATION: The human leukocyte antigen (HLA) gene cluster plays a crucial role in adaptive immunity and is thus relevant in many biomedical applications. While next-generation sequencing data are often available for a patient, deducing the HLA genotype is difficult because of substantial sequence similarity within the cluster and exceptionally high variability of the loci. Established approaches, therefore, rely on specific HLA enrichment and sequencing techniques, coming at an additional cost and extra turnaround time. RESULT: We present OptiType, a novel HLA genotyping algorithm based on integer linear programming, capable of producing accurate predictions from NGS data not specifically enriched for the HLA cluster. We also present a comprehensive benchmark dataset consisting of RNA, exome and whole-genome sequencing data. OptiType significantly outperformed previously published in silico approaches with an overall accuracy of 97% enabling its use in a broad range of applications.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Prueba de Histocompatibilidad/métodos , Análisis de Secuencia de ADN/métodos , Algoritmos , Exoma , Técnicas de Genotipaje , Antígenos HLA/genética , Humanos , Intrones
17.
Nat Commun ; 15(1): 5577, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38956082

RESUMEN

Recent advances in single-cell immune profiling have enabled the simultaneous measurement of transcriptome and T cell receptor (TCR) sequences, offering great potential for studying immune responses at the cellular level. However, integrating these diverse modalities across datasets is challenging due to their unique data characteristics and technical variations. Here, to address this, we develop the multimodal generative model mvTCR to fuse modality-specific information across transcriptome and TCR into a shared representation. Our analysis demonstrates the added value of multimodal over unimodal approaches to capture antigen specificity. Notably, we use mvTCR to distinguish T cell subpopulations binding to SARS-CoV-2 antigens from bystander cells. Furthermore, when combined with reference mapping approaches, mvTCR can map newly generated datasets to extensive T cell references, facilitating knowledge transfer. In summary, we envision mvTCR to enable a scalable analysis of multimodal immune profiling data and advance our understanding of immune responses.


Asunto(s)
COVID-19 , Receptores de Antígenos de Linfocitos T , SARS-CoV-2 , Análisis de la Célula Individual , Transcriptoma , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Análisis de la Célula Individual/métodos , Humanos , SARS-CoV-2/inmunología , SARS-CoV-2/genética , COVID-19/inmunología , COVID-19/virología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Perfilación de la Expresión Génica/métodos , Antígenos Virales/inmunología , Antígenos Virales/genética
18.
Artículo en Inglés | MEDLINE | ID: mdl-38083521

RESUMEN

Colorimetric sensors represent an accessible and sensitive nanotechnology for rapid and accessible measurement of a substance's properties (e.g., analyte concentration) via color changes. Although colorimetric sensors are widely used in healthcare and laboratories, interpretation of their output is performed either by visual inspection or using cameras in highly controlled illumination set-ups, limiting their usage in end-user applications, with lower resolutions and altered light conditions. For that purpose, we implement a set of image processing and deep-learning (DL) methods that correct for non-uniform illumination alterations and accurately read the target variable from the color response of the sensor. Methods that perform both tasks independently vs. jointly in a multi-task model are evaluated. Video recordings of colorimetric sensors measuring temperature conditions were collected to build an experimental reference dataset. Sensor images were augmented with non-uniform color alterations. The best-performing DL architecture disentangles the luminance, chrominance, and noise via separate decoders and integrates a regression task in the latent space to predict the sensor readings, achieving a mean squared error (MSE) performance of 0.811±0.074[°C] and r2=0.930±0.007, under strong color perturbations, resulting in an improvement of 1.26[°C] when compared to the MSE of the best performing method with independent denoising and regression tasks.Clinical Relevance- The proposed methodology aims to improve the accuracy of colorimetric sensor reading and their large-scale accessibility as point-of-care diagnostic and continuous health monitoring devices, in altered illumination conditions.


Asunto(s)
Aprendizaje Profundo , Colorimetría , Iluminación , Procesamiento de Imagen Asistido por Computador/métodos , Examen Físico
19.
Radiol Artif Intell ; 5(6): e220239, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38074782

RESUMEN

Purpose: To analyze the performance of deep learning (DL) models for segmentation of the neonatal lung in MRI and investigate the use of automated MRI-based features for assessment of neonatal lung disease. Materials and Methods: Quiet-breathing MRI was prospectively performed in two independent cohorts of preterm infants (median gestational age, 26.57 weeks; IQR, 25.3-28.6 weeks; 55 female and 48 male infants) with (n = 86) and without (n = 21) chronic lung disease (bronchopulmonary dysplasia [BPD]). Convolutional neural networks were developed for lung segmentation, and a three-dimensional reconstruction was used to calculate MRI features for lung volume, shape, pixel intensity, and surface. These features were explored as indicators of BPD and disease-associated lung structural remodeling through correlation with lung injury scores and multinomial models for BPD severity stratification. Results: The lung segmentation model reached a volumetric Dice coefficient of 0.908 in cross-validation and 0.880 on the independent test dataset, matching expert-level performance across disease grades. MRI lung features demonstrated significant correlations with lung injury scores and added structural information for the separation of neonates with BPD (BPD vs no BPD: average area under the receiver operating characteristic curve [AUC], 0.92 ± 0.02 [SD]; no or mild BPD vs moderate or severe BPD: average AUC, 0.84 ± 0.03). Conclusion: This study demonstrated high performance of DL models for MRI neonatal lung segmentation and showed the potential of automated MRI features for diagnostic assessment of neonatal lung disease while avoiding radiation exposure.Keywords: Bronchopulmonary Dysplasia, Chronic Lung Disease, Preterm Infant, Lung Segmentation, Lung MRI, BPD Severity Assessment, Deep Learning, Lung Imaging Biomarkers, Lung Topology Supplemental material is available for this article. Published under a CC BY 4.0 license.See also the commentary by Parraga and Sharma in this issue.

20.
Biochim Biophys Acta Mol Basis Dis ; 1869(2): 166592, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36328146

RESUMEN

SARS-CoV-2 remains an acute threat to human health, endangering hospital capacities worldwide. Previous studies have aimed at informing pathophysiologic understanding and identification of disease indicators for risk assessment, monitoring, and therapeutic guidance. While findings start to emerge in the general population, observations in high-risk patients with complex pre-existing conditions are limited. We addressed the gap of existing knowledge with regard to a differentiated understanding of disease dynamics in SARS-CoV-2 infection while specifically considering disease stage and severity. We biomedically characterized quantitative proteomics in a hospitalized cohort of COVID-19 patients with mild to severe symptoms suffering from different (co)-morbidities in comparison to both healthy individuals and patients with non-COVID related inflammation. Deep clinical phenotyping enabled the identification of individual disease trajectories in COVID-19 patients. By the use of the individualized disease phase assignment, proteome analysis revealed a severity dependent general type-2-centered host response side-by-side with a disease specific antiviral immune reaction in early disease. The identification of phenomena such as neutrophil extracellular trap (NET) formation and a pro-coagulatory response characterizing severe disease was successfully validated in a second cohort. Together with the regulation of proteins related to SARS-CoV-2-specific symptoms identified by proteome screening, we not only confirmed results from previous studies but provide novel information for biomarker and therapy development.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Antivirales , Proteoma/metabolismo , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA