Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Biomed Microdevices ; 23(2): 30, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-34059973

RESUMEN

Human stem cell-derived cells and tissues hold considerable potential for applications in regenerative medicine, disease modeling and drug discovery. The generation, culture and differentiation of stem cells in low-volume, automated and parallelized microfluidic chips hold great promise to accelerate the research in this domain. Here, we show that we can differentiate human embryonic stem cells (hESCs) to early cardiac mesodermal cells in microfluidic chambers that have a volume of only 30 nanoliters, using discontinuous medium perfusion. 64 of these chambers were parallelized on a chip which contained integrated valves to spatiotemporally isolate the chambers and automate cell culture medium exchanges. To confirm cell pluripotency, we tracked hESC proliferation and immunostained the cells for pluripotency markers SOX2 and OCT3/4. During differentiation, we investigated the effect of different medium perfusion frequencies on cell reorganization and the expression of the early cardiac mesoderm reporter MESP1mCherry by live-cell imaging. Our study demonstrates that microfluidic technology can be used to automatically culture, differentiate and study hESC in very low-volume culture chambers even without continuous medium perfusion. This result is an important step towards further automation and parallelization in stem cell technology.


Asunto(s)
Células Madre Embrionarias Humanas , Técnicas de Cultivo de Célula , Diferenciación Celular , Humanos , Mesodermo , Microfluídica
2.
J Mol Cell Cardiol ; 141: 54-64, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32205183

RESUMEN

Cardiovascular disease is often associated with cardiac remodeling, including cardiac fibrosis, which may lead to increased stiffness of the heart wall. This stiffness in turn may cause subsequent failure of cardiac myocytes, however the response of these cells to increased substrate stiffness is largely unknown. To investigate the contractile response of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) to increased substrate stiffness, we generated a stable transgenic human pluripotent stem cell line expressing a fusion protein of α-Actinin and fluorescent mRubyII in a previously characterized NKX2.5-GFP reporter line. Cardiomyocytes differentiated from this line were subjected to a substrate with stiffness ranging from 4 kPa to 101 kPa, while contraction of sarcomeres and bead displacement in the substrate were measured for each single cardiomyocyte. We found that sarcomere dynamics in hPSC-CMs on polyacrylamide gels of increasing stiffness are not affected above physiological levels (21 kPa), but that contractile force increases up to a stiffness of 90 kPa, at which cell shortening, deducted from bead displacement, is significantly reduced compared to physiological stiffness. We therefore hypothesize that this discrepancy may be the cause of intracellular stress that leads to hypertrophy and consequent heart failure in vivo.


Asunto(s)
Actinina/metabolismo , Genes Reporteros , Contracción Miocárdica/fisiología , Miocitos Cardíacos/metabolismo , Acrilamida/química , Actinina/genética , Secuencia de Bases , Fenómenos Biomecánicos , Diferenciación Celular , Femenino , Fluorescencia , Gelatina/química , Proteína Homeótica Nkx-2.5/metabolismo , Humanos , Miocitos Cardíacos/citología , Células Madre Pluripotentes/citología , Sarcómeros/metabolismo , Especificidad por Sustrato
3.
Differentiation ; 91(4-5): 126-38, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26915912

RESUMEN

Efficient and reproducible generation and purification of human stem cell-derived cardiomyocytes (CMs) is crucial for regenerative medicine, disease modeling, drug screening and study of developmental events during cardiac specification. Established methods to generate CMs from human pluripotent stem cells (hPSCs) include the Spin-embryoid body (Spin-EB) and monolayer-based differentiation protocol. In the presence of an optimized cocktail of growth factors under defined conditions, hPSCs differentiate efficiently into functional contracting CMs within 10 days. Nevertheless, despite high efficiencies, cardiac-directed differentiations of hPSCs typically result in heterogeneous populations comprised of both CMs and uncharacterized non-cardiac cell-types. Therefore, generation of pure populations of stem cell-derived CMs is of fundamental importance for basic cardiac research and pre-clinical and possible clinical applications. For the purification of CMs from heterogeneous populations, fluorescent activated cell sorting (FACS) is a widely appreciated method. Nonetheless, FACS-based isolation of CMs comes along with several disadvantages, such as undesired contaminations and low viability of target cells. Here, we describe a convenient and rapid procedure for the purification of hPSCs-derived CMs under sterile culture conditions, resulting in high purity and viability of sorted CMs. Purification with VCAMI-coupled magnetic Dynabeads led to robust enrichment of CMs, which will especially be important for cardiac differentiations of cell lines with poor differentiation efficiencies. In addition, this will also be beneficial for the standardization and reproducibility of human stem cell-derived assays in the fields of cardiac disease modeling, drug discovery and disease modeling.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/genética , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Línea Celular , Separación Celular/métodos , Humanos
4.
Adv Healthc Mater ; : e2303664, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38471185

RESUMEN

Advanced in vitro models that recapitulate the structural organization and function of the human heart are highly needed for accurate disease modeling, more predictable drug screening, and safety pharmacology. Conventional 3D Engineered Heart Tissues (EHTs) lack heterotypic cell complexity and culture under flow, whereas microfluidic Heart-on-Chip (HoC) models in general lack the 3D configuration and accurate contractile readouts. In this study, an innovative and user-friendly HoC model is developed to overcome these limitations, by culturing human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs), endothelial (ECs)- and smooth muscle cells (SMCs), together with human cardiac fibroblasts (FBs), underflow, leading to self-organized miniaturized micro-EHTs (µEHTs) with a CM-EC interface reminiscent of the physiological capillary lining. µEHTs cultured under flow display enhanced contractile performance and conduction velocity. In addition, the presence of the EC layer altered drug responses in µEHT contraction. This observation suggests a potential barrier-like function of ECs, which may affect the availability of drugs to the CMs. These cardiac models with increased physiological complexity, will pave the way to screen for therapeutic targets and predict drug efficacy.

5.
iScience ; 27(3): 109139, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38384853

RESUMEN

Cardiotoxicity remains a major cause of drug withdrawal, partially due to lacking predictability of animal models. Additionally, risk of cardiotoxicity following treatment of cancer patients is treatment limiting. It is unclear which patients will develop heart failure following therapy. Human pluripotent stem cell (hPSC)-derived cardiomyocytes present an unlimited cell source and may offer individualized solutions to this problem. We developed a platform to predict molecular and functional aspects of cardiotoxicity. Our platform can discriminate between the different cardiotoxic mechanisms of existing and novel anthracyclines Doxorubicin, Aclarubicin, and Amrubicin. Doxorubicin and Aclarubicin unlike Amrubicin substantially affected the transcriptome, mitochondrial membrane integrity, contractile force and transcription factor availability. Cardiomyocytes recovered fully within two or three weeks, corresponding to the intermittent clinical treatment regimen. Our system permits the study of hPSC-cardiomyocyte recovery and the effects of accumulated dose after multiple dosing, allowing individualized cardiotoxicity evaluation, which effects millions of cancer patients treated annually.

6.
Biomedicines ; 11(9)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37760796

RESUMEN

Heart rhythm disorders, arrhythmias, place a huge economic burden on society and have a large impact on the quality of life of a vast number of people. Arrhythmias can have genetic causes but primarily arise from heart tissue remodeling during aging or heart disease. As current therapies do not address the causes of arrhythmias but only manage the symptoms, it is of paramount importance to generate innovative test models and platforms for gaining knowledge about the underlying disease mechanisms which are compatible with drug screening. In this review, we outline the most important features of atrial fibrillation (AFib), the most common cardiac arrhythmia. We will discuss the epidemiology, risk factors, underlying causes, and present therapies of AFib, as well as the shortcomings and opportunities of current models for cardiac arrhythmia, including animal models, in silico and in vitro models utilizing human pluripotent stem cell (hPSC)-derived cardiomyocytes.

7.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38139840

RESUMEN

Adenosine triphosphate binding cassette (ABC) transporters are a broad family of membrane protein complexes that use energy to transport molecules across cells and/or intracellular organelle lipid membranes. Many drugs used to treat cardiac diseases have an affinity for these transporters. Among others, P-glycoprotein (P-gp) plays an essential role in regulating drug concentrations that reach cardiac tissue and therefore contribute to cardiotoxicity. As a molecular imaging modality, positron emission tomography (PET) has emerged as a viable technique to investigate the function of P-gp in organs and tissues. Using PET imaging to evaluate cardiac P-gp function provides new insights for drug development and improves the precise use of medications. Nevertheless, information in this field is limited. In this review, we aim to examine the current applications of ABC transporter PET imaging and its tracers in the heart, with a specific emphasis on P-gp. Furthermore, the opportunities and challenges in this novel field will be discussed.

8.
J Pers Med ; 12(4)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35455744

RESUMEN

Human pluripotent stem cell (hPSC)-derived cardiomyocytes have proven valuable for modeling disease and as a drug screening platform. Here, we depict an optimized protocol for the directed differentiation of hPSCs toward cardiomyocytes with an atrial identity by modulating the retinoic acid signaling cascade in spin embryoid bodies. The crucial steps of the protocol, including hPSC maintenance, embryoid body (EB) differentiation, the induction of cardiac mesoderm, direction toward the atrial phenotype, as well as molecular and functional characterization of the cardiomyocytes, are described. Atrial cardiomyocytes (AMs) can be generated within 14 days. Most importantly, we show that induction of the specific retinoic acid receptor alpha (RARα) increased the efficiency of atrial differentiation to 72% compared with 45% after modulating the retinoic acid (RA) pathway with all-trans RA (atRA). In contrast, the induction of RARß signaling only had a minor impact on the efficiency of atrial differentiation (from about 45% to 50%). Similarly, the total yield of AM per EB of 5000 hPSCs was increased from 10,350 (2.07 per hPSC) to 16,120 (3.22 per hPSC) while selectively modulating RARα signaling. For further purification of the AMs, we describe a metabolic selection procedure that enhanced the AM percentage to more than 90% without compromising the AM yield (15,542 per EB, equal to 3.11 per hPSC) or functionality of the AMs as evaluated by RNAseq, immunostaining, and optical action potential measurement. Cardiomyocytes with distinct atrial and ventricular properties can be applied for selective pharmacology, such as the development of novel atrial-specific anti-arrhythmic agents, and disease modeling, including atrial fibrillation, which is the most common heart rhythm disorder. Moreover, fully characterized and defined cardiac subtype populations are of the utmost importance for potential cell-based therapeutic approaches.

9.
PLoS One ; 17(4): e0266834, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35421132

RESUMEN

The use of Engineered Heart Tissues (EHT) as in vitro model for disease modeling and drug screening has increased, as they provide important insight into the genetic mechanisms, cardiac toxicity or drug responses. Consequently, this has highlighted the need for a standardized, unbiased, robust and automatic way to analyze hallmark physiological features of EHTs. In this study we described and validated a standalone application to analyze physiological features of EHTs in an automatic, robust, and unbiased way, using low computational time. The standalone application "EHT Analysis" contains two analysis modes (automatic and manual) to analyzes the contractile properties and the contraction kinetics of EHTs from high speed bright field videos. As output data, the graphs of displacement, contraction force and contraction kinetics per file will be generated together with the raw data. Additionally, it also generates a summary file containing all the data from the analyzed files, which facilitates and speeds up the post analysis. From our study we highlight the importance of analyzing the axial stress which is the force per surface area (µN/mm2). This allows to have a readout overtime of tissue compaction, axial stress and leave the option to calculate at the end point of an experiment the physiological cross-section area (PSCA). We demonstrated the utility of this tool by analyzing contractile properties and compaction over time of EHTs made out of a double reporter human pluripotent stem cell (hPSC) line (NKX2.5EGFP/+-COUP-TFIImCherry/+) and different ratios of human adult cardiac fibroblasts (HCF). Our standalone application "EHT Analysis" can be applied for different studies where the physiological features of EHTs needs to be analyzed under the effect of a drug compound or in a disease model.


Asunto(s)
Contracción Miocárdica , Ingeniería de Tejidos , Línea Celular , Evaluación Preclínica de Medicamentos , Corazón/fisiología , Humanos , Miocitos Cardíacos , Ingeniería de Tejidos/métodos
10.
Biofabrication ; 15(1)2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36347040

RESUMEN

In order to fabricate functional organoids and microtissues, a high cell density is generally required. As such, the placement of cell suspensions in molds or microwells to allow for cell concentration by sedimentation is the current standard for the production of organoids and microtissues. Even though molds offer some level of control over the shape of the resulting microtissue, this control is limited as microtissues tend to compact towards a sphere after sedimentation of the cells. 3D bioprinting on the other hand offers complete control over the shape of the resulting structure. Even though the printing of dense cell suspensions in the ink has been reported, extruding dense cellular suspensions is challenging and generally results in high shear stresses on the cells and a poor shape fidelity of the print. As such, additional materials such as hydrogels are added in the bioink to limit shear stresses, and to improve shape fidelity and resolution. The maximum cell concentration that can be incorporated in a hydrogel-based ink before the ink's rheological properties are compromised, is significantly lower than the concentration in a tissue equivalent. Additionally, the hydrogel components often interfere with cellular self-assembly processes. To circumvent these limitations, we report a simple and inexpensive xanthan bath based embedded printing method to 3D print dense functional linear tissues using dilute particle suspensions consisting of cells, spheroids, hydrogel beads, or combinations thereof. Using this method, we demonstrated the self-organization of functional cardiac tissue fibers with a layer of epicardial cells surrounding a body of cardiomyocytes.


Asunto(s)
Bioimpresión , Tinta , Suspensiones , Baños , Bioimpresión/métodos , Impresión Tridimensional , Hidrogeles/química , Ingeniería de Tejidos , Andamios del Tejido
11.
J Pers Med ; 12(2)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35207702

RESUMEN

Cardiomyocytes derived from human pluripotent stem cells (hPSC-CMs) hold a great potential as human in vitro models for studying heart disease and for drug safety screening. Nevertheless, their associated immaturity relative to the adult myocardium limits their utility in cardiac research. In this study, we describe the development of a platform for generating three-dimensional engineered heart tissues (EHTs) from hPSC-CMs for the measurement of force while under mechanical and electrical stimulation. The modular and versatile EHT platform presented here allows for the formation of three tissues per well in a 12-well plate format, resulting in 36 tissues per plate. We compared the functional performance of EHTs and their histology in three different media and demonstrated that tissues cultured and maintained in maturation medium, containing triiodothyronine (T3), dexamethasone, and insulin-like growth factor-1 (TDI), resulted in a higher force of contraction, sarcomeric organization and alignment, and a higher and lower inotropic response to isoproterenol and nifedipine, respectively. Moreover, in this study, we highlight the importance of integrating a serum-free maturation medium in the EHT platform, making it a suitable tool for cardiovascular research, disease modeling, and preclinical drug testing.

12.
Nat Biomed Eng ; 6(4): 389-402, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34992271

RESUMEN

The lack of a scalable and robust source of well-differentiated human atrial myocytes constrains the development of in vitro models of atrial fibrillation (AF). Here we show that fully functional atrial myocytes can be generated and expanded one-quadrillion-fold via a conditional cell-immortalization method relying on lentiviral vectors and the doxycycline-controlled expression of a recombinant viral oncogene in human foetal atrial myocytes, and that the immortalized cells can be used to generate in vitro models of AF. The method generated 15 monoclonal cell lines with molecular, cellular and electrophysiological properties resembling those of primary atrial myocytes. Multicellular in vitro models of AF generated using the immortalized atrial myocytes displayed fibrillatory activity (with activation frequencies of 6-8 Hz, consistent with the clinical manifestation of AF), which could be terminated by the administration of clinically approved antiarrhythmic drugs. The conditional cell-immortalization method could be used to generate functional cell lines from other human parenchymal cells, for the development of in vitro models of human disease.


Asunto(s)
Fibrilación Atrial , Antiarrítmicos/metabolismo , Antiarrítmicos/uso terapéutico , Atrios Cardíacos , Humanos , Miocitos Cardíacos/metabolismo
13.
Front Cardiovasc Med ; 7: 50, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32322588

RESUMEN

Cardiotoxicity is a major cause of high attrition rates among newly developed drugs. Moreover, anti-cancer treatment-induced cardiotoxicity is one of the leading reasons of mortality in cancer survivors. Cardiotoxicity screening in vitro may improve predictivity of cardiotoxicity by novel drugs, using human pluripotent stem cell (hPSC)-derived-cardiomyocytes. Anthracyclines, including Doxorubicin, are widely used and highly effective chemotherapeutic agents for the treatment of different forms of malignancies. Unfortunately, anthracyclines cause many cardiac complications early or late after therapy. Anthracyclines exhibit their potent anti-cancer effect primarily via induction of DNA damage during the DNA replication phase in proliferative cells. In contrast, studies in animals and hPSC-cardiomyocytes have revealed that cardiotoxic effects particularly arise from (1) the generation of oxidative stress inducing mitochondrial dysfunction, (2) disruption of calcium homeostasis, and (3) changes in transcriptome and proteome, triggering apoptotic cell death. To increase the therapeutic index of chemotherapeutic Doxorubicin therapy several protective strategies have been developed or are under development, such as (1) reducing toxicity through modification of Doxorubicin (analogs), (2) targeted delivery of anthracyclines specifically to the tumor tissue or (3) cardioprotective agents that can be used in combination with Doxorubicin. Despite continuous progress in the field of cardio-oncology, cardiotoxicity is still one of the major complications of anti-cancer therapy. In this review, we focus on current hPSC-cardiomyocyte models for assessing anthracycline-induced cardiotoxicity and strategies for cardioprotection. In addition, we discuss latest developments toward personalized advanced pre-clinical models that are more closely recapitulating the human heart, which are necessary to support in vitro screening platforms with higher predictivity. These advanced models have the potential to reduce the time from bench-to-bedside of novel antineoplastic drugs with reduced cardiotoxicity.

14.
Biochim Biophys Acta Mol Basis Dis ; 1866(10): 165881, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32562698

RESUMEN

Patient-derived human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are increasingly being used for disease modeling, drug screening and regenerative medicine. However, to date, an immature, fetal-like, phenotype of hPSC-CMs restrains their full potential. Increasing evidence suggests that the metabolic state, particularly important for provision of sufficient energy in highly active contractile CMs and anabolic and regulatory processes, plays an important role in CM maturation, which affects crucial functional aspects of CMs, such as contractility and electrophysiology. During embryonic development the heart is subjected to metabolite concentrations that differ substantially from that of hPSC-derived cardiac cell cultures. A deeper understanding of the environmental and metabolic cues during embryonic heart development and how these change postnatally, will provide a framework for optimizing cell culture conditions and maturation of hPSC-CMs. Maturation of hPSC-CMs will improve the predictability of disease modeling, drug screening and drug safety assessment and broadens their applicability for personalized and regenerative medicine.


Asunto(s)
Corazón/embriología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes/metabolismo , Diferenciación Celular , Células Cultivadas , Evaluación Preclínica de Medicamentos/métodos , Humanos , Contracción Miocárdica , Miocardio/citología , Cultivo Primario de Células , Medicina Regenerativa/métodos , Pruebas de Toxicidad/métodos
15.
Cardiovasc Res ; 116(3): 545-553, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31287499

RESUMEN

AIMS: Cardiovascular diseases caused by loss of functional cardiomyocytes (CMs) are a major cause of mortality and morbidity worldwide due in part to the low regenerative capacity of the adult human heart. Human pluripotent stem cell (hPSC)-derived cardiovascular progenitor cells (CPCs) are a potential cell source for cardiac repair. The aim of this study was to examine the impact of extensive remuscularization and coincident revascularization on cardiac remodelling and function in a mouse model of myocardial infarction (MI) by transplanting doxycycline (DOX)-inducible (Tet-On-MYC) hPSC-derived CPCs in vivo and inducing proliferation and cardiovascular differentiation in a drug-regulated manner. METHODS AND RESULTS: CPCs were injected firstly at a non-cardiac site in Matrigel suspension under the skin of immunocompromised mice to assess their commitment to the cardiovascular lineage and ability to self-renew or differentiate in vivo when instructed by systemically delivered factors including DOX and basic fibroblast growth factor (bFGF). CPCs in Matrigel were then injected intra-myocardially in mice subjected to MI to assess whether expandable CPCs could mediate cardiac repair. Transplanted CPCs expanded robustly both subcutis and in the myocardium using the same DOX/growth factor inducing regime. Upon withdrawal of these cell-renewal factors, CPCs differentiated with high efficiency at both sites into the major cardiac lineages including CMs, endothelial cells, and smooth muscle cells. After MI, engraftment of CPCs in the heart significantly reduced fibrosis in the infarcted area and prevented left ventricular remodelling, although cardiac function determined by magnetic resonance imaging was unaltered. CONCLUSION: Replacement of large areas of muscle may be required to regenerate the heart of patients following MI. Our human/mouse model demonstrated that proliferating hPSC-CPCs could reduce infarct size and fibrosis resulting in formation of large grafts. Importantly, the results suggested that expanding transplanted cells in situ at the progenitor stage maybe be an effective alternative causing less tissue damage than injection of very large numbers of CMs.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Células Madre Embrionarias Humanas/trasplante , Infarto del Miocardio/cirugía , Miocardio/patología , Miocitos Cardíacos/trasplante , Células Madre Pluripotentes/trasplante , Regeneración , Función Ventricular Izquierda , Animales , Linaje de la Célula , Células Cultivadas , Modelos Animales de Enfermedad , Fibrosis , Células Madre Embrionarias Humanas/metabolismo , Humanos , Masculino , Ratones Endogámicos NOD , Ratones SCID , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Células Madre Pluripotentes/metabolismo , Recuperación de la Función , Remodelación Ventricular
16.
Biomater Sci ; 7(9): 3566-3580, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31338495

RESUMEN

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) generally have an immature fetal-like phenotype when directly compared to isolated CMs from human hearts, despite significant advance in differentiation of human pluripotent stem cells (hPSCs) to multiple cardiac lineages. Therefore, hPSC-CMs may not accurately mimic all facets of healthy and diseased human adult CMs. During embryonic development, the cardiac extracellular matrix (ECM) experiences a gradual assembly of matrix proteins that transits along the maturation of CMs. Mimicking these dynamic stages may contribute to hPSC-CMs maturation in vitro. Thus, in this review, we describe the progressive build-up of the cardiac ECM during embryonic development, the ECM of the adult human heart and the application of natural and synthetic biomaterials for cardiac tissue engineering with hPSC-CMs.


Asunto(s)
Ingeniería de Tejidos , Animales , Humanos , Miocitos Cardíacos/citología
17.
Stem Cell Reports ; 9(6): 1765-1779, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29173897

RESUMEN

Reporter cell lines have already proven valuable in identifying, tracking, and purifying cardiac subtypes and progenitors during differentiation of human pluripotent stem cells (hPSCs). We previously showed that chick ovalbumin upstream promoter transcription factor II (COUP-TFII) is highly enriched in human atrial cardiomyocytes (CMs), but not ventricular. Here, we targeted mCherry to the COUP-TFII genomic locus in hPSCs expressing GFP from the NKX2.5 locus. This dual atrial NKX2.5EGFP/+-COUP-TFIImCherry/+ reporter line allowed identification and selection of GFP+ (G+)/mCherry+ (M+) CMs following cardiac differentiation. These cells exhibited transcriptional and functional properties of atrial CMs, whereas G+/M- CMs displayed ventricular characteristics. Via CRISPR/Cas9-mediated knockout, we demonstrated that COUP-TFII is not required for atrial specification in hPSCs. This new tool allowed selection of human atrial and ventricular CMs from mixed populations, of relevance for studying cardiac specification, developing human atrial disease models, and examining distinct effects of drugs on the atrium versus ventricle.


Asunto(s)
Diferenciación Celular/genética , Atrios Cardíacos/citología , Células Madre Embrionarias Humanas/citología , Miocitos Cardíacos/citología , Células Madre Pluripotentes/citología , Animales , Factor de Transcripción COUP II/genética , Sistemas CRISPR-Cas/genética , Rastreo Celular/métodos , Embrión de Pollo , Genes Reporteros/genética , Proteínas Fluorescentes Verdes , Atrios Cardíacos/crecimiento & desarrollo , Atrios Cardíacos/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Humanos , Ratones , Miocitos Cardíacos/metabolismo , Ovalbúmina/genética , Células Madre Pluripotentes/metabolismo , Regiones Promotoras Genéticas
18.
Nat Biotechnol ; 33(9): 970-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26192318

RESUMEN

The inability of multipotent cardiovascular progenitor cells (CPCs) to undergo multiple divisions in culture has precluded stable expansion of precursors of cardiomyocytes and vascular cells. This contrasts with neural progenitors, which can be expanded robustly and are a renewable source of their derivatives. Here we use human pluripotent stem cells bearing a cardiac lineage reporter to show that regulated MYC expression enables robust expansion of CPCs with insulin-like growth factor-1 (IGF-1) and a hedgehog pathway agonist. The CPCs can be patterned with morphogens, recreating features of heart field assignment, and controllably differentiated to relatively pure populations of pacemaker-like or ventricular-like cardiomyocytes. The cells are clonogenic and can be expanded for >40 population doublings while retaining the ability to differentiate into cardiomyocytes and vascular cells. Access to CPCs will allow precise recreation of elements of heart development in vitro and facilitate investigation of the molecular basis of cardiac fate determination. This technology is applicable for cardiac disease modeling, toxicology studies and tissue engineering.


Asunto(s)
Técnicas de Cultivo Celular por Lotes/métodos , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología , Ingeniería de Tejidos/métodos , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Proteínas Hedgehog/metabolismo , Humanos
19.
EMBO Mol Med ; 7(4): 394-410, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25700171

RESUMEN

Drugs targeting atrial-specific ion channels, Kv1.5 or Kir3.1/3.4, are being developed as new therapeutic strategies for atrial fibrillation. However, current preclinical studies carried out in non-cardiac cell lines or animal models may not accurately represent the physiology of a human cardiomyocyte (CM). In the current study, we tested whether human embryonic stem cell (hESC)-derived atrial CMs could predict atrial selectivity of pharmacological compounds. By modulating retinoic acid signaling during hESC differentiation, we generated atrial-like (hESC-atrial) and ventricular-like (hESC-ventricular) CMs. We found the expression of atrial-specific ion channel genes, KCNA5 (encoding Kv1.5) and KCNJ3 (encoding Kir 3.1), in hESC-atrial CMs and further demonstrated that these ion channel genes are regulated by COUP-TF transcription factors. Moreover, in response to multiple ion channel blocker, vernakalant, and Kv1.5 blocker, XEN-D0101, hESC-atrial but not hESC-ventricular CMs showed action potential (AP) prolongation due to a reduction in early repolarization. In hESC-atrial CMs, XEN-R0703, a novel Kir3.1/3.4 blocker restored the AP shortening caused by CCh. Neither CCh nor XEN-R0703 had an effect on hESC-ventricular CMs. In summary, we demonstrate that hESC-atrial CMs are a robust model for pre-clinical testing to assess atrial selectivity of novel antiarrhythmic drugs.


Asunto(s)
Fibrilación Atrial , Sistemas de Liberación de Medicamentos/métodos , Modelos Biológicos , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/metabolismo , Fibrilación Atrial/patología , Evaluación Preclínica de Medicamentos/métodos , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/biosíntesis , Expresión Génica , Atrios Cardíacos/metabolismo , Atrios Cardíacos/patología , Humanos , Canal de Potasio Kv1.5/antagonistas & inhibidores , Canal de Potasio Kv1.5/biosíntesis , Miocitos Cardíacos/patología , Células Madre Pluripotentes/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA