Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Pathol ; 238(1): 85-97, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26383585

RESUMEN

To study bacterial co-infection following 1918 H1N1 influenza virus infection, mice were inoculated with the 1918 influenza virus, followed by Streptococcus pneumoniae (SP) 72 h later. Co-infected mice exhibited markedly more severe disease, shortened survival time and more severe lung pathology, including widespread thrombi. Transcriptional profiling revealed activation of coagulation only in co-infected mice, consistent with the extensive thrombogenesis observed. Immunohistochemistry showed extensive expression of tissue factor (F3) and prominent deposition of neutrophil elastase on endothelial and epithelial cells in co-infected mice. Lung sections of SP-positive 1918 autopsy cases showed extensive thrombi and prominent staining for F3 in alveolar macrophages, monocytes, neutrophils, endothelial and epithelial cells, in contrast to co-infection-positive 2009 pandemic H1N1 autopsy cases. This study reveals that a distinctive feature of 1918 influenza virus and SP co-infection in mice and humans is extensive expression of tissue factor and activation of the extrinsic coagulation pathway leading to widespread pulmonary thrombosis.


Asunto(s)
Coinfección/complicaciones , Gripe Humana/microbiología , Infecciones por Orthomyxoviridae/microbiología , Infecciones Neumocócicas/microbiología , Embolia Pulmonar/microbiología , Animales , Coagulación Sanguínea , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunohistoquímica , Subtipo H1N1 del Virus de la Influenza A , Influenza Pandémica, 1918-1919 , Gripe Humana/complicaciones , Gripe Humana/patología , Ratones , Ratones Endogámicos BALB C , Análisis de Secuencia por Matrices de Oligonucleótidos , Infecciones por Orthomyxoviridae/complicaciones , Infecciones por Orthomyxoviridae/patología , Infecciones Neumocócicas/complicaciones , Infecciones Neumocócicas/patología , Embolia Pulmonar/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Streptococcus pneumoniae
2.
PLoS Pathog ; 8(11): e1002998, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23133386

RESUMEN

Segment 7 of influenza A virus produces up to four mRNAs. Unspliced transcripts encode M1, spliced mRNA2 encodes the M2 ion channel, while protein products from spliced mRNAs 3 and 4 have not previously been identified. The M2 protein plays important roles in virus entry and assembly, and is a target for antiviral drugs and vaccination. Surprisingly, M2 is not essential for virus replication in a laboratory setting, although its loss attenuates the virus. To better understand how IAV might replicate without M2, we studied the reversion mechanism of an M2-null virus. Serial passage of a virus lacking the mRNA2 splice donor site identified a single nucleotide pseudoreverting mutation, which restored growth in cell culture and virulence in mice by upregulating mRNA4 synthesis rather than by reinstating mRNA2 production. We show that mRNA4 encodes a novel M2-related protein (designated M42) with an antigenically distinct ectodomain that can functionally replace M2 despite showing clear differences in intracellular localisation, being largely retained in the Golgi compartment. We also show that the expression of two distinct ion channel proteins is not unique to laboratory-adapted viruses but, most notably, was also a feature of the 1983 North American outbreak of H5N2 highly pathogenic avian influenza virus. In identifying a 14th influenza A polypeptide, our data reinforce the unexpectedly high coding capacity of the viral genome and have implications for virus evolution, as well as for understanding the role of M2 in the virus life cycle.


Asunto(s)
Empalme Alternativo , Subtipo H5N2 del Virus de la Influenza A/metabolismo , ARN Mensajero/biosíntesis , ARN Viral/biosíntesis , Proteínas de la Matriz Viral/biosíntesis , Animales , Aves , Línea Celular Tumoral , Brotes de Enfermedades , Perros , Humanos , Subtipo H5N2 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Gripe Aviar/genética , Gripe Aviar/metabolismo , Gripe Humana/epidemiología , Gripe Humana/genética , Gripe Humana/metabolismo , Ratones , Ratones Endogámicos BALB C , América del Norte/epidemiología , ARN Mensajero/genética , ARN Viral/genética , Proteínas de la Matriz Viral/genética
3.
J Virol ; 86(17): 9211-20, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22718825

RESUMEN

The 1918-1919 "Spanish" influenza pandemic is estimated to have caused 50 million deaths worldwide. Understanding the origin, virulence, and pathogenic properties of past pandemic influenza viruses, including the 1918 virus, is crucial for current public health preparedness and future pandemic planning. The origin of the 1918 pandemic virus has not been resolved, but its coding sequences are very like those of avian influenza virus. The proteins encoded by the 1918 virus differ from typical low-pathogenicity avian influenza viruses at only a small number of amino acids in each open reading frame. In this study, a series of chimeric 1918 influenza viruses were created in which each of the eight 1918 pandemic virus gene segments was replaced individually with the corresponding gene segment of a prototypical low-pathogenicity avian influenza (LPAI) H1N1 virus in order to investigate functional compatibility of the 1918 virus genome with gene segments from an LPAI virus and to identify gene segments and mutations important for mammalian adaptation. This set of eight "7:1" chimeric viruses was compared to the parental 1918 and LPAI H1N1 viruses in intranasally infected mice. Seven of the 1918 LPAI 7:1 chimeric viruses replicated and caused disease equivalent to the fully reconstructed 1918 virus. Only the chimeric 1918 virus containing the avian influenza PB2 gene segment was attenuated in mice. This attenuation could be corrected by the single E627K amino acid change, further confirming the importance of this change in mammalian adaptation and mouse pathogenicity. While the mechanisms of influenza virus host switch, and particularly mammalian host adaptation are still only partly understood, these data suggest that the 1918 virus, whatever its origin, is very similar to avian influenza virus.


Asunto(s)
Gripe Aviar/virología , Gripe Humana/virología , Virus Reordenados/genética , Proteínas Virales/genética , Secuencia de Aminoácidos , Animales , Aves , Línea Celular , Embrión de Pollo , Femenino , Humanos , Subtipo H1N1 del Virus de la Influenza A/química , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Virus de la Influenza A/química , Virus de la Influenza A/genética , Virus de la Influenza A/metabolismo , Virus de la Influenza A/patogenicidad , Gripe Aviar/patología , Gripe Humana/epidemiología , Gripe Humana/patología , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Pandemias , Virus Reordenados/química , Virus Reordenados/metabolismo , Virus Reordenados/patogenicidad , Recombinación Genética , Alineación de Secuencia , España/epidemiología , Proteínas Virales/química , Proteínas Virales/metabolismo , Virulencia
4.
Sci Transl Med ; 14(653): eabo2167, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35857640

RESUMEN

Influenza A viruses (IAVs) present major public health threats from annual seasonal epidemics and pandemics and from viruses adapted to a variety of animals including poultry, pigs, and horses. Vaccines that broadly protect against all such IAVs, so-called "universal" influenza vaccines, do not currently exist but are urgently needed. Here, we demonstrated that an inactivated, multivalent whole-virus vaccine, delivered intramuscularly or intranasally, was broadly protective against challenges with multiple IAV hemagglutinin and neuraminidase subtypes in both mice and ferrets. The vaccine is composed of four ß-propiolactone-inactivated low-pathogenicity avian IAV subtypes of H1N9, H3N8, H5N1, and H7N3. Vaccinated mice and ferrets demonstrated substantial protection against a variety of IAVs, including the 1918 H1N1 strain, the highly pathogenic avian H5N8 strain, and H7N9. We also observed protection against challenge with antigenically variable and heterosubtypic avian, swine, and human viruses. Compared to control animals, vaccinated mice and ferrets demonstrated marked reductions in viral titers, lung pathology, and host inflammatory responses. This vaccine approach indicates the feasibility of eliciting broad, heterosubtypic IAV protection and identifies a promising candidate for influenza vaccine clinical development.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H3N8 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Subtipo H7N9 del Virus de la Influenza A , Vacunas contra la Influenza , Infecciones por Orthomyxoviridae , Animales , Anticuerpos Antivirales , Hurones , Caballos , Humanos , Subtipo H7N3 del Virus de la Influenza A , Ratones , Porcinos
5.
Virology ; 493: 238-46, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27062579

RESUMEN

The 1918 influenza pandemic caused ~50 million deaths. Many questions remain regarding the origin, pathogenicity, and mechanisms of human adaptation of this virus. Avian-adapted influenza A viruses preferentially bind α2,3-linked sialic acids (Sia) while human-adapted viruses preferentially bind α2,6-linked Sia. A change in Sia preference from α2,3 to α2,6 is thought to be a requirement for human adaptation of avian influenza viruses. Autopsy data from 1918 cases, however, suggest that factors other than Sia preference played a role in viral binding and entry to human airway cells. Here, we evaluated binding and entry of five 1918 influenza receptor binding domain variants in a primary human airway cell model along with control avian and human influenza viruses. We observed that all five variants bound and entered cells efficiently and that Sia preference did not predict entry of influenza A virus to primary human airway cells evaluated in this model.


Asunto(s)
Células Epiteliales/virología , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Receptores Virales/metabolismo , Acoplamiento Viral , Sitios de Unión , Bronquios/citología , Influenza Pandémica, 1918-1919 , Ácido N-Acetilneuramínico/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Tráquea/citología , Replicación Viral
6.
mBio ; 6(4): e01044, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26199334

RESUMEN

UNLABELLED: Influenza virus infections are a global public health problem, with a significant impact of morbidity and mortality from both annual epidemics and pandemics. The current strategy for preventing annual influenza is to develop a new vaccine each year against specific circulating virus strains. Because these vaccines are unlikely to protect against an antigenically divergent strain or a new pandemic virus with a novel hemagglutinin (HA) subtype, there is a critical need for vaccines that protect against all influenza A viruses, a so-called "universal" vaccine. Here we show that mice were broadly protected against challenge with a wide variety of lethal influenza A virus infections (94% aggregate survival following vaccination) with a virus-like particle (VLP) vaccine cocktail. The vaccine consisted of a mixture of VLPs individually displaying H1, H3, H5, or H7 HAs, and vaccinated mice showed significant protection following challenge with influenza viruses expressing 1918 H1, 1957 H2, and avian H5, H6, H7, H10, and H11 hemagglutinin subtypes. These experiments suggest a promising and practical strategy for developing a broadly protective "universal" influenza vaccine. IMPORTANCE: The rapid and unpredictable nature of influenza A virus evolution requires new vaccines to be produced annually to match circulating strains. Human infections with influenza viruses derived from animals can cause outbreaks that may be associated with high mortality, and such strains may also adapt to humans to cause a future pandemic. Thus, there is a large public health need to create broadly protective, or "universal," influenza vaccines that could prevent disease from a wide variety of human and animal influenza A viruses. In this study, a noninfectious virus-like particle (VLP) vaccine was shown to offer significant protection against a variety of influenza A viruses in mice, suggesting a practical strategy to develop a universal influenza vaccine.


Asunto(s)
Protección Cruzada , Inmunidad Heteróloga , Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Vacunas de Partículas Similares a Virus/inmunología , Administración Intranasal , Animales , Modelos Animales de Enfermedad , Ratones , Vacunas de Partículas Similares a Virus/administración & dosificación
7.
Vaccine ; 33(38): 4975-82, 2015 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-26207590

RESUMEN

A novel avian-origin influenza A H7N9 virus emerged in China in 2013 and continues to cause sporadic human infections with mortality rates approaching 35%. Currently there are no approved human vaccines for H7N9 virus. Recombinant approaches including hemagglutinin (HA) and virus-like particles (VLPs) have resulted in experimental vaccines with advantageous safety and manufacturing characteristics. While high immunogenicity of VLP vaccines has been attributed to the native conformation of HA arranged in the regular repeated patterns within virus-like structures, there is limited data regarding molecular organization of HA within recombinant HA vaccine preparations. In this study, the full-length recombinant H7 protein (rH7) of A/Anhui/1/2013 (H7N9) virus was expressed in Sf9 cells. We showed that purified full-length rH7 retained functional ability to agglutinate red blood cells and formed oligomeric pleomorphic subviral particles (SVPs) of ∼20nm in diameter composed of approximately 10 HA0 molecules. No significant quantities of free monomeric HA0 were observed in rH7 preparation by size exclusion chromatography. Immunogenicity and protective efficacy of rH7 SVPs was confirmed in the mouse and ferret challenge models suggesting that SVPs can be used for vaccination against H7N9 virus.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H7N9 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Vacunas de Partículas Similares a Virus/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Hurones , Hemaglutinación , Vacunas contra la Influenza/administración & dosificación , Masculino , Ratones Endogámicos BALB C , Multimerización de Proteína , Proteínas Recombinantes/inmunología , Células Sf9 , Spodoptera , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología , Vacunas de Partículas Similares a Virus/administración & dosificación
8.
mBio ; 5(6): e02116, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25406382

RESUMEN

UNLABELLED: Zoonotic avian influenza virus infections may lead to epidemics or pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its H1 hemagglutinin was identified as a key mammalian virulence factor. A chimeric 1918 virus expressing a contemporary avian H1 hemagglutinin, however, displayed murine pathogenicity indistinguishable from that of the 1918 virus. Here, isogenic chimeric avian influenza viruses were constructed on an avian influenza virus backbone, differing only by hemagglutinin subtype expressed. Viruses expressing the avian H1, H6, H7, H10, and H15 subtypes were pathogenic in mice and cytopathic in normal human bronchial epithelial cells, in contrast to H2-, H3-, H5-, H9-, H11-, H13-, H14-, and H16-expressing viruses. Mouse pathogenicity was associated with pulmonary macrophage and neutrophil recruitment. These data suggest that avian influenza virus hemagglutinins H1, H6, H7, H10, and H15 contain inherent mammalian virulence factors and likely share a key virulence property of the 1918 virus. Consequently, zoonotic infections with avian influenza viruses bearing one of these hemagglutinins may cause enhanced disease in mammals. IMPORTANCE: Influenza viruses from birds can cause outbreaks in humans and may contribute to the development of pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its main surface protein, an H1 subtype hemagglutinin, was identified as a key mammalian virulence factor. In a previous study, a 1918 virus expressing an avian H1 gene was as virulent in mice as the reconstructed 1918 virus. Here, a set of avian influenza viruses was constructed, differing only by hemagglutinin subtype. Viruses with the avian H1, H6, H7, H10, and H15 subtypes caused severe disease in mice and damaged human lung cells. Consequently, infections with avian influenza viruses bearing one of these hemagglutinins may cause enhanced disease in mammals, and therefore surveillance for human infections with these subtypes may be important in controlling future outbreaks.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Virus de la Influenza A/crecimiento & desarrollo , Gripe Aviar/virología , Factores de Virulencia/metabolismo , Animales , Aves , Efecto Citopatogénico Viral , Modelos Animales de Enfermedad , Células Epiteliales/virología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Pulmón/inmunología , Pulmón/patología , Macrófagos/inmunología , Mamíferos , Ratones , Neutrófilos/inmunología , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Virus Reordenados/genética , Virus Reordenados/crecimiento & desarrollo , Virus Reordenados/patogenicidad , Genética Inversa , Factores de Virulencia/genética
9.
Free Radic Biol Med ; 67: 235-47, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24140866

RESUMEN

The 1918 influenza pandemic caused over 40 million deaths worldwide, with 675,000 deaths in the United States alone. Studies in several experimental animal models showed that 1918 influenza virus infection resulted in severe lung pathology associated with dysregulated immune and cell death responses. To determine if reactive oxygen species produced by host inflammatory responses play a central role in promoting severity of lung pathology, we treated 1918 influenza virus-infected mice with the catalytic catalase/superoxide dismutase mimetic, salen-manganese complex EUK-207 beginning 3 days postinfection. Postexposure treatment of mice infected with a lethal dose of the 1918 influenza virus with EUK-207 resulted in significantly increased survival and reduced lung pathology without a reduction in viral titers. In vitro studies also showed that EUK-207 treatment did not affect 1918 influenza viral replication. Immunohistochemical analysis showed a reduction in the detection of the apoptosis marker cleaved caspase-3 and the oxidative stress marker 8-oxo-2'-deoxyguanosine in lungs of EUK-207-treated animals compared to vehicle controls. High-throughput sequencing and RNA expression microarray analysis revealed that treatment resulted in decreased expression of inflammatory response genes and increased lung metabolic and repair responses. These results directly demonstrate that 1918 influenza virus infection leads to an immunopathogenic immune response with excessive inflammatory and cell death responses that can be limited by treatment with the catalytic antioxidant EUK-207.


Asunto(s)
Depuradores de Radicales Libres/farmacología , Subtipo H1N1 del Virus de la Influenza A/fisiología , Influenza Pandémica, 1918-1919 , Compuestos Organometálicos/farmacología , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Especies Reactivas de Oxígeno/antagonistas & inhibidores , 8-Hidroxi-2'-Desoxicoguanosina , Animales , Biomarcadores/metabolismo , Caspasa 3/genética , Caspasa 3/metabolismo , Reparación del ADN , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Perros , Femenino , Expresión Génica , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/mortalidad , Inflamación/virología , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/mortalidad , Infecciones por Orthomyxoviridae/virología , Especies Reactivas de Oxígeno/metabolismo , Análisis de Supervivencia , Carga Viral , Replicación Viral
10.
Virology ; 432(1): 39-44, 2012 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-22727831

RESUMEN

Highly pathogenic H5N1 influenza shares the same neuraminidase (NA) subtype with the 2009 pandemic (H1N1pdm09), and cross-reactive NA immunity might protect against or mitigate lethal H5N1 infection. In this study, mice were either infected with a sublethal dose of H1N1pdm09 or were vaccinated and boosted with virus-like particles (VLP) consisting of the NA and matrix proteins, standardized by NA activity and administered intranasally, and were then challenged with a lethal dose of HPAI H5N1 virus. Mice previously infected with H1N1pdm09 survived H5N1 challenge with no detectable virus or respiratory tract pathology on day 4. Mice immunized with H5N1 or H1N1pdm09 NA VLPs were also fully protected from death, with a 100-fold and 10-fold reduction in infectious virus, respectively, and reduced pathology in the lungs. Human influenza vaccines that elicit not only HA, but also NA immunity may provide enhanced protection against the emergence of seasonal and pandemic viruses.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Neuraminidasa/inmunología , Animales , Protección Cruzada , Modelos Animales de Enfermedad , Femenino , Vacunas contra la Influenza/administración & dosificación , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae , Análisis de Supervivencia , Vacunas de Virosoma/administración & dosificación , Vacunas de Virosoma/inmunología
11.
Diagn Microbiol Infect Dis ; 70(2): 281-4, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21429691

RESUMEN

Despite the emergence of the pandemic H1N1 influenza A virus in 2009, seasonal H3N2 viruses continue to co-circulate in the population and may even predominate in the coming influenza season. We describe a specific minor groove binder TaqMan assay for H3N2 viruses with a detection limit of 16.5 standard DNA copies.


Asunto(s)
Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/diagnóstico , Gripe Humana/virología , Técnicas de Diagnóstico Molecular/métodos , Sondas de Oligonucleótidos/genética , ARN Viral/genética , Virología/métodos , Humanos , Subtipo H3N2 del Virus de la Influenza A/genética , Sensibilidad y Especificidad
12.
Influenza Other Respir Viruses ; 5(6): 418-25, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21668672

RESUMEN

BACKGROUND: Obesity has been identified as an independent risk factor for severe or fatal infection with 2009 pandemic H1N1 influenza (2009 pH1N1), but was not previously recognized for previous pandemic or seasonal influenza infections. OBJECTIVES: Our aim was to evaluate the role of obesity as an independent risk factor for severity of infection with 2009 pH1N1, seasonal H1N1, or a pathogenic H1N1 influenza virus. METHODS: Diet-induced obese (DIO) and their non-obese, age-matched control counterparts were inoculated with a 2009 pH1N1, A/California/04/2009 (CA/09), current seasonal H1N1, A/NY/312/2001 (NY312), or highly pathogenic 1918-like H1N1, A/Iowa/Swine/1931 (Sw31), virus. RESULTS: Following inoculation with CA/09, DIO mice had higher mortality (80%) than control mice (0%) and lost more weight during infection. No effect of obesity on morbidity and mortality was observed during NY312 or Sw31 infection. Influenza antigen distribution in the alveolar regions of the lungs was more pronounced in DIO than control mice during CA/09 infection at 3 days post-inoculation (dpi), despite similar virus titers. During CA/09 infection, localized interferon-ß and proinflammatory cytokine protein responses in the lungs were significantly lower in DIO than control mice. Conversely, serum cytokine concentrations were elevated in DIO, but not control mice following infection with CA/09. The effect of obesity on differential immune responses was abrogated during NY312 or Sw31 infection. CONCLUSIONS: Together, these data support epidemiologic reports that obesity may be a risk factor for severe 2009 pandemic H1N1 influenza infection, but the role of obesity in seasonal or highly virulent pandemic influenza infection remains unclear.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/epidemiología , Gripe Humana/mortalidad , Obesidad/complicaciones , Animales , Modelos Animales de Enfermedad , Humanos , Subtipo H1N1 del Virus de la Influenza A/clasificación , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/complicaciones , Gripe Humana/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Pandemias , Factores de Riesgo
13.
mBio ; 2(5)2011.
Artículo en Inglés | MEDLINE | ID: mdl-21933918

RESUMEN

UNLABELLED: Secondary bacterial infections increase disease severity of influenza virus infections and contribute greatly to increased morbidity and mortality during pandemics. To study secondary bacterial infection following influenza virus infection, mice were inoculated with sublethal doses of 2009 seasonal H1N1 virus (NIH50) or pandemic H1N1 virus (Mex09) followed by inoculation with Streptococcus pneumoniae 48 h later. Disease was characterized by assessment of weight loss and survival, titration of virus and bacteria by quantitative reverse transcription-PCR (qRT-PCR), histopathology, expression microarray, and immunohistochemistry. Mice inoculated with virus alone showed 100% survival for all groups. Mice inoculated with Mex09 plus S. pneumoniae showed severe weight loss and 100% mortality with severe alveolitis, denuded bronchiolar epithelium, and widespread expression of apoptosis marker cleaved caspase 3. In contrast, mice inoculated with NIH50 plus S. pneumoniae showed increased weight loss, 100% survival, and slightly enhanced lung pathology. Mex09-S. pneumoniae coinfection also resulted in increased S. pneumoniae replication in lung and bacteremia late in infection. Global gene expression profiling revealed that Mex09-S. pneumoniae coinfection did not induce significantly more severe inflammatory responses but featured significant loss of epithelial cell reproliferation and repair responses. Histopathological examination for cell proliferation marker MCM7 showed significant staining of airway epithelial cells in all groups except Mex09-S. pneumoniae-infected mice. This study demonstrates that secondary bacterial infection during 2009 H1N1 pandemic virus infection resulted in more severe disease and loss of lung repair responses than did seasonal influenza viral and bacterial coinfection. Moreover, this study provides novel insights into influenza virus and bacterial coinfection by showing correlation of lethal outcome with loss of airway basal epithelial cells and associated lung repair responses. IMPORTANCE: Secondary bacterial pneumonias lead to increased disease severity and have resulted in a significant percentage of deaths during influenza pandemics. To understand the biological basis for the interaction of bacterial and viral infections, mice were infected with sublethal doses of 2009 seasonal H1N1 and pandemic H1N1 viruses followed by infection with Streptococcus pneumoniae 48 h later. Only infection with 2009 pandemic H1N1 virus and S. pneumoniae resulted in severe disease with a 100% fatality rate. Analysis of the host response to infection during lethal coinfection showed a significant loss of responses associated with lung repair that was not observed in any of the other experimental groups. This group of mice also showed enhanced bacterial replication in the lung. This study reveals that the extent of lung damage during viral infection influences the severity of secondary bacterial infections and may help explain some differences in mortality during influenza pandemics.


Asunto(s)
Coinfección/mortalidad , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/mortalidad , Pulmón/fisiopatología , Infecciones Neumocócicas/mortalidad , Streptococcus pneumoniae/fisiología , Animales , Coinfección/epidemiología , Femenino , Regulación de la Expresión Génica , Humanos , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Gripe Humana/microbiología , Gripe Humana/fisiopatología , Gripe Humana/virología , Pulmón/microbiología , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Pandemias , Infecciones Neumocócicas/microbiología , Infecciones Neumocócicas/fisiopatología , Infecciones Neumocócicas/virología , Streptococcus pneumoniae/patogenicidad , Virulencia , Pérdida de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA