Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
IUBMB Life ; 71(8): 1109-1116, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31283101

RESUMEN

The mature 5'-ends of tRNAs are generated by RNase P in all domains of life. The ancient form of the enzyme is a ribonucleoprotein consisting of a catalytic RNA and one or more protein subunits. However, in the hyperthermophilic bacterium Aquifex aeolicus and close relatives, RNase P is a protein-only enzyme consisting of a single type of polypeptide (Aq_880, ~23 kDa). In many archaea, homologs of Aq_880 were identified (termed HARPs for Homologs of Aquifex RNase P) in addition to the RNA-based RNase P, raising the question about the functions of HARP and the classical RNase P in these archaea. Here we investigated HARPs from two euryarchaeotes, Haloferax volcanii and Methanosarcina mazei. Archaeal strains with HARP gene knockouts showed no growth phenotypes under standard conditions, temperature and salt stress (H. volcanii) or nitrogen deficiency (M. mazei). Recombinant H. volcanii and M. mazei HARPs were basically able to catalyse specific tRNA 5'-end maturation in vitro. Furthermore, M. mazei HARP was able to rescue growth of an Escherichia coli RNase P depletion strain with comparable efficiency as Aq_880, while H. volcanii HARP was unable to do so. In conclusion, both archaeal HARPs showed the capacity (in at least one functional assay) to act as RNases P. However, the ease to obtain knockouts of the singular HARP genes and the lack of growth phenotypes upon HARP gene deletion contrasts with the findings that the canonical RNase P RNA gene cannot be deleted in H. volcanii, and a knockdown of RNase P RNA in H. volcanii results in severe tRNA processing defects. We conclude that archaeal HARPs do not make a major contribution to global tRNA 5'-end maturation in archaea, but may well exert a specialised, yet unknown function in (t)RNA metabolism. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1109-1116, 2019.


Asunto(s)
Bacterias/enzimología , Haloferax volcanii/enzimología , Methanosarcina/enzimología , Ribonucleasa P/metabolismo , Aquifex , Catálisis , Dicroismo Circular , Escherichia coli/metabolismo , Eliminación de Gen , Prueba de Complementación Genética , Conformación de Ácido Nucleico , Fenotipo , Plásmidos/genética , ARN de Transferencia/genética , Proteínas Recombinantes/metabolismo , Especificidad de la Especie , Temperatura , Thermus thermophilus/enzimología
2.
RNA Biol ; 16(4): 469-480, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-29649958

RESUMEN

Invading genetic elements pose a constant threat to prokaryotic survival, requiring an effective defence. Eleven years ago, the arsenal of known defence mechanisms was expanded by the discovery of the CRISPR-Cas system. Although CRISPR-Cas is present in the majority of archaea, research often focuses on bacterial models. Here, we provide a perspective based on insights gained studying CRISPR-Cas system I-B of the archaeon Haloferax volcanii. The system relies on more than 50 different crRNAs, whose stability and maintenance critically depend on the proteins Cas5 and Cas7, which bind the crRNA and form the Cascade complex. The interference machinery requires a seed sequence and can interact with multiple PAM sequences. H. volcanii stands out as the first example of an organism that can tolerate autoimmunity via the CRISPR-Cas system while maintaining a constitutively active system. In addition, the H. volcanii system was successfully developed into a tool for gene regulation.


Asunto(s)
Sistemas CRISPR-Cas/genética , Haloferax/genética , Secuencia de Bases , Proteínas Asociadas a CRISPR/metabolismo , ARN de Archaea/genética , Transcripción Genética
3.
Methods Mol Biol ; 2522: 57-85, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36125743

RESUMEN

To date, a plethora of tools for molecular biology have been developed on the basis of the CRISPR-Cas system. Almost all use the class 2 systems since here the setup is the simplest with only one protein and one guide RNA, allowing for easy transfer to and expression in other organisms. However, the CRISPR-Cas components harnessed for applications are derived from mesophilic bacteria and are not optimal for use in extremophilic archaea.Here, we describe the application of an endogenous CRISPR-Cas system as a tool for silencing gene expression in a halophilic archaeon. Haloferax volcanii has a CRISPR-Cas system of subtype I-B, which can be easily used to repress the transcription of endogenous genes, allowing to study the effects of their depletion. This article gives a step-by-step introduction on how to use the implemented system for any gene of interest in Haloferax volcanii. The concept of CRISPRi described here for Haloferax can be transferred to any other archaeon, that is genetically tractable and has an endogenous CRISPR-Cas I systems.


Asunto(s)
Haloferax volcanii , Sistemas CRISPR-Cas/genética , Expresión Génica , Haloferax volcanii/genética , Biología Molecular , ARN Guía de Kinetoplastida
4.
mBio ; 12(4): e0141621, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34253062

RESUMEN

Transcriptional regulators that integrate cellular and environmental signals to control cell division are well known in bacteria and eukaryotes, but their existence is poorly understood in archaea. We identified a conserved gene (cdrS) that encodes a small protein and is highly transcribed in the model archaeon Haloferax volcanii. The cdrS gene could not be deleted, but CRISPR interference (CRISPRi)-mediated repression of the cdrS gene caused slow growth and cell division defects and changed the expression of multiple genes and their products associated with cell division, protein degradation, and metabolism. Consistent with this complex regulatory network, overexpression of cdrS inhibited cell division, whereas overexpression of the operon encoding both CdrS and a tubulin-like cell division protein (FtsZ2) stimulated division. Chromatin immunoprecipitation-DNA sequencing (ChIP-Seq) identified 18 DNA-binding sites of the CdrS protein, including one upstream of the promoter for a cell division gene, ftsZ1, and another upstream of the essential gene dacZ, encoding diadenylate cyclase involved in c-di-AMP signaling, which is implicated in the regulation of cell division. These findings suggest that CdrS is a transcription factor that plays a central role in a regulatory network coordinating metabolism and cell division. IMPORTANCE Cell division is a central mechanism of life and is essential for growth and development. Members of the Bacteria and Eukarya have different mechanisms for cell division, which have been studied in detail. In contrast, cell division in members of the Archaea is still understudied, and its regulation is poorly understood. Interestingly, different cell division machineries appear in members of the Archaea, with the Euryarchaeota using a cell division apparatus based on the tubulin-like cytoskeletal protein FtsZ, as in bacteria. Here, we identify the small protein CdrS as essential for survival and a central regulator of cell division in the euryarchaeon Haloferax volcanii. CdrS also appears to coordinate other cellular pathways, including synthesis of signaling molecules and protein degradation. Our results show that CdrS plays a sophisticated role in cell division, including regulation of numerous associated genes. These findings are expected to initiate investigations into conditional regulation of division in archaea.


Asunto(s)
División Celular/genética , Regulación de la Expresión Génica Arqueal , Haloferax volcanii/genética , Factores de Transcripción/genética , Transcripción Genética , Haloferax volcanii/fisiología , Regiones Promotoras Genéticas , Unión Proteica , Transporte de Proteínas , Transducción de Señal , Factores de Transcripción/metabolismo
5.
Front Microbiol ; 11: 594838, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329479

RESUMEN

In all three domains of life, tRNA genes contain introns that must be removed to yield functional tRNA. In archaea and eukarya, the first step of this process is catalyzed by a splicing endonuclease. The consensus structure recognized by the splicing endonuclease is a bulge-helix-bulge (BHB) motif which is also found in rRNA precursors. So far, a systematic analysis to identify all biological substrates of the splicing endonuclease has not been carried out. In this study, we employed CRISPRi to repress expression of the splicing endonuclease in the archaeon Haloferax volcanii to identify all substrates of this enzyme. Expression of the splicing endonuclease was reduced to 1% of its normal level, resulting in a significant extension of lag phase in H. volcanii growth. In the repression strain, 41 genes were down-regulated and 102 were up-regulated. As an additional approach in identifying new substrates of the splicing endonuclease, we isolated and sequenced circular RNAs, which identified excised introns removed from tRNA and rRNA precursors as well as from the 5' UTR of the gene HVO_1309. In vitro processing assays showed that the BHB sites in the 5' UTR of HVO_1309 and in a 16S rRNA-like precursor are processed by the recombinant splicing endonuclease. The splicing endonuclease is therefore an important player in RNA maturation in archaea.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA