Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Circ Res ; 131(12): 980-1000, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36367103

RESUMEN

BACKGROUND: RBPs (RNA-binding proteins) perform indispensable functions in the post-transcriptional regulation of gene expression. Numerous RBPs have been implicated in cardiac development or physiology based on gene knockout studies and the identification of pathogenic RBP gene mutations in monogenic heart disorders. The discovery and characterization of additional RBPs performing indispensable functions in the heart will advance basic and translational cardiovascular research. METHODS: We performed a differential expression screen in zebrafish embryos to identify genes enriched in nkx2.5-positive cardiomyocytes or cardiopharyngeal progenitors compared to nkx2.5-negative cells from the same embryos. We investigated the myocardial-enriched gene RNA-binding protein with multiple splicing (variants) 2 [RBPMS2)] by generating and characterizing rbpms2 knockout zebrafish and human cardiomyocytes derived from RBPMS2-deficient induced pluripotent stem cells. RESULTS: We identified 1848 genes enriched in the nkx2.5-positive population. Among the most highly enriched genes, most with well-established functions in the heart, we discovered the ohnologs rbpms2a and rbpms2b, which encode an evolutionarily conserved RBP. Rbpms2 localizes selectively to cardiomyocytes during zebrafish heart development and strong cardiomyocyte expression persists into adulthood. Rbpms2-deficient embryos suffer from early cardiac dysfunction characterized by reduced ejection fraction. The functional deficit is accompanied by myofibril disarray, altered calcium handling, and differential alternative splicing events in mutant cardiomyocytes. These phenotypes are also observed in RBPMS2-deficient human cardiomyocytes, indicative of conserved molecular and cellular function. RNA-sequencing and comparative analysis of genes mis-spliced in RBPMS2-deficient zebrafish and human cardiomyocytes uncovered a conserved network of 29 ortholog pairs that require RBPMS2 for alternative splicing regulation, including RBFOX2, SLC8A1, and MYBPC3. CONCLUSIONS: Our study identifies RBPMS2 as a conserved regulator of alternative splicing, myofibrillar organization, and calcium handling in zebrafish and human cardiomyocytes.


Asunto(s)
Calcio , Miocardio , Proteínas de Unión al ARN , Proteínas de Pez Cebra , Animales , Humanos , Calcio/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Represoras/metabolismo , Factores de Empalme de ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
2.
Dis Model Mech ; 15(3)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35098309

RESUMEN

Aortic root aneurysm is a common cause of morbidity and mortality in Loeys-Dietz and Marfan syndromes, where perturbations in transforming growth factor beta (TGFß) signaling play a causal or contributory role, respectively. Despite the advantages of cross-species disease modeling, animal models of aortic root aneurysm are largely restricted to genetically engineered mice. Here, we report that zebrafish devoid of the genes encoding latent-transforming growth factor beta-binding protein 1 and 3 (ltbp1 and ltbp3, respectively) develop rapid and severe aneurysm of the outflow tract (OFT), the aortic root equivalent. Similar to syndromic aneurysm tissue, the distended OFTs display evidence for paradoxical hyperactivated TGFß signaling. RNA-sequencing revealed significant overlap between the molecular signatures of disease tissue from mutant zebrafish and a mouse model of Marfan syndrome. Moreover, chemical inhibition of TGFß signaling in wild-type animals phenocopied mutants but chemical activation did not, demonstrating that TGFß signaling is protective against aneurysm. Human relevance is supported by recent studies implicating genetic lesions in LTBP3 and, potentially, LTBP1 as heritable causes of aortic root aneurysm. Ultimately, our data demonstrate that zebrafish can now be leveraged to interrogate thoracic aneurysmal disease and identify novel lead compounds through small-molecule suppressor screens. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Aneurisma de la Aorta Torácica , Proteínas de Unión a TGF-beta Latente/metabolismo , Síndrome de Marfan , Proteínas de Pez Cebra/metabolismo , Animales , Aneurisma de la Aorta Torácica/genética , Aneurisma de la Aorta Torácica/metabolismo , Aneurisma de la Aorta Torácica/patología , Dilatación , Humanos , Larva/metabolismo , Proteínas de Unión a TGF-beta Latente/genética , Síndrome de Marfan/patología , Ratones , Factor de Crecimiento Transformador beta/metabolismo , Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA