Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Plant Dis ; 107(11): 3608-3615, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37272041

RESUMEN

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most damaging foliage diseases of wheat across the world. Aegilops geniculata Roth is a valuable gene resource for enhancing wheat resistance to powdery mildew. This study identified Ae. geniculata accession PI 487224 as immune and PI 487228 as susceptible to powdery mildew. Genetic analysis of the F1, F2, and F2:3 progeny derived from PI 487224 × PI 487228 showed that powdery mildew resistance in PI 487224 was controlled by two independent dominant genes located on two different nonhomologous chromosomes. By combing bulked segregant RNA-Seq, genetic linkage analysis of a single resistance gene segregation population, and marker analysis of a set of 14 wheat-Ae. geniculata chromosome addition lines, one of the resistance genes, temperately designated PmAege7M, was mapped to a 4.9-cM interval flanked by markers STS7-55926 and SNP7-45792/STS7-65911 on the long arm of chromosome 7 Mg of PI 487224, spanning 604.73 to 622.82 Mb on the 7D long arm based on the Ae. tauschii reference genome (Aet_v4.0). The map and closely linked markers of PmAege7M from Ae. geniculata in this study will facilitate the transfer of PmAege7M into common wheat and fine mapping of the gene.


Asunto(s)
Aegilops , Triticum , Triticum/genética , Aegilops/genética , Marcadores Genéticos/genética , Genes de Plantas/genética , Mapeo Cromosómico , Erysiphe/genética
2.
Theor Appl Genet ; 135(9): 2953-2967, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35939073

RESUMEN

Genetic dissection of yield component traits including spike and kernel characteristics is essential for the continuous improvement in wheat yield. Genome-wide association studies (GWAS) have been frequently used to identify genetic determinants for spike and kernel-related traits in wheat, though none have been employed in hard winter wheat (HWW) which represents a major class in US wheat acreage. Further, most of these studies relied on assembled diversity panels instead of adapted breeding lines, limiting the transferability of results to practical wheat breeding. Here we assembled a population of advanced/elite breeding lines and well-adapted cultivars and evaluated over four environments for phenotypic analysis of spike and kernel traits. GWAS identified 17 significant multi-environment marker-trait associations (MTAs) for various traits, representing 12 putative quantitative trait loci (QTLs), with five QTLs affecting multiple traits. Four of these QTLs mapped on three chromosomes 1A, 5B, and 7A for spike length, number of spikelets per spike (NSPS), and kernel length are likely novel. Further, a highly significant QTL was detected on chromosome 7AS that has not been previously associated with NSPS and putative candidate genes were identified in this region. The allelic frequencies of important quantitative trait nucleotides (QTNs) were deduced in a larger set of 1,124 accessions which revealed the importance of identified MTAs in the US HWW breeding programs. The results from this study could be directly used by the breeders to select the lines with favorable alleles for making crosses, and reported markers will facilitate marker-assisted selection of stable QTLs for yield components in wheat breeding.


Asunto(s)
Estudio de Asociación del Genoma Completo , Triticum , Genómica , Nucleótidos , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Triticum/genética
3.
Theor Appl Genet ; 135(9): 2993-3003, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35831461

RESUMEN

KEY MESSAGE: A novel powdery mildew resistance gene Pm2Mb from Aegilops biuncialis was transferred into common wheat and mapped to chromosome 2MbL bin FL 0.49-0.66 by molecular cytogenetic analysis of 2Mb recombinants. Aegilops biuncialis, a wild relative of common wheat, is highly resistant to powdery mildew. Previous studies identified that chromosome 2Mb in Chinese Spring (CS)-Ae. biuncialis 2Mb disomic addition line TA7733 conferred high resistance to powdery mildew, and the resistance gene was temporarily designated as Pm2Mb. In this study, a total of 65 CS-Ae. biuncialis 2Mb recombinants were developed by ph1b-induced homoeologous recombination and they were grouped into 12 different types based on the presence of different markers of 2Mb-specificity. Segment sizes and breakpoints of each 2Mb recombinant type were further characterized using in situ hybridization and molecular marker analyses. Powdery mildew responses of each type were assessed by inoculation of each 2Mb recombinant-derived F2 progenies using the isolate E05. Combined analyses of in situ hybridization, molecular markers and powdery mildew resistance data of the 2Mb recombinants, the gene Pm2Mb was cytologically located to an interval of FL 0.49-0.66 in the long arm of 2Mb, where 19 2Mb-specific markers were located. Among the 65 2Mb recombinants, T-11 (T2DS.2DL-2MbL) and T-12 (Ti2DS.2DL-2MbL-2DL) contained a small 2MbL segment harboring Pm2Mb. Besides, a physical map of chromosome 2Mb was constructed with 70 2Mb-specific markers in 10 chromosomal bins and the map showed that submetacentric chromosome 2Mb of Ae. biuncialis was rearranged by a terminal intrachromosomal translocation. The newly developed 2Mb recombinants with powdery mildew resistance, the 2Mb-specific molecular markers and the physical map of chromosome 2Mb will benefit wheat disease breeding as well as fine mapping and cloning of Pm2Mb.


Asunto(s)
Aegilops , Ascomicetos , Aegilops/genética , Ascomicetos/fisiología , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/genética , Genes de Plantas , Marcadores Genéticos , Fitomejoramiento , Enfermedades de las Plantas/genética , Recombinación Genética , Triticum/genética
4.
Theor Appl Genet ; 134(1): 339-350, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33068119

RESUMEN

Pre-harvest sprouting (PHS) causes significant losses in wheat yield and quality worldwide. Previously, we cloned a PHS resistance gene, TaPHS1, and identified two causal mutations for reduced seed dormancy (SD) and increased PHS susceptibility. Here we identified a novel allelic variation of C to T transition in 3'-UTR of TaPHS1, which associated with reduced SD and PHS resistance. The T allele occurred in wild wheat progenitors and was likely the earliest functional mutation in TaPHS1 for PHS susceptibility. Allele frequency analysis revealed low frequency of the T allele in wild diploid and tetraploid wheat progenitors, but very high frequency in modern wheat cultivars and breeding lines, indicating that artificial selection quickly enriched the T allele during modern breeding. The T allele was significantly associated with short SD in both T. aestivum and T. durum, the two most cultivated species of wheat. This variation together with previously reported functional sequence variations co-regulated TaPHS1 expression levels and PHS resistance in different germplasms. Haplotype analysis of the four functional variations identified the best PHS resistance haplotype of TaPHS1. The resistance haplotype can be used in marker-assisted selection to transfer TaPHS1 to new wheat cultivars.


Asunto(s)
Germinación/genética , Fitomejoramiento , Latencia en las Plantas/genética , Triticum/genética , Alelos , Frecuencia de los Genes , Haplotipos , Mutación , Polimorfismo de Nucleótido Simple , Triticum/fisiología
5.
Plant Dis ; 105(10): 2938-2945, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33787309

RESUMEN

Powdery mildew of wheat, caused by Blumeria graminis f. sp. tritici, is a destructive disease of common wheat. Cultivation of resistant varieties is the most cost-effective disease management strategy. Previous studies reported that chromosome 3Sl#2 present in Chinese Spring (CS)-Aegilops longissima 3Sl#2(3B) disomic substitution line TA3575 conferred resistance to powdery mildew. In this study, we further located the powdery mildew resistance gene(s) to the short arm of chromosome 3Sl#2 (3Sl#2S) by evaluating for B. graminis f. sp. tritici resistance of newly developed CS-Ae. longissima 3Sl#2 translocation lines. Meanwhile, TA7545, a previously designated CS-Ae. longissima 3Sl#3 disomic addition line, was reidentified as an isochromosome 3Sl#3S addition line and evaluated to confer resistance to powdery mildew, thus locating the resistance gene(s) to the short arm of chromosome 3Sl#3 (3Sl#3S). Based on transcriptome sequences of TA3575, 10 novel chromosome 3SlS-specific markers were developed, of which 5 could be used to distinguish between 3Sl#2S and 3Sl#3S derived from Ae. longissima accessions TL20 and TA1910 (TAM4) and the remaining 5 could identify both 3Sl#2S and 3Sl#3S. Also, CL897, one of five markers specific to both 3Sl#2S and 3Sl#3S, could be used to detect Pm13 located at chromosome 3Sl#1S from Ae. longissima accession TL01 in diverse wheat genetic backgrounds. The powdery mildew resistance genes on chromosomes 3Sl#2S and 3Sl#3S, the CS-Ae. longissima 3Sl#2 translocation lines, and the 3SlS-specific markers developed in this study will facilitate the transfer of B. graminis f. sp. tritici resistance genes into common wheat and provide new germplasm resources for powdery mildew resistance breeding.


Asunto(s)
Aegilops , Aegilops/genética , Cromosomas Humanos Par 3 , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/genética , Genes de Plantas/genética , Humanos , Enfermedades de las Plantas/genética , Triticum/genética
6.
Theor Appl Genet ; 133(4): 1149-1159, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31932954

RESUMEN

KEY MESSAGE: A spontaneous Robertsonian T4SlS·4BL translocation chromosome carrying Pm66 for powdery mildew resistance was discovered and confirmed by RNA-seq, molecular marker, and in situ hybridization analyses. Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is a severe disease of bread wheat worldwide. Discovery and utilization of resistance genes to powdery mildew from wild relatives of wheat have played important roles in wheat improvement. Aegilops longissima, one of the S-genome diploid wild relatives of wheat, is a valuable source of disease and pest resistance for wheat. Chromosome 4Sl from Ae. longissima confers moderate resistance to powdery mildew. In this study, we conducted RNA-seq on a putative Chinese Spring (CS)-Ae. longissima 4Sl(4B) disomic substitution line (TA3465) to develop 4Sl-specific markers to assist the transfer of a Bgt resistance gene from 4Sl by induced homoeologous recombination. A pairwise comparison of genes between CS and TA3465 demonstrated that a number of genes on chromosome 4BS in CS were not expressed in TA3465. Analysis of 4B- and 4Sl-specific molecular markers showed that 4BS and 4SlL were both missing in TA3465, whereas 4BL and 4SlS were present. Further characterization by genomic and fluorescent in situ hybridization confirmed that TA3465 carried a spontaneous Robertsonian T4SlS·4BL translocation. Powdery mildew tests showed that TA3465 was resistant to 10 of 16 Bgt isolates collected from different regions of China, whereas CS was susceptible to all those Bgt isolates. The powdery mildew resistance gene(s) in TA3465 was further mapped to the short arm of 4Sl and designated as Pm66.


Asunto(s)
Aegilops/genética , Ascomicetos/fisiología , Resistencia a la Enfermedad/genética , Genes de Plantas , Enfermedades de las Plantas/genética , Translocación Genética , Triticum/genética , Triticum/microbiología , Ascomicetos/aislamiento & purificación , Cromosomas de las Plantas/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/microbiología
7.
Int J Mol Sci ; 21(1)2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31947730

RESUMEN

Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is one of many severe diseases that threaten bread wheat (Triticum aestivum L.) yield and quality worldwide. The discovery and deployment of powdery mildew resistance genes (Pm) can prevent this disease epidemic in wheat. In a previous study, we transferred the powdery mildew resistance gene Pm57 from Aegilops searsii into common wheat and cytogenetically mapped the gene in a chromosome region with the fraction length (FL) 0.75-0.87, which represents 12% segment of the long arm of chromosome 2Ss#1. In this study, we performed RNA-seq using RNA extracted from leaf samples of three infected and mock-infected wheat-Ae. searsii 2Ss#1 introgression lines at 0, 12, 24, and 48 h after inoculation with Bgt isolates. Then we designed 79 molecular markers based on transcriptome sequences and physically mapped them to Ae. searsii chromosome 2Ss#1- in seven intervals. We used these markers to identify 46 wheat-Ae. searsii 2Ss#1 recombinants induced by ph1b, a deletion mutant of pairing homologous (Ph) genes. After analyzing the 46 ph1b-induced 2Ss#1L recombinants in the region where Pm57 is located with different Bgt-responses, we physically mapped Pm57 gene on the long arm of 2Ss#1 in a 5.13 Mb genomic region, which was flanked by markers X67593 (773.72 Mb) and X62492 (778.85 Mb). By comparative synteny analysis of the corresponding region on chromosome 2B in Chinese Spring (T. aestivum L.) with other model species, we identified ten genes that are putative plant defense-related (R) genes which includes six coiled-coil nucleotide-binding site-leucine-rich repeat (CNL), three nucleotide-binding site-leucine-rich repeat (NL) and a leucine-rich receptor-like repeat (RLP) encoding proteins. This study will lay a foundation for cloning of Pm57, and benefit the understanding of interactions between resistance genes of wheat and powdery mildew pathogens.


Asunto(s)
Aegilops/genética , Ascomicetos/fisiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Aegilops/microbiología , Cromosomas de las Plantas , Resistencia a la Enfermedad , Genes de Plantas , Mapeo Físico de Cromosoma , Triticum/genética , Triticum/microbiología
8.
BMC Plant Biol ; 19(1): 480, 2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31703626

RESUMEN

BACKGROUND: In the late 1920s, A. E. Watkins collected about 7000 landrace cultivars (LCs) of bread wheat (Triticum aestivum L.) from 32 different countries around the world. Among which 826 LCs remain viable and could be a valuable source of superior/favorable alleles to enhance disease resistance in wheat. In the present study, a core set of 121 LCs, which captures the majority of the genetic diversity of Watkins collection, was evaluated for identifying novel sources of resistance against tan spot, Stagonospora nodorum blotch (SNB), and Fusarium Head Blight (FHB). RESULTS: A diverse response was observed in 121 LCs for all three diseases. The majority of LCs were moderately susceptible to susceptible to tan spot Ptr race 1 (84%) and FHB (96%) whereas a large number of LCs were resistant or moderately resistant against tan spot Ptr race 5 (95%) and SNB (54%). Thirteen LCs were identified in this study could be a valuable source for multiple resistance to tan spot Ptr races 1 and 5, and SNB, and another five LCs could be a potential source for FHB resistance. GWAS analysis was carried out using disease phenotyping score and 8807 SNPs data of 118 LCs, which identified 30 significant marker-trait associations (MTAs) with -log10 (p-value) > 3.0. Ten, five, and five genomic regions were found to be associated with resistance to tan spot Ptr race 1, race 5, and SNB, respectively in this study. In addition to Tsn1, several novel genomic regions Q.Ts1.sdsu-4BS and Q.Ts1.sdsu-5BS (tan spot Ptr race 1) and Q.Ts5.sdsu-1BL, Q.Ts5.sdsu-2DL, Q.Ts5.sdsu-3AL, and Q.Ts5.sdsu-6BL (tan spot Ptr race 5) were also identified. Our results indicate that these putative genomic regions contain several genes that play an important role in plant defense mechanisms. CONCLUSION: Our results suggest the existence of valuable resistant alleles against leaf spot diseases in Watkins LCs. The single-nucleotide polymorphism (SNP) markers linked to the quantitative trait loci (QTLs) for tan spot and SNB resistance along with LCs harboring multiple disease resistance could be useful for future wheat breeding.


Asunto(s)
Ascomicetos/fisiología , Genoma de Planta , Enfermedades de las Plantas/genética , Triticum/genética , Resistencia a la Enfermedad/genética , Fusarium/fisiología , Variación Genética , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas/microbiología , Triticum/microbiología
9.
Int J Mol Sci ; 20(10)2019 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-31108903

RESUMEN

Leaf rust caused by Puccinia triticina Eriks is one of the most problematic diseases of wheat throughout the world. The gene Lr42 confers effective resistance against leaf rust at both seedling and adult plant stages. Previous studies had reported Lr42 to be both recessive and dominant in hexaploid wheat; however, in diploid Aegilops tauschii (TA2450), we found Lr42 to be dominant by studying segregation in two independent F2 and their F2:3 populations. We further fine-mapped Lr42 in hexaploid wheat using a KS93U50/Morocco F5 recombinant inbred line (RIL) population to a 3.7 cM genetic interval flanked by markers TC387992 and WMC432. The 3.7 cM Lr42 region physically corresponds to a 3.16 Mb genomic region on chromosome 1DS based on the Chinese Spring reference genome (RefSeq v.1.1) and a 3.5 Mb genomic interval on chromosome 1 in the Ae. tauschii reference genome. This region includes nine nucleotide-binding domain leucine-rich repeat (NLR) genes in wheat and seven in Ae. tauschii, respectively, and these are the likely candidates for Lr42. Furthermore, we developed two kompetitive allele-specific polymorphism (KASP) markers (SNP113325 and TC387992) flanking Lr42 to facilitate marker-assisted selection for rust resistance in wheat breeding programs.


Asunto(s)
Mapeo Cromosómico/métodos , Resistencia a la Enfermedad , Proteínas de Plantas/genética , Triticum/microbiología , Basidiomycota/patogenicidad , Sitios de Unión , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Proteínas de Plantas/química , Poliploidía , Triticum/genética
10.
Nature ; 491(7426): 705-10, 2012 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-23192148

RESUMEN

Bread wheat (Triticum aestivum) is a globally important crop, accounting for 20 per cent of the calories consumed by humans. Major efforts are underway worldwide to increase wheat production by extending genetic diversity and analysing key traits, and genomic resources can accelerate progress. But so far the very large size and polyploid complexity of the bread wheat genome have been substantial barriers to genome analysis. Here we report the sequencing of its large, 17-gigabase-pair, hexaploid genome using 454 pyrosequencing, and comparison of this with the sequences of diploid ancestral and progenitor genomes. We identified between 94,000 and 96,000 genes, and assigned two-thirds to the three component genomes (A, B and D) of hexaploid wheat. High-resolution synteny maps identified many small disruptions to conserved gene order. We show that the hexaploid genome is highly dynamic, with significant loss of gene family members on polyploidization and domestication, and an abundance of gene fragments. Several classes of genes involved in energy harvesting, metabolism and growth are among expanded gene families that could be associated with crop productivity. Our analyses, coupled with the identification of extensive genetic variation, provide a resource for accelerating gene discovery and improving this major crop.


Asunto(s)
Pan , Genoma de Planta/genética , Triticum/genética , Brachypodium/genética , Cromosomas de las Plantas/genética , Productos Agrícolas/genética , ADN Complementario/genética , ADN de Plantas/genética , Evolución Molecular , Genes de Plantas/genética , Genómica , Familia de Multigenes/genética , Oryza/genética , Polimorfismo de Nucleótido Simple/genética , Poliploidía , Seudogenes/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Triticum/clasificación , Zea mays/genética
11.
Theor Appl Genet ; 129(12): 2369-2378, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27581540

RESUMEN

KEY MESSAGE: SrTA10187 was fine-mapped to a 1.1 cM interval, candidate genes were identified in the region of interest, and molecular markers were developed for marker-assisted selection and Sr gene pyramiding. Stem rust (Puccinia graminis f. sp. tritici, Pgt) races belonging to the Ug99 (TTKSK) race group pose a serious threat to global wheat (Triticum aestivum L.) production. To improve Pgt host resistance, the Ug99-effective resistance gene SrTA10187 previously identified in Aegilops tauschii Coss. was introgressed into wheat, and mapped to the short arm of wheat chromosome 6D. In this study, high-resolution mapping of SrTA10187 was done using a population of 1,060 plants. Pgt resistance was screened using race QFCSC. PCR-based SNP and STS markers were developed from genotyping-by-sequencing tags and SNP sequences available in online databases. SrTA10187 segregated as expected in a 3:1 ratio of resistant to susceptible individuals in three out of six BC3F2 families, and was fine-mapped to a 1.1 cM region on wheat chromosome 6DS. Marker context sequence was aligned to the reference Ae. tauschii genome to identify the physical region encompassing SrTA10187. Due to the size of the corresponding region, candidate disease resistance genes could not be identified with confidence. Comparisons with the Ae. tauschii genetic map developed by Luo et al. (PNAS 110(19):7940-7945, 2013) enabled identification of a discrete genetic locus and a BAC minimum tiling path of the region spanning SrTA10187. Annotation of pooled BAC library sequences led to the identification of candidate genes in the region of interest-including a single NB-ARC-LRR gene. The shorter genetic interval and flanking KASP™ and STS markers developed in this study will facilitate marker-assisted selection, gene pyramiding, and positional cloning of SrTA10187.


Asunto(s)
Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Genes de Plantas , Enfermedades de las Plantas/genética , Triticum/genética , Basidiomycota , Cromosomas de las Plantas , Ligamiento Genético , Fenotipo , Mapeo Físico de Cromosoma , Enfermedades de las Plantas/microbiología , Poaceae/genética , Polimorfismo de Nucleótido Simple , Lugares Marcados de Secuencia , Triticum/microbiología
12.
Proc Natl Acad Sci U S A ; 110(19): 7940-5, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23610408

RESUMEN

The current limitations in genome sequencing technology require the construction of physical maps for high-quality draft sequences of large plant genomes, such as that of Aegilops tauschii, the wheat D-genome progenitor. To construct a physical map of the Ae. tauschii genome, we fingerprinted 461,706 bacterial artificial chromosome clones, assembled contigs, designed a 10K Ae. tauschii Infinium SNP array, constructed a 7,185-marker genetic map, and anchored on the map contigs totaling 4.03 Gb. Using whole genome shotgun reads, we extended the SNP marker sequences and found 17,093 genes and gene fragments. We showed that collinearity of the Ae. tauschii genes with Brachypodium distachyon, rice, and sorghum decreased with phylogenetic distance and that structural genome evolution rates have been high across all investigated lineages in subfamily Pooideae, including that of Brachypodieae. We obtained additional information about the evolution of the seven Triticeae chromosomes from 12 ancestral chromosomes and uncovered a pattern of centromere inactivation accompanying nested chromosome insertions in grasses. We showed that the density of noncollinear genes along the Ae. tauschii chromosomes positively correlates with recombination rates, suggested a cause, and showed that new genes, exemplified by disease resistance genes, are preferentially located in high-recombination chromosome regions.


Asunto(s)
Mapeo Contig , Genoma de Planta , Poaceae/genética , Centrómero/ultraestructura , Cromosomas Artificiales Bacterianos , Cromosomas de las Plantas/ultraestructura , Evolución Molecular , Genes de Plantas , Marcadores Genéticos , Polimorfismo de Nucleótido Simple , Recombinación Genética , Análisis de Secuencia de ADN , Triticum/genética
13.
New Phytol ; 208(3): 928-35, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26255630

RESUMEN

Preharvest sprouting (PHS) is one of the major constraints of wheat production in areas where prolonged rainfall occurs during harvest. TaPHS1 is a gene that regulates PHS resistance on chromosome 3A of wheat, and two causal mutations in the positions +646 and +666 of the TaPHS1 coding region result in wheat PHS susceptibility. Three competitive allele-specific PCR (KASP) markers were developed based on the two mutations in the coding region and one in the promoter region and validated in 82 wheat cultivars with known genotypes. These markers can be used to transfer TaPHS1 in breeding through marker-assisted selection. Screening of 327 accessions of wheat A genome progenitors using the three KASP markers identified different haplotypes in both diploid and tetraploid wheats. Only one Triticum monococcum accession, however, carries both causal mutations in the TaPHS1 coding region and shows PHS susceptibility. Five of 249 common wheat landraces collected from the Fertile Crescent and surrounding areas carried the mutation (C) in the promoter (-222), and one landrace carries both the causal mutations in the TaPHS1 coding region, indicating that the mis-splicing (+646) mutation occurred during common wheat domestication. PHS assay of wheat progenitor accessions demonstrated that the wild-types were highly PHS-resistant, whereas the domesticated type showed increased PHS susceptibility. The mis-splicing TaPHS1 mutation for PHS susceptibility was involved in wheat domestication and might arise independently between T. monococcum and Triticum aestivum.


Asunto(s)
Fitomejoramiento , Triticum/genética , Evolución Molecular , Mutación , Polimorfismo de Nucleótido Simple , Empalme de Proteína
14.
Plant Physiol ; 166(3): 1200-7, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25037215

RESUMEN

Recent rapid evolution and spread of resistance to the most extensively used herbicide, glyphosate, is a major threat to global crop production. Genetic mechanisms by which weeds evolve resistance to herbicides largely determine the level of resistance and the rate of evolution of resistance. In a previous study, we determined that glyphosate resistance in Kochia scoparia is due to the amplification of the 5-Enolpyruvylshikimate-3-Phosphate Synthase (EPSPS) gene, the enzyme target of glyphosate. Here, we investigated the genomic organization of the amplified EPSPS copies using fluorescence in situ hybridization (FISH) and extended DNA fiber (Fiber FISH) on K. scoparia chromosomes. In both glyphosate-resistant K. scoparia populations tested (GR1 and GR2), FISH results displayed a single and prominent hybridization site of the EPSPS gene localized on the distal end of one pair of homologous metaphase chromosomes compared with a faint hybridization site in glyphosate-susceptible samples (GS1 and GS2). Fiber FISH displayed 10 copies of the EPSPS gene (approximately 5 kb) arranged in tandem configuration approximately 40 to 70 kb apart, with one copy in an inverted orientation in GR2. In agreement with FISH results, segregation of EPSPS copies followed single-locus inheritance in GR1 population. This is the first report of tandem target gene amplification conferring field-evolved herbicide resistance in weed populations.


Asunto(s)
3-Fosfoshikimato 1-Carboxiviniltransferasa/genética , Bassia scoparia/enzimología , Glicina/análogos & derivados , Resistencia a los Herbicidas , Herbicidas/farmacología , 3-Fosfoshikimato 1-Carboxiviniltransferasa/metabolismo , Bassia scoparia/genética , Evolución Biológica , Mapeo Cromosómico , Amplificación de Genes , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glicina/farmacología , Hibridación Fluorescente in Situ , Modelos Biológicos , Glifosato
15.
Theor Appl Genet ; 128(10): 2099-111, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26160336

RESUMEN

KEY MESSAGE: A novel powdery mildew resistance gene and a new allele of Pm1 were identified and fine mapped. DNA markers suitable for marker-assisted selection have been identified. Powdery mildew caused by Blumeria graminis is one of the most important foliar diseases of wheat and causes significant yield losses worldwide. Diploid A genome species are an important genetic resource for disease resistance genes. Two powdery mildew resistance genes, identified in Triticum boeoticum (A(b)A(b)) accession pau5088, PmTb7A.1 and PmTb7A.2 were mapped on chromosome 7AL. In the present study, shotgun sequence assembly data for chromosome 7AL were utilised for fine mapping of these Pm resistance genes. Forty SSR, 73 resistance gene analogue-based sequence-tagged sites (RGA-STS) and 36 single nucleotide polymorphism markers were designed for fine mapping of PmTb7A.1 and PmTb7A.2. Twenty-one RGA-STS, 8 SSR and 13 SNP markers were mapped to 7AL. RGA-STS markers Ta7AL-4556232 and 7AL-4426363 were linked to the PmTb7A.1 and PmTb7A.2, at a genetic distance of 0.6 and 6.0 cM, respectively. The present investigation established that PmTb7A.1 is a new powdery mildew resistance gene that confers resistance to a broad range of Bgt isolates, whereas PmTb7A.2 most probably is a new allele of Pm1 based on chromosomal location and screening with Bgt isolates showing differential reaction on lines with different Pm1 alleles. The markers identified to be linked to the two Pm resistance genes are robust and can be used for marker-assisted introgression of these genes to hexaploid wheat.


Asunto(s)
Ascomicetos , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Triticum/genética , Alelos , Cromosomas de las Plantas , Diploidia , Genes de Plantas , Ligamiento Genético , Marcadores Genéticos , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Lugares Marcados de Secuencia , Triticum/clasificación , Triticum/microbiología
16.
Theor Appl Genet ; 128(6): 1019-27, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25726000

RESUMEN

KEY MESSAGE: This manuscript describes the transfer and molecular cytogenetic characterization of a novel source of Fusarium head blight resistance in wheat. Fusarium head blight (FHB) caused by the fungus Fusarium graminearum Schwabe [telomorph = Gibberella zeae (Schwein. Fr.) Petch] is an important disease of bread wheat, Triticum aestivum L. (2n = 6x = 42, AABBDD) worldwide. Wheat has limited resistance to FHB controlled by many loci and new sources of resistance are urgently needed. The perennial grass Elymus tsukushiensis thrives in the warm and humid regions of China and Japan and is immune to FHB. Here, we report the transfer and mapping of a major gene Fhb6 from E. tsukushiensis to wheat. Fhb6 was mapped to the subterminal region in the short arm of chromosome 1E(ts)#1S of E. tsukushiensis. Chromosome engineering was used to replace corresponding homoeologous region of chromosome 1AS of wheat with the Fhb6 associated chromatin derived from 1E(ts)#1S of E. tsukushiensis. Fhb6 appears to be new locus for wheat as previous studies have not detected any FHB resistance QTL in this chromosome region. Plant progenies homozygous for Fhb6 had a disease severity rating of 7 % compared to 35 % for the null progenies. Fhb6 has been tagged with molecular markers for marker-assisted breeding and pyramiding of resistance loci for effective control of FHB.


Asunto(s)
Resistencia a la Enfermedad/genética , Elymus/genética , Fusarium , Enfermedades de las Plantas/genética , Triticum/genética , Cruzamiento , Mapeo Cromosómico , Cromosomas de las Plantas , Cruzamientos Genéticos , Etiquetas de Secuencia Expresada , Genes de Plantas , Ingeniería Genética , Marcadores Genéticos , Triticum/microbiología
17.
BMC Genomics ; 15: 273, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24716476

RESUMEN

BACKGROUND: Monitoring alien introgressions in crop plants is difficult due to the lack of genetic and molecular mapping information on the wild crop relatives. The tertiary gene pool of wheat is a very important source of genetic variability for wheat improvement against biotic and abiotic stresses. By exploring the 5Mg short arm (5MgS) of Aegilops geniculata, we can apply chromosome genomics for the discovery of SNP markers and their use for monitoring alien introgressions in wheat (Triticum aestivum L). RESULTS: The short arm of chromosome 5Mg of Ae. geniculata Roth (syn. Ae. ovata L.; 2n = 4x = 28, UgUgMgMg) was flow-sorted from a wheat line in which it is maintained as a telocentric chromosome. DNA of the sorted arm was amplified and sequenced using an Illumina Hiseq 2000 with ~45x coverage. The sequence data was used for SNP discovery against wheat homoeologous group-5 assemblies. A total of 2,178 unique, 5MgS-specific SNPs were discovered. Randomly selected samples of 59 5MgS-specific SNPs were tested (44 by KASPar assay and 15 by Sanger sequencing) and 84% were validated. Of the selected SNPs, 97% mapped to a chromosome 5Mg addition to wheat (the source of t5MgS), and 94% to 5Mg introgressed from a different accession of Ae. geniculata substituting for chromosome 5D of wheat. The validated SNPs also identified chromosome segments of 5MgS origin in a set of T5D-5Mg translocation lines; eight SNPs (25%) mapped to TA5601 [T5DL · 5DS-5MgS(0.75)] and three (8%) to TA5602 [T5DL · 5DS-5MgS (0.95)]. SNPs (gsnp_5ms83 and gsnp_5ms94), tagging chromosome T5DL · 5DS-5MgS(0.95) with the smallest introgression carrying resistance to leaf rust (Lr57) and stripe rust (Yr40), were validated in two released germplasm lines with Lr57 and Yr40 genes. CONCLUSION: This approach should be widely applicable for the identification of species/genome-specific SNPs. The development of a large number of SNP markers will facilitate the precise introgression and monitoring of alien segments in crop breeding programs and further enable mapping and cloning novel genes from the wild relatives of crop plants.


Asunto(s)
Hibridación Genética , Polimorfismo de Nucleótido Simple , Triticum/genética , Cruzamiento , Mapeo Cromosómico , Cromosomas de las Plantas , Reproducibilidad de los Resultados
18.
Plant Physiol ; 161(1): 252-65, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23124323

RESUMEN

Cycles of whole-genome duplication (WGD) and diploidization are hallmarks of eukaryotic genome evolution and speciation. Polyploid wheat (Triticum aestivum) has had a massive increase in genome size largely due to recent WGDs. How these processes may impact the dynamics of gene evolution was studied by comparing the patterns of gene structure changes, alternative splicing (AS), and codon substitution rates among wheat and model grass genomes. In orthologous gene sets, significantly more acquired and lost exonic sequences were detected in wheat than in model grasses. In wheat, 35% of these gene structure rearrangements resulted in frame-shift mutations and premature termination codons. An increased codon mutation rate in the wheat lineage compared with Brachypodium distachyon was found for 17% of orthologs. The discovery of premature termination codons in 38% of expressed genes was consistent with ongoing pseudogenization of the wheat genome. The rates of AS within the individual wheat subgenomes (21%-25%) were similar to diploid plants. However, we uncovered a high level of AS pattern divergence between the duplicated homeologous copies of genes. Our results are consistent with the accelerated accumulation of AS isoforms, nonsynonymous mutations, and gene structure rearrangements in the wheat lineage, likely due to genetic redundancy created by WGDs. Whereas these processes mostly contribute to the degeneration of a duplicated genome and its diploidization, they have the potential to facilitate the origin of new functional variations, which, upon selection in the evolutionary lineage, may play an important role in the origin of novel traits.


Asunto(s)
Evolución Molecular , Genoma de Planta , Sintenía , Triticum/genética , Empalme Alternativo , Brachypodium/genética , Cromosomas de las Plantas/genética , Codón sin Sentido/genética , ADN de Plantas/genética , Bases de Datos Genéticas , Exones , Mutación del Sistema de Lectura , Perfilación de la Expresión Génica , Orden Génico , Intrones , Tasa de Mutación , Sistemas de Lectura Abierta , Poliploidía , Seudogenes , Selección Genética
19.
Plant Genome ; : e20470, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38853339

RESUMEN

Fusarium head blight (FHB) remains one of the most destructive diseases of wheat (Triticum aestivum L.), causing considerable losses in yield and end-use quality. Phenotyping of FHB resistance traits, Fusarium-damaged kernels (FDK), and deoxynivalenol (DON), is either prone to human biases or resource expensive, hindering the progress in breeding for FHB-resistant cultivars. Though genomic selection (GS) can be an effective way to select these traits, inaccurate phenotyping remains a hurdle in exploiting this approach. Here, we used an artificial intelligence (AI)-based precise FDK estimation that exhibits high heritability and correlation with DON. Further, GS using AI-based FDK (FDK_QVIS/FDK_QNIR) showed a two-fold increase in predictive ability (PA) compared to GS for traditionally estimated FDK (FDK_V). Next, the AI-based FDK was evaluated along with other traits in multi-trait (MT) GS models to predict DON. The inclusion of FDK_QNIR and FDK_QVIS with days to heading as covariates improved the PA for DON by 58% over the baseline single-trait GS model. We next used hyperspectral imaging of FHB-infected wheat kernels as a novel avenue to improve the MT GS for DON. The PA for DON using selected wavebands derived from hyperspectral imaging in MT GS models surpassed the single-trait GS model by around 40%. Finally, we evaluated phenomic prediction for DON by integrating hyperspectral imaging with deep learning to directly predict DON in FHB-infected wheat kernels and observed an accuracy (R2 = 0.45) comparable to best-performing MT GS models. This study demonstrates the potential application of AI and vision-based platforms to improve PA for FHB-related traits using genomic and phenomic selection.

20.
Front Plant Sci ; 15: 1410249, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38872880

RESUMEN

Integrating high-throughput phenotyping (HTP) based traits into phenomic and genomic selection (GS) can accelerate the breeding of high-yielding and climate-resilient wheat cultivars. In this study, we explored the applicability of Unmanned Aerial Vehicles (UAV)-assisted HTP combined with deep learning (DL) for the phenomic or multi-trait (MT) genomic prediction of grain yield (GY), test weight (TW), and grain protein content (GPC) in winter wheat. Significant correlations were observed between agronomic traits and HTP-based traits across different growth stages of winter wheat. Using a deep neural network (DNN) model, HTP-based phenomic predictions showed robust prediction accuracies for GY, TW, and GPC for a single location with R2 of 0.71, 0.62, and 0.49, respectively. Further prediction accuracies increased (R2 of 0.76, 0.64, and 0.75) for GY, TW, and GPC, respectively when advanced breeding lines from multi-locations were used in the DNN model. Prediction accuracies for GY varied across growth stages, with the highest accuracy at the Feekes 11 (Milky ripe) stage. Furthermore, forward prediction of GY in preliminary breeding lines using DNN trained on multi-location data from advanced breeding lines improved the prediction accuracy by 32% compared to single-location data. Next, we evaluated the potential of incorporating HTP-based traits in multi-trait genomic selection (MT-GS) models in the prediction of GY, TW, and GPC. MT-GS, models including UAV data-based anthocyanin reflectance index (ARI), green chlorophyll index (GCI), and ratio vegetation index 2 (RVI_2) as covariates demonstrated higher predictive ability (0.40, 0.40, and 0.37, respectively) as compared to single-trait model (0.23) for GY. Overall, this study demonstrates the potential of integrating HTP traits into DL-based phenomic or MT-GS models for enhancing breeding efficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA