Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Biophys J ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38973159

RESUMEN

There are increasing numbers of ion channel structures featuring heteromeric subunit assembly, exemplified by synaptic α1ßB glycine and α4ß2 nicotinic receptors. These structures exhibit inherent pore asymmetry, but the relevance of this to function is unknown. Furthermore, molecular dynamics simulations performed on symmetrical homomeric channels often lead to thermal distortion whereby conformations of the resulting ensemble are also asymmetrical. When functionally annotating ion channels, researchers often rely on minimal constrictions determined via radius-profile calculations performed with computer programs, such as HOLE or CHAP, coupled with an assessment of pore hydrophobicity. However, such tools typically employ spherical probe particles, limiting their ability to accurately capture pore asymmetry. Here, we introduce an algorithm that employs ellipsoidal probe particles, enabling a more comprehensive representation of the pore geometry. Our analysis reveals that the use of nonspherical ellipsoids for pore characterization provides a more accurate and easily interpretable depiction of conductance. To quantify the implications of pore asymmetry on conductance, we systematically investigated carbon nanotubes with varying degrees of pore asymmetry as model systems. The conductance through these channels shows surprising effects that would otherwise not be predicted with spherical probes. The results have broad implications not only for the functional annotation of biological ion channels but also for the design of synthetic channel systems for use in areas such as water filtration. Furthermore, we make use of the more accurate characterization of channel pores to refine a physical conductance model to obtain a heuristic estimate for single-channel conductance. The code is freely available, obtainable as pip-installable python package and provided as a web service.

2.
Phys Chem Chem Phys ; 25(29): 20145, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37455541

RESUMEN

Correction for 'Limitations of non-polarizable force fields in describing anion binding poses in non-polar synthetic hosts' by David Seiferth et al., Phys. Chem. Chem. Phys., 2023, 25, 17596-17608, https://doi.org/10.1039/D3CP00479A.

3.
Phys Chem Chem Phys ; 25(26): 17596-17608, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37365974

RESUMEN

Transmembrane anion transport by synthetic ionophores has received increasing interest not only because of its relevance for understanding endogenous anion transport, but also because of potential implications for therapeutic routes in disease states where chloride transport is impaired. Computational studies can shed light on the binding recognition process and can deepen our mechanistic understanding of them. However, the ability of molecular mechanics methods to properly capture solvation and binding properties of anions is known to be challenging. Consequently, polarizable models have been suggested to improve the accuracy of such calculations. In this study, we calculate binding free energies for different anions to the synthetic ionophore, biotin[6]uril hexamethyl ester in acetonitrile and to biotin[6]uril hexaacid in water by employing non-polarizable and polarizable force fields. Anion binding shows strong solvent dependency consistent with experimental studies. In water, the binding strengths are iodide > bromide > chloride, and reversed in acetonitrile. These trends are well captured by both classes of force fields. However, the free energy profiles obtained from potential of mean force calculations and preferred binding positions of anions depend on the treatment of electrostatics. Results from simulations using the AMOEBA force-field, which recapitulate the observed binding positions, suggest strong effects from multipoles dominate with a smaller contribution from polarization. The oxidation status of the macrocycle was also found to influence anion recognition in water. Overall, these results have implications for the understanding of anion host interactions not just in synthetic ionophores, but also in narrow cavities of biological ion channels.

4.
Nat Commun ; 15(1): 2967, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580666

RESUMEN

GLIC, a proton-activated prokaryotic ligand-gated ion channel, served as a model system for understanding the eukaryotic counterparts due to their structural and functional similarities. Despite extensive studies conducted on GLIC, the molecular mechanism of channel gating in the lipid environment requires further investigation. Here, we present the cryo-EM structures of nanodisc-reconstituted GLIC at neutral and acidic pH in the resolution range of 2.6 - 3.4 Å. In our apo state at pH 7.5, the extracellular domain (ECD) displays conformational variations compared to the existing apo structures. At pH 4.0, three distinct conformational states (C1, C2 and O states) are identified. The protonated structures exhibit a compacted and counter-clockwise rotated ECD compared with our apo state. A gradual widening of the pore in the TMD is observed upon reducing the pH, with the widest pore in O state, accompanied by several layers of water pentagons. The pore radius and molecular dynamics (MD) simulations suggest that the O state represents an open conductive state. We also observe state-dependent interactions between several lipids and proteins that may be involved in the regulation of channel gating. Our results provide comprehensive insights into the importance of lipids impact on gating.


Asunto(s)
Canales Iónicos Activados por Ligandos , Canales Iónicos Activados por Ligandos/química , Canales Iónicos Activados por Ligandos/metabolismo , Activación del Canal Iónico/fisiología , Microscopía por Crioelectrón , Protones , Lípidos , Proteínas Bacterianas/metabolismo
5.
Nat Commun ; 14(1): 1363, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36914669

RESUMEN

Glycine Receptors (GlyRs) provide inhibitory neuronal input in the spinal cord and brainstem, which is critical for muscle coordination and sensory perception. Synaptic GlyRs are a heteromeric assembly of α and ß subunits. Here we present cryo-EM structures of full-length zebrafish α1ßBGlyR in the presence of an antagonist (strychnine), agonist (glycine), or agonist with a positive allosteric modulator (glycine/ivermectin). Each structure shows a distinct pore conformation with varying degrees of asymmetry. Molecular dynamic simulations found the structures were in a closed (strychnine) and desensitized states (glycine and glycine/ivermectin). Ivermectin binds at all five interfaces, but in a distinct binding pose at the ß-α interface. Subunit-specific features were sufficient to solve structures without a fiduciary marker and to confirm the 4α:1ß stoichiometry recently observed. We also report features of the extracellular and intracellular domains. Together, our results show distinct compositional and conformational properties of α1ßGlyR and provide a framework for further study of this physiologically important channel.


Asunto(s)
Receptores de Glicina , Estricnina , Animales , Receptores de Glicina/metabolismo , Estricnina/farmacología , Pez Cebra/metabolismo , Ivermectina/farmacología , Glicina/metabolismo
6.
J Gen Physiol ; 154(11)2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36287215

RESUMEN

The flux of ions through a channel is most commonly regulated by changes that result in steric occlusion of its pore. However, ion permeation can also be prevented by formation of a desolvation barrier created by hydrophobic residues that line the pore. As a result of relatively minor structural changes, confined hydrophobic regions in channels may undergo transitions between wet and dry states to gate the pore closed without physical constriction of the permeation pathway. This concept is referred to as hydrophobic gating, and many examples of this process have been demonstrated. However, the term is also now being used in a much broader context that often deviates from its original meaning. In this Viewpoint, we explore the formal definition of a hydrophobic gate, discuss examples of this process compared with other gating mechanisms that simply exploit hydrophobic residues and/or lipids in steric closure of the pore, and describe the best practice for identification of a hydrophobic gate.


Asunto(s)
Activación del Canal Iónico , Lípidos , Interacciones Hidrofóbicas e Hidrofílicas , Iones
7.
Sci Rep ; 12(1): 4929, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35322090

RESUMEN

The ion channel TRPA1 is a promiscuous chemosensor, with reported response to a wide spectrum of noxious electrophilic irritants, as well as cold, heat, and mechanosensation. It is also implicated in the inception of itch and pain and has hence been investigated as a drug target for novel analgesics. The mechanism of electrophilic activation for TRPA1 is therefore of broad interest. TRPA1 structures with the pore in both open and closed states have recently been published as well as covalent binding modes for electrophile agonists. However, the detailed mechanism of coupling between electrophile binding sites and the pore remains speculative. In addition, while two different cysteine residues (C621 and C665) have been identified as critical for electrophile bonding and activation, the bound geometry has only been resolved at C621. Here, we use molecular dynamics simulations of TRPA1 in both pore-open and pore-closed states to explore the allosteric link between the electrophile binding sites and pore stability. Our simulations reveal that an open pore is structurally stable in the presence of open 'pockets' in the C621/C665 region, but rapidly collapses and closes when these pockets are shut. Binding of electrophiles at either C621 or C665 provides stabilisation of the pore-open state, but molecules bound at C665 are shown to be able to rotate in and out of the pocket, allowing for immediate stabilisation of transient open states. Finally, mutual information analysis of trajectories reveals an informational path linking the electrophile binding site pocket to the pore via the voltage-sensing-like domain, giving a detailed insight into the how the pore is stabilized in the open state.


Asunto(s)
Simulación de Dinámica Molecular , Canales de Potencial de Receptor Transitorio , Canales de Calcio/metabolismo , Humanos , Irritantes , Canal Catiónico TRPA1/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo
8.
Math Biosci ; 349: 108824, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35537550

RESUMEN

The COVID-19 epidemic continues to rage in many parts of the world. In the UK alone, an array of mathematical models have played a prominent role in guiding policymaking. Whilst considerable pedagogical material exists for understanding the basics of transmission dynamics modelling, there is a substantial gap between the relatively simple models used for exposition of the theory and those used in practice to model the transmission dynamics of COVID-19. Understanding these models requires considerable prerequisite knowledge and presents challenges to those new to the field of epidemiological modelling. In this paper, we introduce an open-source R package, comomodels, which can be used to understand the complexities of modelling the transmission dynamics of COVID-19 through a series of differential equation models. Alongside the base package, we describe a host of learning resources, including detailed tutorials and an interactive web-based interface allowing dynamic investigation of the model properties. We then use comomodels to illustrate three key lessons in the transmission of COVID-19 within R Markdown vignettes.


Asunto(s)
COVID-19 , Epidemias , Humanos , Aprendizaje , Modelos Teóricos
9.
Phys Rev E ; 102(6-1): 062149, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33466014

RESUMEN

Many biological systems can be described by finite Markov models. A general method for simplifying master equations is presented that is based on merging adjacent states. The approach preserves the steady-state probability distribution and all steady-state fluxes except the one between the merged states. Different levels of coarse graining of the underlying microscopic dynamics can be obtained by iteration, with the result being independent of the order in which states are merged. A criterion for the optimal level of coarse graining or resolution of the process is proposed via a tradeoff between the simplicity of the coarse-grained model and the information loss relative to the original model. As a case study, the method is applied to the cycle kinetics of the molecular motor kinesin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA