Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 25(7): 1257-1269, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38806707

RESUMEN

The circadian clock is a critical regulator of immunity, and this circadian control of immune modulation has an essential function in host defense and tumor immunosurveillance. Here we use a single-cell RNA sequencing approach and a genetic model of colorectal cancer to identify clock-dependent changes to the immune landscape that control the abundance of immunosuppressive cells and consequent suppression of cytotoxic CD8+ T cells. Of these immunosuppressive cell types, PD-L1-expressing myeloid-derived suppressor cells (MDSCs) peak in abundance in a rhythmic manner. Disruption of the epithelial cell clock regulates the secretion of cytokines that promote heightened inflammation, recruitment of neutrophils and the subsequent development of MDSCs. We also show that time-of-day anti-PD-L1 delivery is most effective when synchronized with the abundance of immunosuppressive MDSCs. Collectively, these data indicate that circadian gating of tumor immunosuppression informs the timing and efficacy of immune checkpoint inhibitors.


Asunto(s)
Antígeno B7-H1 , Relojes Circadianos , Inhibidores de Puntos de Control Inmunológico , Células Supresoras de Origen Mieloide , Animales , Ratones , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Relojes Circadianos/inmunología , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/inmunología , Ratones Endogámicos C57BL , Ritmo Circadiano/inmunología , Linfocitos T CD8-positivos/inmunología , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/tratamiento farmacológico , Microambiente Tumoral/inmunología , Tolerancia Inmunológica , Humanos , Femenino , Línea Celular Tumoral , Análisis de la Célula Individual , Terapia de Inmunosupresión , Citocinas/metabolismo , Masculino
2.
Cell ; 172(1-2): 218-233.e17, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29249357

RESUMEN

Signaling pathways that promote adipose tissue thermogenesis are well characterized, but the limiters of energy expenditure are largely unknown. Here, we show that ablation of the anti-inflammatory cytokine IL-10 improves insulin sensitivity, protects against diet-induced obesity, and elicits the browning of white adipose tissue. Mechanistic studies define bone marrow cells as the source of the IL-10 signal and adipocytes as the target cell type mediating these effects. IL-10 receptor alpha is highly enriched in mature adipocytes and is induced in response to differentiation, obesity, and aging. Assay for transposase-accessible chromatin sequencing (ATAC-seq), ChIP-seq, and RNA-seq reveal that IL-10 represses the transcription of thermogenic genes in adipocytes by altering chromatin accessibility and inhibiting ATF and C/EBPß recruitment to key enhancer regions. These findings expand our understanding of the relationship between inflammatory signaling pathways and adipose tissue function and provide insight into the physiological control of thermogenesis that could inform future therapy.


Asunto(s)
Adipocitos/metabolismo , Ensamble y Desensamble de Cromatina , Metabolismo Energético , Interleucina-10/metabolismo , Termogénesis , Factores de Transcripción Activadores/metabolismo , Animales , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Línea Celular , Células Cultivadas , Interleucina-10/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal
3.
Nature ; 606(7916): 945-952, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35732742

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a heterogenous neurodegenerative disorder that affects motor neurons and voluntary muscle control1. ALS heterogeneity includes the age of manifestation, the rate of progression and the anatomical sites of symptom onset. Disease-causing mutations in specific genes have been identified and define different subtypes of ALS1. Although several ALS-associated genes have been shown to affect immune functions2, whether specific immune features account for ALS heterogeneity is poorly understood. Amyotrophic lateral sclerosis-4 (ALS4) is characterized by juvenile onset and slow progression3. Patients with ALS4 show motor difficulties by the time that they are in their thirties, and most of them require devices to assist with walking by their fifties. ALS4 is caused by mutations in the senataxin gene (SETX). Here, using Setx knock-in mice that carry the ALS4-causative L389S mutation, we describe an immunological signature that consists of clonally expanded, terminally differentiated effector memory (TEMRA) CD8 T cells in the central nervous system and the blood of knock-in mice. Increased frequencies of antigen-specific CD8 T cells in knock-in mice mirror the progression of motor neuron disease and correlate with anti-glioma immunity. Furthermore, bone marrow transplantation experiments indicate that the immune system has a key role in ALS4 neurodegeneration. In patients with ALS4, clonally expanded TEMRA CD8 T cells circulate in the peripheral blood. Our results provide evidence of an antigen-specific CD8 T cell response in ALS4, which could be used to unravel disease mechanisms and as a potential biomarker of disease state.


Asunto(s)
Esclerosis Amiotrófica Lateral , Linfocitos T CD8-positivos , Células Clonales , Esclerosis Amiotrófica Lateral/inmunología , Esclerosis Amiotrófica Lateral/patología , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Células Clonales/patología , ADN Helicasas/genética , ADN Helicasas/metabolismo , Técnicas de Sustitución del Gen , Ratones , Neuronas Motoras/patología , Enzimas Multifuncionales/genética , Enzimas Multifuncionales/metabolismo , Mutación , ARN Helicasas/genética , ARN Helicasas/metabolismo
4.
Nature ; 567(7747): 187-193, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30814737

RESUMEN

Dysregulation of lipid homeostasis is a precipitating event in the pathogenesis and progression of hepatosteatosis and metabolic syndrome. These conditions are highly prevalent in developed societies and currently have limited options for diagnostic and therapeutic intervention. Here, using a proteomic and lipidomic-wide systems genetic approach, we interrogated lipid regulatory networks in 107 genetically distinct mouse strains to reveal key insights into the control and network structure of mammalian lipid metabolism. These include the identification of plasma lipid signatures that predict pathological lipid abundance in the liver of mice and humans, defining subcellular localization and functionality of lipid-related proteins, and revealing functional protein and genetic variants that are predicted to modulate lipid abundance. Trans-omic analyses using these datasets facilitated the identification and validation of PSMD9 as a previously unknown lipid regulatory protein. Collectively, our study serves as a rich resource for probing mammalian lipid metabolism and provides opportunities for the discovery of therapeutic agents and biomarkers in the setting of hepatic lipotoxicity.


Asunto(s)
Metabolismo de los Lípidos/genética , Lípidos/análisis , Lípidos/genética , Proteómica , Animales , Células HEK293 , Humanos , Metabolismo de los Lípidos/fisiología , Lípidos/sangre , Lípidos/clasificación , Hígado/química , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Obesidad/genética , Obesidad/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo
6.
Nucleic Acids Res ; 49(W1): W104-W113, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-33978718

RESUMEN

The integration of genomics, transcriptomics, proteomics and phenotypic traits across genetically diverse populations is a powerful approach to discover novel biological regulators. The increasing volume of complex data require new and easy-to-use tools accessible to a variety of scientists for the discovery and visualization of functionally relevant associations. To meet this requirement, we developed CoffeeProt, an open-source tool that analyses genetic variants associated to protein networks, other omics datatypes and phenotypic traits. CoffeeProt uses transcriptomics or proteomics data to perform correlation network analyses and annotates results with protein-protein interactions, subcellular localisations and drug associations. It then integrates genetic variants associated with gene expression (eQTLs) or protein abundance (pQTLs) and includes predictions of the potential consequences of variants on gene function. Finally, genetic variants are co-mapped to molecular or phenotypic traits either provided by the user or retrieved directly from publicly available GWAS results. We demonstrate its utility with the analysis of mouse and human population data enabling the rapid identification of genetic variants associated with druggable proteins and clinical traits. We expect that CoffeeProt will serve the systems genetics and basic science research communities, leading to the discovery of novel biologically relevant associations. CoffeeProt is available at www.coffeeprot.com.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Proteómica/métodos , Programas Informáticos , Animales , Correlación de Datos , Expresión Génica , Variación Genética , Genómica/métodos , Internet , Metabolismo de los Lípidos/genética , Ratones , Fenotipo , Mapeo de Interacción de Proteínas , Proteínas/genética , Proteoma , Sitios de Carácter Cuantitativo
7.
Circulation ; 143(18): 1809-1823, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33626882

RESUMEN

BACKGROUND: Coronary artery disease (CAD) is a multifactorial condition with both genetic and exogenous causes. The contribution of tissue-specific functional networks to the development of atherosclerosis remains largely unclear. The aim of this study was to identify and characterize central regulators and networks leading to atherosclerosis. METHODS: Based on several hundred genes known to affect atherosclerosis risk in mouse (as demonstrated in knockout models) and human (as shown by genome-wide association studies), liver gene regulatory networks were modeled. The hierarchical order and regulatory directions of genes within the network were based on Bayesian prediction models, as well as experimental studies including chromatin immunoprecipitation DNA-sequencing, chromatin immunoprecipitation mass spectrometry, overexpression, small interfering RNA knockdown in mouse and human liver cells, and knockout mouse experiments. Bioinformatics and correlation analyses were used to clarify associations between central genes and CAD phenotypes in both human and mouse. RESULTS: The transcription factor MAFF (MAF basic leucine zipper transcription factor F) interacted as a key driver of a liver network with 3 human genes at CAD genome-wide association studies loci and 11 atherosclerotic murine genes. Most importantly, expression levels of the low-density lipoprotein receptor (LDLR) gene correlated with MAFF in 600 CAD patients undergoing bypass surgery (STARNET [Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task]) and a hybrid mouse diversity panel involving 105 different inbred mouse strains. Molecular mechanisms of MAFF were tested in noninflammatory conditions and showed positive correlation between MAFF and LDLR in vitro and in vivo. Interestingly, after lipopolysaccharide stimulation (inflammatory conditions), an inverse correlation between MAFF and LDLR in vitro and in vivo was observed. Chromatin immunoprecipitation mass spectrometry revealed that the human CAD genome-wide association studies candidate BACH1 (BTB domain and CNC homolog 1) assists MAFF in the presence of lipopolysaccharide stimulation with respective heterodimers binding at the MAF recognition element of the LDLR promoter to transcriptionally downregulate LDLR expression. CONCLUSIONS: The transcription factor MAFF was identified as a novel central regulator of an atherosclerosis/CAD-relevant liver network. MAFF triggered context-specific expression of LDLR and other genes known to affect CAD risk. Our results suggest that MAFF is a missing link between inflammation, lipid and lipoprotein metabolism, and a possible treatment target.


Asunto(s)
Aterosclerosis/metabolismo , Colesterol/metabolismo , Proteínas de Unión al ADN/metabolismo , Inflamación/metabolismo , Factor de Transcripción MafF/metabolismo , Proteínas Nucleares/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Noqueados
8.
Mol Syst Biol ; 17(1): e9684, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33417276

RESUMEN

To elucidate the contributions of specific lipid species to metabolic traits, we integrated global hepatic lipid data with other omics measures and genetic data from a cohort of about 100 diverse inbred strains of mice fed a high-fat/high-sucrose diet for 8 weeks. Association mapping, correlation, structure analyses, and network modeling revealed pathways and genes underlying these interactions. In particular, our studies lead to the identification of Ifi203 and Map2k6 as regulators of hepatic phosphatidylcholine homeostasis and triacylglycerol accumulation, respectively. Our analyses highlight mechanisms for how genetic variation in hepatic lipidome can be linked to physiological and molecular phenotypes, such as microbiota composition.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Hígado Graso/genética , Glucosa/efectos adversos , Resistencia a la Insulina/genética , MAP Quinasa Quinasa 6/genética , Proteínas Nucleares/genética , Animales , Modelos Animales de Enfermedad , Hígado Graso/inducido químicamente , Hígado Graso/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Variación Genética , Lipidómica , Masculino , Ratones , Fosfatidilcolinas/metabolismo , Triglicéridos/metabolismo
9.
Circ Res ; 123(1): 73-85, 2018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29691232

RESUMEN

RATIONALE: Cardiac fibroblasts do not form a syncytium but reside in the interstitium between myocytes. This topological relationship between fibroblasts and myocytes is maintained throughout postnatal life until an acute myocardial injury occurs, when fibroblasts are recruited to, proliferate and aggregate in the region of myocyte necrosis. The accumulation or aggregation of fibroblasts in the area of injury thus represents a unique event in the life cycle of the fibroblast, but little is known about how changes in the topological arrangement of fibroblasts after cardiac injury affect fibroblast function. OBJECTIVE: The objective of the study was to investigate how changes in topological states of cardiac fibroblasts (such as after cardiac injury) affect cellular phenotype. METHODS AND RESULTS: Using 2 and 3-dimensional (2D versus 3D) culture conditions, we show that simple aggregation of cardiac fibroblasts is sufficient by itself to induce genome-wide changes in gene expression and chromatin remodeling. Remarkably, gene expression changes are reversible after the transition from a 3D back to 2D state demonstrating a topological regulation of cellular plasticity. Genes induced by fibroblast aggregation are strongly associated and predictive of adverse cardiac outcomes and remodeling in mouse models of cardiac hypertrophy and failure. Using solvent-based tissue clearing techniques to create optically transparent cardiac scar tissue, we show that fibroblasts in the region of dense scar tissue express markers that are induced by fibroblasts in the 3D conformation. Finally, using live cell interferometry, a quantitative phase microscopy technique to detect absolute changes in single cell biomass, we demonstrate that conditioned medium collected from fibroblasts in 3D conformation compared with that from a 2D state significantly increases cardiomyocyte cell hypertrophy. CONCLUSIONS: Taken together, these findings demonstrate that simple topological changes in cardiac fibroblast organization are sufficient to induce chromatin remodeling and global changes in gene expression with potential functional consequences for the healing heart.


Asunto(s)
Agregación Celular , Plasticidad de la Célula , Ensamble y Desensamble de Cromatina , Fibroblastos/patología , Expresión Génica , Infarto del Miocardio/patología , Miocardio/patología , Animales , Técnicas de Cultivo de Célula , Medios de Cultivo Condicionados , Femenino , Fibroblastos/fisiología , Masculino , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Fenotipo
10.
J Lipid Res ; 60(3): 450-455, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30617149

RESUMEN

Secreted proteins serve as crucial mediators of many physiology processes, and beginning with the discovery of insulin, studies have revealed numerous context-specific regulatory networks across various cell types. Here, we review "omics" approaches to deconvolute the complex milieu of proteins that are released from the cell. We emphasize a novel "systems genetics" approach our laboratory has developed to investigate mechanisms of tissue-tissue communication using population-based datasets. Finally, we highlight potential future directions for these studies, discuss several caveats, and propose new ways to investigate modes of endocrine communication.


Asunto(s)
Proteínas/metabolismo , Biología de Sistemas/métodos , Animales , Células/metabolismo , Humanos
11.
Arterioscler Thromb Vasc Biol ; 38(9): 2016-2027, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30026271

RESUMEN

Objective- The objective of this study was to determine the basis of resistance to atherosclerosis of inbred mouse strain BALB/cJ. Approach and Results- BALB/cJ mice carry a naturally occurring null mutation of the gene encoding the transcription factor Zhx2, and genetic analyses suggested that this may confer resistance to atherosclerosis. On a hyperlipidemic low-density lipoprotein receptor null background, BALB/cJ mice carrying the mutant allele for Zhx2 exhibited up to a 10-fold reduction in lesion size as compared with an isogenic strain carrying the wild-type allele. Several lines of evidence, including bone marrow transplantation studies, indicate that this effect of Zhx2 is mediated, in part, by monocytes/macrophages although nonbone marrow-derived pathways are clearly involved as well. Both in culture and in atherosclerotic lesions, macrophages from Zhx2 null mice exhibited substantially increased apoptosis. Zhx2 null macrophages were also enriched for M2 markers. Effects of Zhx2 on proliferation and other bone marrow-derived cells, such as lymphocytes, were at most modest. Expression microarray analyses identified >1000 differentially expressed transcripts between Zhx2 wild-type and null macrophages. To identify the global targets of Zhx2, we performed ChIP-seq (chromatin immunoprecipitation sequencing) studies with the macrophage cell line RAW264.7. The ChIP-seq peaks overlapped significantly with gene expression and together suggested roles for transcriptional repression and apoptosis. Conclusions- A mutation of Zhx2 carried in BALB/cJ mice is responsible in large part for its relative resistance to atherosclerosis. Our results indicate that Zhx2 promotes macrophage survival and proinflammatory functions in atherosclerotic lesions, thereby contributing to lesion growth.


Asunto(s)
Apoptosis , Aterosclerosis/fisiopatología , Proteínas de Homeodominio/fisiología , Macrófagos/fisiología , Factores de Transcripción/fisiología , Dedos de Zinc/fisiología , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Expresión Génica , Proteínas de Homeodominio/genética , Macrófagos/citología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Factores de Transcripción/genética , Dedos de Zinc/genética
12.
J Biol Chem ; 292(36): 14836-14850, 2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28726640

RESUMEN

Obesity is associated with chronic low-grade inflammation, and metabolic regulators linking obesity to inflammation have therefore received much attention. Secreted C1q/TNF-related proteins (CTRPs) are one such group of regulators that regulate glucose and fat metabolism in peripheral tissues and modulate inflammation in adipose tissue. We have previously shown that expression of CTRP6 is up-regulated in leptin-deficient mice and, conversely, down-regulated by the anti-diabetic drug rosiglitazone. Here, we provide evidence for a novel role of CTRP6 in modulating both inflammation and insulin sensitivity. We found that in obese and diabetic humans and mouse models, CTRP6 expression was markedly up-regulated in adipose tissue and that stromal vascular cells, such as macrophages, are a major CTRP6 source. Overexpressing mouse or human CTRP6 impaired glucose disposal in peripheral tissues in response to glucose and insulin challenge in wild-type mice. Conversely, Ctrp6 gene deletion improved insulin action and increased metabolic rate and energy expenditure in diet-induced obese mice. Mechanistically, CTRP6 regulates local inflammation and glucose metabolism by targeting macrophages and adipocytes, respectively. In cultured macrophages, recombinant CTRP6 dose-dependently up-regulated the expression and production of TNF-α. Conversely, CTRP6 deficiency reduced circulating inflammatory cytokines and pro-inflammatory macrophages in adipose tissue. CTRP6-overexpressing mice or CTRP6-treated adipocytes had reduced insulin-stimulated Akt phosphorylation and glucose uptake. In contrast, loss of CTRP6 enhanced insulin-stimulated Akt activation in adipose tissue. Together, these results establish CTRP6 as a novel metabolic/immune regulator linking obesity to adipose tissue inflammation and insulin resistance.


Asunto(s)
Adipoquinas/metabolismo , Tejido Adiposo/metabolismo , Colágeno/metabolismo , Inflamación/metabolismo , Resistencia a la Insulina , Obesidad/metabolismo , Células 3T3-L1 , Adipoquinas/deficiencia , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Células RAW 264.7
13.
Glycobiology ; 27(2): 129-139, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27683310

RESUMEN

Sialyltransferases are a family of 20 gene products in mice and humans that transfer sialic acid from its activated precursor, CMP-sialic acid, to the terminus of glycoprotein and glycolipid acceptors. ST3Gal-II (coded by the St3gal2 gene) transfers sialic acid preferentially to the three positions of galactose on the Galß1-3GalNAc terminus of gangliosides GM1 and GD1b to synthesize GD1a and GT1b, respectively. Mice with a targeted disruption of St3gal2 unexpectedly displayed late-onset obesity and insulin resistance. At 3 months of age, St3gal2-null mice were the same weight as their wild type (WT) counterparts, but by 13 months on standard chow they were visibly obese, 22% heavier and with 37% greater fat/lean ratio than WT mice. St3gal2-null mice became hyperglycemic and displayed impaired glucose tolerance by 9 months of age. They had sharply reduced insulin responsiveness despite equivalent pancreatic islet morphology. Analyses of insulin receptor (IR) tyrosine kinase substrate IRS-1 and downstream target Akt revealed decreased insulin-induced phosphorylation in adipose tissue but not liver or skeletal muscle of St3gal2-null mice. Thin-layer chromatography and mass spectrometry revealed altered ganglioside profiles in the adipose tissue of St3gal2-null mice compared to WT littermates. Metabolically, St3gal2-null mice display a reduced respiratory exchange ratio compared to WT mice, indicating a preference for lipid oxidation as an energy source. Despite their altered metabolism, St3gal2-null mice were hyperactive. We conclude that altered ganglioside expression in adipose tissue results in diminished IR sensitivity and late-onset obesity.


Asunto(s)
Resistencia a la Insulina/genética , Ácido N-Acetilneuramínico/metabolismo , Obesidad/genética , Sialiltransferasas/genética , Tejido Adiposo/metabolismo , Animales , Modelos Animales de Enfermedad , Galactosa/metabolismo , Gangliósidos/biosíntesis , Gangliósidos/genética , Prueba de Tolerancia a la Glucosa , Humanos , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Metabolismo de los Lípidos/genética , Ratones , Ratones Noqueados , Ácido N-Acetilneuramínico/genética , Obesidad/patología , beta-Galactosida alfa-2,3-Sialiltransferasa
14.
Am J Physiol Heart Circ Physiol ; 312(4): H728-H741, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28235788

RESUMEN

Cardiac failure has been widely associated with an increase in glucose utilization. The aim of our study was to identify factors that mechanistically bridge this link between hyperglycemia and heart failure. Here, we screened the Hybrid Mouse Diversity Panel (HMDP) for substrate-specific cardiomyocyte candidates based on heart transcriptional profile and circulating nutrients. Next, we utilized an in vitro model of rat cardiomyocytes to demonstrate that the gene expression changes were in direct response to substrate abundance. After overlaying candidates of interest with a separate HMDP study evaluating isoproterenol-induced heart failure, we chose to focus on the gene Trp53inp2 as a cardiomyocyte glucose utilization-specific factor. Trp53inp2 gene knockdown in rat cardiomyocytes reduced expression and protein abundance of key glycolytic enzymes. This resulted in reduction of both glucose uptake and glycogen content in cardiomyocytes stimulated with isoproterenol. Furthermore, this reduction effectively blunted the capacity of glucose and isoprotereonol to synergistically induce hypertrophic gene expression and cell size expansion. We conclude that Trp53inp2 serves as regulator of cardiomyocyte glycolytic activity and can consequently regulate hypertrophic response in the context of elevated glucose content.NEW & NOTEWORTHY Here, we apply a novel method for screening transcripts based on a substrate-specific expression pattern to identify Trp53inp2 as an induced cardiomyocyte glucose utilization factor. We further show that reducing expression of the gene could effectively blunt hypertrophic response in the context of elevated glucose content.


Asunto(s)
Cardiomegalia/genética , Cardiomegalia/metabolismo , Glucosa/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Transcripción/genética , Animales , Cardiomegalia/inducido químicamente , Cardiotónicos , Tamaño de la Célula , Células Cultivadas , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glucógeno/metabolismo , Glucólisis/genética , Técnicas In Vitro , Isoproterenol , Ratones , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , ARN Interferente Pequeño , Ratas , Especificidad por Sustrato
15.
J Lipid Res ; 57(6): 925-42, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27099397

RESUMEN

The Hybrid Mouse Diversity Panel (HMDP) is a collection of approximately 100 well-characterized inbred strains of mice that can be used to analyze the genetic and environmental factors underlying complex traits. While not nearly as powerful for mapping genetic loci contributing to the traits as human genome-wide association studies, it has some important advantages. First, environmental factors can be controlled. Second, relevant tissues are accessible for global molecular phenotyping. Finally, because inbred strains are renewable, results from separate studies can be integrated. Thus far, the HMDP has been studied for traits relevant to obesity, diabetes, atherosclerosis, osteoporosis, heart failure, immune regulation, fatty liver disease, and host-gut microbiota interactions. High-throughput technologies have been used to examine the genomes, epigenomes, transcriptomes, proteomes, metabolomes, and microbiomes of the mice under various environmental conditions. All of the published data are available and can be readily used to formulate hypotheses about genes, pathways and interactions.


Asunto(s)
Enfermedades Cardiovasculares/genética , Modelos Animales de Enfermedad , Enfermedades Metabólicas/genética , Transcriptoma/genética , Animales , Aterosclerosis/genética , Enfermedades Cardiovasculares/patología , Estudio de Asociación del Genoma Completo , Insuficiencia Cardíaca/genética , Humanos , Hibridación Genética , Resistencia a la Insulina/genética , Enfermedades Metabólicas/patología , Ratones , Microbiota/genética , Obesidad/genética , Osteoporosis/genética , Sitios de Carácter Cuantitativo/genética
16.
Am J Physiol Endocrinol Metab ; 310(11): E1036-52, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27143553

RESUMEN

The gene that encodes C1q/TNF-related protein 5 (CTRP5), a secreted protein of the C1q family, is mutated in individuals with late-onset retinal degeneration. CTRP5 is widely expressed outside the eye and also circulates in plasma. Its physiological role in peripheral tissues, however, has yet to be elucidated. Here, we show that Ctrp5 expression is modulated by fasting and refeeding, and by different diets, in mice. Adipose expression of CTRP5 was markedly upregulated in obese and diabetic humans and in genetic and dietary models of obesity in rodents. Furthermore, human CTRP5 expression in the subcutaneous fat depot positively correlated with BMI. A genetic loss-of-function mouse model was used to address the metabolic function of CTRP5 in vivo. On a standard chow diet, CTRP5-deficient mice had reduced fasting insulin but were otherwise comparable with wild-type littermate controls in body weight and adiposity. However, when fed a high-fat diet, CTRP5-deficient animals had attenuated hepatic steatosis and improved insulin action. Loss of CTRP5 also improved the capacity of chow-fed aged mice to respond to subsequent high-fat feeding, as evidenced by decreased insulin resistance. In cultured adipocytes and myotubes, recombinant CTRP5 treatment attenuated insulin-stimulated Akt phosphorylation. Our results provide the first genetic and physiological evidence for CTRP5 as a negative regulator of glucose metabolism and insulin sensitivity. Inhibition of CTRP5 action may result in the alleviation of insulin resistance associated with obesity and diabetes.


Asunto(s)
Tejido Adiposo/metabolismo , Colágeno/metabolismo , Hígado Graso/fisiopatología , Resistencia a la Insulina/genética , Insulina/metabolismo , Hígado/metabolismo , Adulto , Animales , Colágeno/genética , Regulación hacia Abajo/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad
17.
J Biol Chem ; 289(7): 4055-69, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24366864

RESUMEN

CTRP4 is a unique member of the C1q family, possessing two tandem globular C1q domains. Its physiological function is poorly defined. Here, we show that CTRP4 is an evolutionarily conserved, ∼34-kDa secretory protein expressed in the brain. In human, mouse, and zebrafish brain, CTRP4 expression begins early in development and is widespread in the central nervous system. Neurons, but not astrocytes, express and secrete CTRP4, and secreted proteins form higher-order oligomeric complexes. CTRP4 is also produced by peripheral tissues and circulates in blood. Its serum levels are increased in leptin-deficient obese (ob/ob) mice. Functional studies suggest that CTRP4 acts centrally to modulate energy metabolism. Refeeding following an overnight fast induced the expression of CTRP4 in the hypothalamus. Central administration of recombinant protein suppressed food intake and altered the whole-body energy balance in both chow-fed and high-fat diet-fed mice. Suppression of food intake by CTRP4 is correlated with a decreased expression of orexigenic neuropeptide (Npy and Agrp) genes in the hypothalamus. These results establish CTRP4 as a novel nutrient-responsive central regulator of food intake and energy balance.


Asunto(s)
Adipoquinas/metabolismo , Peso Corporal/fisiología , Citocinas/metabolismo , Ingestión de Alimentos/fisiología , Metabolismo Energético/fisiología , Hipotálamo/metabolismo , Pez Cebra/metabolismo , Adipoquinas/genética , Proteína Relacionada con Agouti/biosíntesis , Proteína Relacionada con Agouti/genética , Animales , Citocinas/genética , Humanos , Masculino , Ratones , Neuropéptido Y/biosíntesis , Neuropéptido Y/genética , Estructura Terciaria de Proteína , Ratas , Pez Cebra/genética
18.
Am J Physiol Endocrinol Metab ; 308(9): E792-804, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25738781

RESUMEN

Thromboxane A2, an arachidonic acid-derived eicosanoid generated by thromboxane synthase (TBXAS), plays critical roles in hemostasis and inflammation. However, the contribution of thromboxane A2 to obesity-linked metabolic dysfunction remains incompletely understood. Here, we used in vitro and mouse models to better define the role of TBXAS in metabolic homeostasis. We found that adipose expression of Tbxas and thromboxane A2 receptor (Tbxa2r) was significantly upregulated in genetic and dietary mouse models of obesity and diabetes. Expression of Tbxas and Tbxa2r was detected in adipose stromal cells, including macrophages. Furthermore, stimulation of macrophages with interferon-γ or resistin factors known to be upregulated in obesity induced Tbxas and Tbxa2r expression. Mice lacking Tbxas had similar weight gain, food intake, and energy expenditure. However, loss of Tbxas markedly enhanced insulin sensitivity in mice fed a low-fat diet. Improvement in glucose homeostasis was correlated with the upregulated expression of multiple secreted metabolic regulators (Ctrp3, Ctrp9, and Ctrp12) in the visceral fat depot. Following a challenge with a high-fat diet, Tbxas deficiency led to attenuated adipose tissue fibrosis and reduced circulating IL-6 levels without adipose tissue macrophages being affected; however, these changes were not sufficient to improve whole body insulin action. Together, our results highlight a novel, diet-dependent role for thromboxane A2 in modulating peripheral tissue insulin sensitivity and adipose tissue fibrosis.


Asunto(s)
Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Insulina/metabolismo , Tromboxano-A Sintasa/genética , Células 3T3-L1 , Animales , Células Cultivadas , Citocinas/farmacología , Femenino , Fibrosis/genética , Fibrosis/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Mediadores de Inflamación/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Receptores de Tromboxano A2 y Prostaglandina H2/genética , Receptores de Tromboxano A2 y Prostaglandina H2/metabolismo , Tromboxano-A Sintasa/deficiencia
19.
J Biol Chem ; 288(15): 10214-29, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-23449976

RESUMEN

C1q/TNF-related proteins (CTRPs) are a family of secreted regulators of glucose and lipid metabolism. Here, we describe CTRP11, a novel and phylogenetically conserved member of the C1q family. Our studies revealed that white and brown adipose are major tissues that express CTRP11, and its expression is acutely regulated by changes in metabolic state. Within white adipose tissue, CTRP11 is primarily expressed by stromal vascular cells. As a secreted multimeric protein, CTRP11 forms disulfide-linked oligomers. Although the conserved N-terminal Cys-28 and Cys-32 are dispensable for the assembly of higher-order oligomeric structures, they are unexpectedly involved in modulating protein secretion. When co-expressed, CTRP11 forms heteromeric complexes with closely related CTRP10, CTRP13, and CRF (CTRP14) via the C-terminal globular domains, combinatorial associations that potentially generate functionally distinct complexes. Functional studies revealed a role for CTRP11 in regulating adipogenesis. Ectopic expression of CTRP11 or exposure to recombinant protein inhibited differentiation of 3T3-L1 adipocytes. The expression of peroxisome proliferator-activated receptor-γ and CAAT/enhancer binding protein-α, which drive the adipogenic gene program, was markedly suppressed by CTRP11. Impaired adipogenesis was caused by a CTRP11-mediated decrease in p42/44-MAPK signaling and inhibition of mitotic clonal expansion, a process essential for adipocyte differentiation in culture. These results implicate CTRP11 as a novel secreted regulator of adipogenesis and highlight the potential paracrine cross-talk between adipocytes and cells of the stromal vascular compartment in maintaining adipose tissue homeostasis.


Asunto(s)
Adipogénesis/fisiología , Adipoquinas/biosíntesis , Diferenciación Celular/fisiología , Regulación de la Expresión Génica/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Comunicación Paracrina/fisiología , Células 3T3-L1 , Adipogénesis/efectos de los fármacos , Adipoquinas/genética , Adipoquinas/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Femenino , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Ratones Obesos , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Comunicación Paracrina/efectos de los fármacos , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología
20.
J Biol Chem ; 288(50): 36073-82, 2013 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-24187137

RESUMEN

Cells turn on autophagy, an intracellular recycling pathway, when deprived of nutrients. How autophagy is regulated by hormonal signals in response to major changes in metabolic state is not well understood. Here, we provide evidence that myonectin (CTRP15), a skeletal muscle-derived myokine, is a novel regulator of cellular autophagy. Starvation activated liver autophagy, whereas nutrient supplementation following food deprivation suppressed it; the former and latter correlated with reduced and increased expression and circulating levels of myonectin, respectively, suggestive of a causal link. Indeed, recombinant myonectin administration suppressed starvation-induced autophagy in mouse liver and cultured hepatocytes, as indicated by the inhibition of LC3-dependent autophagosome formation, p62 degradation, and expression of critical autophagy-related genes. Reduction in protein degradation is mediated by the PI3K/Akt/mTOR signaling pathway; inhibition of this pathway abrogated the ability of myonectin to suppress autophagy in cultured hepatocytes. Together, our results reveal a novel skeletal muscle-liver axis controlling cellular autophagy, underscoring the importance of hormone-mediated tissue cross-talk in maintaining energy homeostasis.


Asunto(s)
Autofagia/efectos de los fármacos , Citocinas/farmacología , Hígado/citología , Proteínas Musculares/farmacología , Músculo Esquelético/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Animales , Línea Celular , Suplementos Dietéticos , Regulación de la Expresión Génica/efectos de los fármacos , Homeostasis/efectos de los fármacos , Humanos , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Proteolisis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Proteínas Recombinantes/farmacología , Inanición/metabolismo , Inanición/patología , Factor de Transcripción TFIIH , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA