Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur Radiol ; 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38195730

RESUMEN

OBJECTIVES: Assessment of myocardial strain by feature tracking magnetic resonance imaging (FT-MRI) in human fetuses with and without congenital heart disease (CHD) using cardiac Doppler ultrasound (DUS) gating. METHODS: A total of 43 human fetuses (gestational age 28-41 weeks) underwent dynamic cardiac MRI at 3 T. Cine balanced steady-state free-precession imaging was performed using fetal cardiac DUS gating. FT-MRI was analyzed using dedicated post-processing software. Endo- and epicardial contours were manually delineated from fetal cardiac 4-chamber views, followed by automated propagation to calculate global longitudinal strain (GLS) of the left (LV) and right ventricle (RV), LV radial strain, and LV strain rate. RESULTS: Strain assessment was successful in 38/43 fetuses (88%); 23 of them had postnatally confirmed diagnosis of CHD (e.g., coarctation, transposition of great arteries) and 15 were heart healthy. Five fetuses were excluded due to reduced image quality. In fetuses with CHD compared to healthy controls, median LV GLS (- 13.2% vs. - 18.9%; p < 0.007), RV GLS (- 7.9% vs. - 16.2%; p < 0.006), and LV strain rate (1.4 s-1 vs. 1.6 s-1; p < 0.003) were significantly higher (i.e., less negative). LV radial strain was without a statistically significant difference (20.7% vs. 22.6%; p = 0.1). Bivariate discriminant analysis for LV GLS and RV GLS revealed a sensitivity of 67% and specificity of 93% to differentiate between fetuses with CHD and healthy fetuses. CONCLUSION: Myocardial strain was successfully assessed in the human fetus, performing dynamic fetal cardiac MRI with DUS gating. Our study indicates that strain parameters may allow for differentiation between fetuses with and without CHD. CLINICAL RELEVANCE STATEMENT: Myocardial strain analysis by cardiac MRI with Doppler ultrasound gating and feature tracking may provide a new diagnostic approach for evaluation of fetal cardiac function in congenital heart disease. KEY POINTS: • MRI myocardial strain analysis has not been performed in human fetuses so far. • Myocardial strain was assessed in human fetuses using cardiac MRI with Doppler ultrasound gating. • MRI myocardial strain may provide a new diagnostic approach to evaluate fetal cardiac function.

2.
J Enzyme Inhib Med Chem ; 33(1): 607-614, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29532688

RESUMEN

Xanthohumol (XN), a prenylated chalcone unique to hops (Humulus lupulus) and two derived prenylflavanones, isoxanthohumol (IX) and 8-prenylnaringenin (8-PN) gained increasing attention as potential anti-diabetic and cancer preventive compounds. Two enzymes of the aldo-keto reductase (AKR) superfamily are notable pharmacological targets in cancer therapy (AKR1B10) and in the treatment of diabetic complications (AKR1B1). Our results show that XN, IX and 8-PN are potent uncompetitive, tight-binding inhibitors of human aldose reductase AKR1B1 (Ki = 15.08 µM, 0.34 µM, 0.71 µM) and of human AKR1B10 (Ki = 20.11 µM, 2.25 µM, 1.95 µM). The activity of the related enzyme AKR1A1 was left unaffected by all three compounds. This is the first time these three substances have been tested on AKRs. The results of this study may provide a basis for further quantitative structure?activity relationship models and promising scaffolds for future anti-diabetic or carcinopreventive drugs.


Asunto(s)
Aldo-Ceto Reductasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Flavanonas/farmacología , Flavonoides/farmacología , Humulus/química , Propiofenonas/farmacología , Xantonas/farmacología , Aldo-Ceto Reductasas/metabolismo , Sitios de Unión/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Flavanonas/química , Flavonoides/química , Humanos , Estructura Molecular , Propiofenonas/química , Relación Estructura-Actividad , Xantonas/química
3.
Molecules ; 23(11)2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30469331

RESUMEN

Hop-derived compounds have been subjected to numerous biomedical studies investigating their impact on a wide range of pathologies. Isomerised bitter acids (isoadhumulone, isocohumulone and isohumulone) from hops, used in the brewing process of beer, are known to inhibit members of the aldo-keto-reductase superfamily. Aldo-keto-reductase 1B10 (AKR1B10) is upregulated in various types of cancer and has been reported to promote carcinogenesis. Inhibition of AKR1B10 appears to be an attractive means to specifically treat RAS-dependent malignancies. However, the closely related reductases AKR1A1 and AKR1B1, which fulfil important roles in the detoxification of endogenous and xenobiotic carbonyl compounds oftentimes crossreact with inhibitors designed to target AKR1B10. Accordingly, there is an ongoing search for selective AKR1B10 inhibitors that do not interact with endogeneous AKR1A1 and AKR1B1-driven detoxification systems. In this study, unisomerised α-acids (adhumulone, cohumulone and n-humulone) were separated and tested for their inhibitory potential on AKR1A1, AKR1B1 and AKR1B10. Also AKR1B10-mediated farnesal reduction was effectively inhibited by α-acid congeners with Ki-values ranging from 16.79 ± 1.33 µM (adhumulone) to 3.94 ± 0.33 µM (n-humulone). Overall, α-acids showed a strong inhibition with selectivity (115⁻137 fold) for AKR1B10. The results presented herein characterise hop-derived α-acids as a promising basis for the development of novel and selective AKR1B10-inhibitors.


Asunto(s)
Aldehído Reductasa/antagonistas & inhibidores , Ciclohexanonas/farmacología , Ciclohexenos/farmacología , Terpenos/farmacología , Aldehído Reductasa/metabolismo , Aldo-Ceto Reductasas , Evaluación Preclínica de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Farnesol/análogos & derivados , Farnesol/química , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Humanos , Humulus/química
4.
Toxicol Appl Pharmacol ; 293: 21-9, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26773812

RESUMEN

The clinical application of anthracyclines, like daunorubicin and doxorubicin, is limited by two factors: dose-related cardiotoxicity and drug resistance. Both have been linked to reductive metabolism of the parent drug to their metabolites daunorubicinol and doxorubicinol, respectively. These metabolites show significantly less anti-neoplastic properties as their parent drugs and accumulate in cardiac tissue leading to chronic cardiotoxicity. Therefore, we aimed to identify novel and potent natural inhibitors for anthracycline reductases, which enhance the anticancer effect of anthracyclines by preventing the development of anthracycline resistance. Human enzymes responsible for the reductive metabolism of daunorubicin were tested for their sensitivity towards anthrachinones, in particular emodin and anthraflavic acid. Intense inhibition kinetic data for the most effective daunorubicin reductases, including IC50- and Ki-values, the mode of inhibition, as well as molecular docking, were compiled. Subsequently, a cytotoxicity profile and the ability of emodin to reverse daunorubicin resistance were determined using multiresistant A549 lung cancer and HepG2 liver cancer cells. Emodin potently inhibited the four main human daunorubicin reductases in vitro. Further, we could demonstrate that emodin is able to synergistically sensitize human cancer cells towards daunorubicin at clinically relevant concentrations. Therefore, emodin may yield the potential to enhance the therapeutic effectiveness of anthracyclines by preventing anthracycline resistance via inhibition of the anthracycline reductases. In symphony with its known pharmacological properties, emodin might be a compound of particular interest in the management of anthracycline chemotherapy efficacy and their adverse effects.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Daunorrubicina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Emodina/farmacología , Oxidorreductasas/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Antraquinonas/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Humanos , Simulación del Acoplamiento Molecular , Oxidorreductasas/metabolismo
5.
Chem Biol Interact ; 305: 156-162, 2019 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-30849340

RESUMEN

In terms of drug disposal and metabolism SDR21C1 (carbonyl reductase 1; CBR1) exerts an assorted substrate spectrum among a large variety of clinically relevant substances. Additionally, this short-chain dehydrogenase/reductase is extensively expressed in most tissues of the human body, thus underpinning its role in xenobiotic metabolism. Reduction of the chemotherapeutic daunorubicin (DAUN) to daunorubicinol (DAUNol) is a prominent example of its metabolic properties in terms of chemoresistance and cardiotoxicity. The hop-derived prenylated chalcone xanthohumol (XN) and its physiological metabolites isoxanthohumol (IX) and 8-prenylnaringenin (8-PN) have previously been reported to inhibit other DAUN reducing reductases and dehydrogenases including AKR1B1 and AKR1B10. Also with regard to their effects by means of interacting with cancer-related molecular pathways, XN and related prenylated flavonoids in particular have been in the focus of recent studies. In this study, inhibitory properties of these substances were examined with CBR1-mediated 2,3-hexanedione and DAUN reduction. All substances tested in this study turned out to efficiently inhibit recombinant human CBR1 within a low micromolar to submicromolar range. Among the substances tested, 8-PN turned out to be the most effective inhibitor when using 2,3-hexanedione as a substrate (Ki(app) = 180 ±â€¯20 nM). Inhibition rates of recombinant CBR1-mediated DAUN reduction were somewhat weaker with IC50-values ranging from 11 to 20 µM. XN, IX and 8-PN also efficiently inhibited DAUN reduction by SW480 colon adenocarcinoma cytosol (IC50 = 3.71 ±â€¯0.26 µM with 8-PN as inhibitor). This study identifies prenylated inhibitors, which might potentially interact with endogenous CBR1-driven (de-)toxication systems.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Flavanonas/química , Flavonoides/química , Propiofenonas/química , Xantonas/química , Oxidorreductasas de Alcohol/antagonistas & inhibidores , Oxidorreductasas de Alcohol/genética , Línea Celular Tumoral , Chalconas/química , Daunorrubicina/química , Daunorrubicina/metabolismo , Flavanonas/metabolismo , Flavonoides/metabolismo , Hexanonas/química , Hexanonas/metabolismo , Humanos , Concentración 50 Inhibidora , Cinética , Oxidación-Reducción , Propiofenonas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Xantonas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA