Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(8): 107538, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38971308

RESUMEN

Excessive fructose consumption is a primary contributor to the global surges in obesity, cancer, and metabolic syndrome. Fructolysis is not robustly regulated and is initiated by ketohexokinase (KHK). In this study, we determined the crystal structure of KHK-A, one of two human isozymes of KHK, in the apo-state at 1.85 Å resolution, and we investigated the roles of residues in the fructose-binding pocket by mutational analysis. Introducing alanine at D15, N42, or N45 inactivated KHK-A, whereas mutating R141 or K174 reduced activity and thermodynamic stability. Kinetic studies revealed that the R141A and K174A mutations reduced fructose affinity by 2- to 4-fold compared to WT KHK-A, without affecting ATP affinity. Molecular dynamics simulations provided mechanistic insights into the potential roles of the mutated residues in ligand coordination and the maintenance of an open state in one monomer and a closed state in the other. Protein-protein interactome analysis indicated distinct expression patterns and downregulation of partner proteins in different tumor tissues, warranting a reevaluation of KHK's role in cancer development and progression. The connections between different cancer genes and the KHK signaling pathway suggest that KHK is a potential target for preventing cancer metastasis. This study enhances our understanding of KHK-A's structure and function and offers valuable insights into potential targets for developing treatments for obesity, cancer, and metabolic syndrome.

2.
J Chem Inf Model ; 63(10): 3094-3104, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37141552

RESUMEN

Currently prescribed antibiotics target the catalytic sites of wild-type bacterial proteins; however, bacteria adopt mutations at this site, eventually leading to the emergence of resistance. Therefore, the identification of alternative drug binding sites is crucial, which requires knowledge of the dynamics of the mutant protein. Here, we set out to investigate the impact of a high-resistance-causing triple mutation (S385T + L389F + N526K) on the dynamics of a prioritized resistant pathogen, Haemophilus influenzae, using computational techniques. We studied penicillin-binding protein 3 (PBP3) and its complex with FtsW, which display resistance toward ß-lactam antibiotics. We showed that mutations displayed local and nonlocal effects. In terms of the former, the orientation of the ß-sheet, which surrounds the active site of PBP3, was impacted and the catalytic site was exposed to the periplasmic region. In addition, the flexibility of the ß3-ß4 loop, which modulates the catalysis of the enzyme, increased in the mutant FtsW-PBP3 complex. As for nonlocal effects, the dynamics of the pedestal domain (N-terminal periplasmic modulus (N-t)), i.e., the opening of the fork, was different between the wild-type and mutant enzymes. We showed the closed fork caused a greater number of residues to participate in the hypothesized allosteric communication network connecting N-t to the transpeptidase domain in the mutant enzyme. Finally, we demonstrated that the closed fork results in more favorable binding with ß-lactam antibiotics, particularly cefixime, suggesting that small therapeutics that can stabilize the closed fork of mutant PBP3 may lead to the development of more effective molecules to combat resistant bacteria.


Asunto(s)
Antibacterianos , Haemophilus influenzae , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/metabolismo , Proteínas de Unión a las Penicilinas/farmacología , Haemophilus influenzae/genética , Antibacterianos/farmacología , Mutación , beta-Lactamas , Pruebas de Sensibilidad Microbiana
3.
J Biol Chem ; 296: 100071, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33187984

RESUMEN

Hexokinase (HK) catalyzes the first step in glucose metabolism, making it an exciting target for the inhibition of tumor initiation and progression due to their elevated glucose metabolism. The upregulation of hexokinase-2 (HK2) in many cancers and its limited expression in normal tissues make it a particularly attractive target for the selective inhibition of cancer growth and the eradication of tumors with limited side effects. The design of such safe and effective anticancer therapeutics requires the development of HK2-specific inhibitors that will not interfere with other HK isozymes. As HK2 is unique among HKs in having a catalytically active N-terminal domain (NTD), we have focused our attention on this region. We previously found that NTD activity is affected by the size of the linker helix-α13 that connects the N- and C-terminal domains of HK2. Three nonactive site residues (D447, S449, and K451) at the beginning of the linker helix-α13 have been found to regulate the NTD activity of HK2. Mutation of these residues led to increased dynamics, as shown via hydrogen deuterium exchange analysis and molecular dynamic simulations. D447A contributed the most to the enhanced dynamics of the NTD, with reduced calorimetric enthalpy of HK2. Similar residues exist in the C-terminal domain (CTD) but are unnecessary for HK1 and HK2 activity. Thus, we postulate these residues serve as a regulatory site for HK2 and may provide new directions for the design of anticancer therapeutics that reduce the rate of glycolysis in cancer through specific inhibition of HK2.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Hexoquinasa/metabolismo , Catálisis , Línea Celular Tumoral , Estabilidad de Enzimas , Glucólisis , Hexoquinasa/antagonistas & inhibidores , Hexoquinasa/química , Humanos , Cinética , Dominios Proteicos , Especificidad por Sustrato
4.
FASEB J ; 35(8): e21774, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34324734

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for coronavirus disease 2019 (COVID-19), one of the most challenging global pandemics of the modern era. Potential treatment strategies against COVID-19 are yet to be devised. It is crucial that antivirals that interfere with the SARS-CoV-2 life cycle be identified and developed. 3-Chymotrypsin-like protease (3CLpro) is an attractive antiviral drug target against SARS-CoV-2, and coronaviruses in general, because of its role in the processing of viral polyproteins. Inhibitors of 3CLpro activity are screened in enzyme assays before further development of the most promising leads. Dimethyl sulfoxide (DMSO) is a common additive used in such assays and enhances the solubility of assay components. However, it may also potentially affect the stability and efficiency of 3CLpro but, to date, this effect had not been analyzed in detail. Here, we investigated the effect of DMSO on 3CLpro-catalyzed reaction. While DMSO (5%-20%) decreased the optimum temperature of catalysis and thermodynamic stability of 3CLpro, it only marginally affected the kinetic stability of the enzyme. Increasing the DMSO concentration up to 20% improved the catalytic efficiency and peptide-binding affinity of 3CLpro. At such high DMSO concentration, the solubility and stability of peptide substrate were improved because of reduced aggregation. In conclusion, we recommend 20% DMSO as the minimum concentration to be used in screens of 3CLpro inhibitors as lead compounds for the development of antiviral drugs against COVID-19.


Asunto(s)
COVID-19/virología , Proteasas 3C de Coronavirus/metabolismo , Dimetilsulfóxido/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Viral de la Expresión Génica/efectos de los fármacos , SARS-CoV-2/enzimología , Simulación por Computador , Proteasas 3C de Coronavirus/genética , Humanos , Técnicas Analíticas Microfluídicas , Péptidos/metabolismo , Estabilidad Proteica
5.
Mol Pharm ; 19(8): 2907-2921, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35839291

RESUMEN

Recently developed nanocones (NCs), which are inclusion complexes that are made up of cyclodextrins (CDs) and perfluorocarbons (PFCs), have shown promising results in nanoparticle-mediated histotripsy (NMH) applications due to stable inclusion complexation, PFC quantification, simple synthesis, and processing. FDA-approved ßCD and its modified versions such as low-degree methylated ßCD have been previously demonstrated as prime examples of structures capable of accommodating PFC molecules. However, the complex formation potential of different CDs with various cavity sizes in the presence of PFC molecules, and their consequent aggregation, needs to be explored. In the present study, the complexation and aggregation potential of some natural CDs and their respective derivatives either exposed to perfluoropentane (PFP) or perfluorohexane (PFH) were studied in the wet lab. Computational studies were also performed to account for the limitations faced in PFC quantification because of the low optical density of PFCs within the CD complex and to discover the best candidate for NMH applications. All results revealed that only ßCD and γCD (except HMγCD) derivatives form an inclusion complex with PFCs and only LMßCD, ßCD, and γCD form nanocone clusters (NCCs), which precipitate and can be collected for use. Furthermore, the data collectively show that ßCD and PFCs have the best complexation due to stable complex formation, ease of production, and product recovery, especially with PFH as a more suitable candidate due to its high boiling point, which allows workability during synthesis. Although simulations suggest that highly stable inclusion complexes exist, such as HPßCD, the cluster formation resulting in precipitation is hindered due to the high solubility of CDs in water, resulting in intangible yields to work with even after employing general laboratory recovery methods. Conclusively, histotripsy cavitation experiments successfully showed a decreased cavitation threshold among optimal NCC candidates that were identified, supporting their use in NMH.


Asunto(s)
Ciclodextrinas , Fluorocarburos , 2-Hidroxipropil-beta-Ciclodextrina , Análisis por Conglomerados , Ciclodextrinas/química , Fluorocarburos/química , Solubilidad
6.
Molecules ; 24(11)2019 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-31146474

RESUMEN

G protein-coupled receptors (GPCRs) are involved in a wide variety of physiologicalprocesses. Therefore, approximately 40% of currently prescribed drugs have targeted this receptorfamily. Discovery of ß-arrestin mediated signaling and also separability of G protein and b-arrestinsignaling pathways have switched the research focus in the GPCR field towards development ofbiased ligands, which provide engagement of the receptor with a certain effector, thus enrichinga specific signaling pathway. In this review, we summarize possible factors that impact signalingprofiles of GPCRs such as oligomerization, drug treatment, disease conditions, genetic background,etc. along with relevant molecules that can be used to modulate signaling properties of GPCRssuch as allosteric or bitopic ligands, ions, aptamers and pepducins. Moreover, we also discuss theimportance of inclusion of pharmacogenomics and molecular dynamics simulations to achieve aholistic understanding of the relation between genetic background and structure and function ofGPCRs and GPCR-related proteins. Consequently, specific downstream signaling pathways can beenriched while those that bring unwanted side effects can be prevented on a patient-specific basis.This will improve studies that centered on development of safer and personalized therapeutics,thus alleviating the burden on economy and public health.


Asunto(s)
Desarrollo de Medicamentos , Medicina de Precisión , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación Alostérica , Animales , Sitios de Unión , Desarrollo de Medicamentos/métodos , Humanos , Ligandos , Modelos Moleculares , Terapia Molecular Dirigida , Polimorfismo de Nucleótido Simple , Medicina de Precisión/métodos , Unión Proteica , Multimerización de Proteína , Receptores Acoplados a Proteínas G/genética , Relación Estructura-Actividad
7.
J Chem Inf Model ; 57(6): 1359-1374, 2017 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-28505454

RESUMEN

Hsp70 molecular chaperones play an important role in maintaining cellular homeostasis, and are implicated in a wide array of cellular processes, including protein recovery from aggregates, cross-membrane protein translocation, and protein biogenesis. Hsp70 consists of two domains, a nucleotide binding domain (NBD) and a substrate binding domain (SBD), each of which communicates via an allosteric mechanism such that the protein interconverts between two functional states, an ATP-bound open conformation and an ADP-bound closed conformation. The exact mechanism for interstate conversion is not as yet fully understood. However, the ligand-bound states of the NBD and SBD as well as interactions with cochaperones such as DnaJ and nucleotide exchange factor are thought to play crucial regulatory roles. In this study, we apply the perturbation-response scanning (PRS) method in combination with molecular dynamics simulations as a computational tool for the identification of allosteric hot residues in the large multidomain Hsp70 protein. We find evidence in support of the hypothesis that substrate binding triggers ATP hydrolysis and that the ADP-substrate complex favors interstate conversion to the closed state. Furthermore, our data are in agreement with the proposal that there is an allosterically active intermediate state between the open and closed states and vice versa, as we find evidence that ATP binding to the closed structure and peptide binding to the open structure allosterically "activate" the respective complexes. We conclude our analysis by showing how our PRS data fit the current opinion on the Hsp70 conformational cycle and present several allosteric hot residues that may provide a platform for further studies to gain additional insight into Hsp70 allostery.


Asunto(s)
Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Simulación de Dinámica Molecular , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Conformación Proteica
8.
Phys Chem Chem Phys ; 19(8): 6064-6075, 2017 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-28191562

RESUMEN

Ferric binding protein (FbpA) is part of an elaborate iron piracy mechanism evolved in Gram-negative bacteria, shuttling iron in the periplasmic space, from the outer to the cytoplasmic membrane side. We address how the dissociation process of iron is facilitated, since the binding constant of iron is on the order of 1018 M-1 at 6.5 pH and 200 mM ionic strength (IS). We monitor the conformational preferences of FbpA by extensive molecular dynamics (MD) simulations under conditions where IS, charge states of iron coordinating tyrosines and pH are varied, as well as when a mutation is introduced at an allosteric site. Steered MD is utilized to predict the binding affinity of iron. After triggering lobe opening by changing the charge states of tyrosines, the conformations adopted and the iron binding affinity still depend on pH, IS and allosteric interactions. To relate the observed conformational changes to the environmental conditions that might be encountered in the periplasmic space, we offer a plausible model that couples electrostatic potential distribution to the mechanical motions invoked. Although low pH/IS and allosteric perturbations decrease the affinity of iron, it remains high for spontaneous dissociation. However, the conformational changes modulated by the environmental conditions expose iron for chelation. Our study provides a quantitative dimension and molecular details to interpret the contribution of possible environmental conditions present in the periplasmic space to iron dissociation from FbpA, opening up the opportunity of modulating function via allosteric mutations or altering environmental conditions, thus offering a new route to developing strategies towards antibiotic resistance by targeting nutritional requirements.


Asunto(s)
Bacterias Gramnegativas/metabolismo , Hierro/metabolismo , Periplasma/metabolismo , Proteínas de Unión Periplasmáticas/metabolismo , Microambiente Celular , Bacterias Gramnegativas/genética , Electricidad Estática
9.
Biochim Biophys Acta ; 1848(4): 976-83, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25592838

RESUMEN

Helix-8 (Hx8) is a structurally conserved amphipathic helical motif in class-A GPCRs, adjacent to the C-terminal sequence that is responsible for PDZ-domain-recognition. The Hx8 segment in the dopamine D2 receptor (D2R) constitutes the C-terminal segment and we investigate its role in the function of D2R by studying the interaction with the PDZ-containing GIPC1 using homology models based on the X-ray structures of very closely related analogs: the D3R for the D2R model, and the PDZ domain of GIPC2 for GIPC1-PDZ. The mechanism of this interaction was investigated with all-atom unbiased molecular dynamics (MD) simulations that reveal the role of the membrane in maintaining the helical fold of Hx8, and with biased MD simulations to elucidate the energy drive for the interaction with the GIPC1-PDZ. We found that it becomes more favorable energetically for Hx8 to adopt the extended conformation observed in all PDZ-ligand complexes when it moves away from the membrane, and that C-terminus palmitoylation of D2R enhanced membrane penetration by the Hx8 backbone. De-palmitoylation enables Hx8 to move out into the aqueous environment for interaction with the PDZ domain. All-atom unbiased MD simulations of the full D2R-GIPC1-PDZ complex in sphingolipid/cholesterol membranes show that the D2R carboxyl C-terminus samples the region of the conserved GFGL motif located on the carboxylate-binding loop of the GIPC1-PDZ, and the entire complex distances itself from the membrane interface. Together, these results outline a likely mechanism of Hx8 involvement in the interaction of the GPCR with PDZ-domains in the course of signaling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Biología Computacional/métodos , Simulación de Dinámica Molecular , Dominios PDZ , Receptores de Dopamina D2/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Sitios de Unión , Membrana Celular/metabolismo , Humanos , Ligandos , Modelos Moleculares , Ácido Palmítico/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Receptores de Dopamina D2/química
10.
Am J Trop Med Hyg ; 110(5): 1046-1056, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38579695

RESUMEN

In Uganda, women engaged in sex work (WESW) are a marginalized population at the intersection of multiple vulnerabilities. The Kyaterekera intervention is targeted at WESW in Rakai and the greater Masaka regions in Uganda and combines a traditional HIV risk-reduction approach with a savings-led economic empowerment intervention and financial literacy training. We estimated the economic costs of the Kyaterekera intervention from a program provider perspective using a prospective activity-based micro-costing method. All program activities and resource uses were measured and valued across the control arm receiving a traditional HIV risk-reduction intervention and the treatment arm receiving a matched individual development savings account and financial literacy training on top of HIV risk reduction. The total per-participant cost by arm was adjusted for inflation and discounted at an annual rate of 3% and presented in 2019 US dollars. The total per-participant costs of the control and intervention arms were estimated at $323 and $1,435, respectively, using the per-protocol sample. When calculated based on the intent-to-treat sample, the per-participant costs were reduced to $183 and $588, respectively. The key cost drivers were the capital invested in individual development accounts and personnel and transportation costs for program operations, linked to WESW's higher mobility and the dispersed pattern of hot spot locations. The findings provide evidence of the economic costs of implementing a targeted intervention for this marginalized population in resource-constrained settings and shed light on the scale of potential investment needed to better achieve the health equity goal of HIV prevention strategies.


Asunto(s)
Infecciones por VIH , Asunción de Riesgos , Trabajadores Sexuales , Humanos , Uganda , Femenino , Infecciones por VIH/prevención & control , Infecciones por VIH/economía , Trabajadores Sexuales/psicología , Adulto , Conducta Sexual , Poblaciones Vulnerables , Conducta de Reducción del Riesgo , Estudios Prospectivos , Trabajo Sexual
11.
Res Sq ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38464167

RESUMEN

Triple negative breast cancer (TNBC) subtype is characterized with higher EMT/stemness properties and immune suppressive tumor microenvironment (TME). Women with advanced TNBC exhibit aggressive disease and have limited treatment options. Although immune suppressive TME is implicated in driving aggressive properties of basal/TNBC subtype and therapy resistance, effectively targeting it remains a challenge. Minnelide, a prodrug of triptolide currently being tested in clinical trials, has shown anti-tumorigenic activity in multiple malignancies via targeting super enhancers, Myc and anti-apoptotic pathways such as HSP70. Distinct super-enhancer landscape drives cancer stem cells (CSC) in TNBC subtype while inducing immune suppressive TME. We show that Minnelide selectively targets CSCs in human and murine TNBC cell lines compared to cell lines of luminal subtype by targeting Myc and HSP70. Minnelide in combination with cyclophosphamide significantly reduces the tumor growth and eliminates metastasis by reprogramming the tumor microenvironment and enhancing cytotoxic T cell infiltration in 4T1 tumor-bearing mice. Resection of residual tumors following the combination treatment leads to complete eradication of disseminated tumor cells as all mice are free of local and distant recurrences. All control mice showed recurrences within 3 weeks of post-resection while single Minnelide treatment delayed recurrence and one mouse was free of tumor. We provide evidence that Minnelide targets tumor intrinsic pathways and reprograms the immune suppressive microenvironment. Our studies also suggest that Minnelide in combination with cyclophosphamide may lead to durable responses in patients with basal/TNBC subtype warranting its clinical investigation.

12.
Biomacromolecules ; 14(5): 1370-8, 2013 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-23480446

RESUMEN

Self-assembling multidomain peptides have been shown to have desirable properties, such as the ability to form hydrogels that rapidly recover following shear-thinning and the potential to be tailored by amino acid selection to vary their elasticity and encapsulate and deliver proteins and cells. Here we describe the effects of substitution of aliphatic hydrophobic amino acids in the central domain of the peptide for the aromatic amino acids phenylalanine, tyrosine, and tryptophan. While the basic nanofibrous morphology is retained in all cases, selection of the particular core residues results in switching from antiparallel hydrogen bonding to parallel hydrogen bonding in addition to changes in nanofiber morphology and in hydrogel rheological properties. Peptide nanofiber assemblies are investigated by circular dichroism polarimetry, infrared spectroscopy, atomic force microscopy, transmission and scanning electron microscopy, oscillatory rheology, and molecular dynamics simulations. Results from this study will aid in designing next generation cell scaffolding materials.


Asunto(s)
Materiales Biocompatibles/síntesis química , Hidrogeles/síntesis química , Nanofibras/química , Péptidos/síntesis química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Elasticidad , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Electrónica de Rastreo , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Nanofibras/ultraestructura , Fenilalanina/química , Estructura Terciaria de Proteína , Reología , Andamios del Tejido , Triptófano/química , Tirosina/química
13.
J Chem Phys ; 139(23): 234115, 2013 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-24359360

RESUMEN

One of the major challenges in the development of coarse grained (CG) simulation models that aim at biomolecular structure formation processes is the correct representation of an environment-driven conformational change, for example, a folding/unfolding event upon interaction with an interface or upon aggregation. In the present study, we investigate this transferability challenge for a CG model using the example of diphenylalanine. This dipeptide displays a transition from a trans-like to a cis-like conformation upon aggregation as well as upon transfer from bulk water to the cyclohexane/water interface. Here, we show that one can construct a single CG model that can reproduce both the bulk and interface conformational behavior and the segregation between hydrophobic/hydrophilic medium. While the general strategy to obtain nonbonded interactions in the present CG model is to reproduce solvation free energies of small molecules representing the CG beads in the respective solvents, the success of the model strongly depends on nontrivial decisions one has to make to capture the delicate balance between the bonded and nonbonded interactions. In particular, we found that the peptide's conformational behavior is qualitatively affected by the cyclohexane/water interaction potential, an interaction that does not directly involve the peptide at all but merely influences the properties of the hydrophobic/hydrophilic interface. Furthermore, we show that a small modification to improve the structural/conformational properties of the CG model could dramatically alter the thermodynamic properties.


Asunto(s)
Modelos Químicos , Péptidos/química , Fenilalanina/análogos & derivados , Agua/química , Dipéptidos , Conformación Molecular , Fenilalanina/química
14.
ACS Omega ; 8(35): 31839-31856, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37692230

RESUMEN

We report herein a new 1,2,3-triazole derivative, namely, 4-((1-(3,4-dichlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)-2-hydroxybenzaldehyde, which was synthesized by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The structure of the compound was analyzed using Fourier transform infrared spectroscopy (FTIR), 1H NMR, 13C NMR, UV-vis, and elemental analyses. Moreover, X-ray crystallography studies demonstrated that the compound adapted a monoclinic crystal system with the P21/c space group. The dominant interactions formed in the crystal packing were found to be hydrogen bonding and van der Waals interactions according to Hirshfeld surface (HS) analysis. The volume of the crystal voids and the percentage of free spaces in the unit cell were calculated as 152.10 Å3 and 9.80%, respectively. The evaluation of energy frameworks showed that stabilization of the compound was dominated by dispersion energy contributions. Both in vitro and in silico investigations on the DNA/bovine serum albumin (BSA) binding activity of the compound showed that the CT-DNA binding activity of the compound was mediated via intercalation and BSA binding activity was mediated via both polar and hydrophobic interactions. The anticancer activity of the compound was also tested by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using human cell lines including MDA-MB-231, LNCaP, Caco-2, and HEK-293. The compound exhibited more cytotoxic activity than cisplatin and etoposide on Caco-2 cancer cell lines with an IC50 value of 16.63 ± 0.27 µM after 48 h. Annexin V suggests the induction of cell death by apoptosis. Compound 3 significantly increased the loss of mitochondrial membrane potential (MMP) levels in Caco-2 cells, and the reactive oxygen species (ROS) assay proved that compound 3 could induce apoptosis by ROS generation.

15.
Comput Struct Biotechnol J ; 20: 925-936, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35242285

RESUMEN

Development of effective bivalent ligands has become the focus of intensive research toward modulation of G protein-coupled receptor (GPCR) oligomers, particularly in the field of GPCR pharmacology. Experimental studies have shown that they increased binding affinity and signaling potency compared to their monovalent counterparts, yet underlying molecular mechanism remains elusive. To address this, we performed accelerated molecular dynamics simulations on bivalent-ligand bound Adenosine 2A receptor (A2AR) dimer in the context of a modeled tetramer, which consists of A2AR and dopamine 2 receptor (D2R) homodimers and their cognate G proteins. Our results demonstrate that bivalent ligand impacted interactions between pharmacophore groups and ligand binding residues, thus modulating allosteric communication network and water channel formed within the receptor. Moreover, it also strengthens contacts between receptor and G protein, by modulating the volume of ligand binding pocket and intracellular domain of the receptor. Importantly, we showed that impact evoked by the bivalent ligand on A2AR dimer was also transmitted to apo D2R, which is part of the neighboring D2R dimer. To the best of our knowledge, this is the first study that provides a mechanistic insight into the impact of a bivalent ligand on dynamics of a GPCR oligomer. Consequently, this will pave the way for development of effective ligands for modulation of GPCR oligomers and hence treatment of crucial diseases such as Parkinson's disease and cancer.

16.
J Biomol Struct Dyn ; 40(15): 7167-7182, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-33847241

RESUMEN

Coronavirus disease-2019 (COVID-19) was firstly reported in Wuhan, China, towards the end of 2019, and emerged as a pandemic. The spread and lethality rates of the COVID-19 have ignited studies that focus on the development of therapeutics for either treatment or prophylaxis purposes. In parallel, drug repurposing studies have also come into prominence. Herein, we aimed at having a holistic understanding of conformational and dynamical changes induced by an experimentally characterized inhibitor on main protease (Mpro) which would enable the discovery of novel inhibitors. To this end, we performed molecular dynamics simulations using crystal structures of apo and α-ketoamide 13b-bound Mpro homodimer. Analysis of trajectories pertaining to apo Mpro revealed a new target site, which is located at the homodimer interface, next to the catalytic dyad. Thereafter, we performed ensemble-based virtual screening by exploiting the ZINC and DrugBank databases and identified three candidate molecules, namely eluxadoline, diosmin, and ZINC02948810 that could invoke local and global conformational rearrangements which were also elicited by α-ketoamide 13b on the catalytic dyad of Mpro. Furthermore, ZINC23881687 stably interacted with catalytically important residues Glu166 and Ser1 and the target site throughout the simulation. However, it gave positive binding energy, presumably, due to displaying higher flexibility that might dominate the entropic term, which is not included in the MM-PBSA method. Finally, ZINC20425029, whose mode of action was different, modulated dynamical properties of catalytically important residue, Ala285. As such, this study presents valuable findings that might be used in the development of novel therapeutics against Mpro.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus , Reposicionamiento de Medicamentos/métodos , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , SARS-CoV-2
17.
Protein Sci ; 31(10): e4414, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36173156

RESUMEN

Farnesyltransferase (FTase) is a heterodimeric enzyme, which catalyzes covalent attachment of the farnesyl group to target proteins, thus coordinating their trafficking in the cell. FTase has been demonstrated to be highly expressed in cancer and neurological diseases; hence considered as a hot target for therapeutic purposes. However, due to the nonspecific inhibition, there has been only one inhibitor that could be translated into the clinic. Importantly, it has been shown that phosphorylation of the α-subunit of FTase increases the activity of the enzyme in certain diseases. As such, understanding the impact of phosphorylation on dynamics of FTase provides a basis for targeting a specific state of the enzyme that emerges under pathological conditions. To this end, we performed 18 µs molecular dynamics (MD) simulations using complexes of (non)-phosphorylated FTase that are representatives of the farnesylation reaction. We demonstrated that phosphorylation modulated the catalytic site by rearranging interactions between farnesyl pyrophosphate (FPP)/peptide substrate, catalytic Zn2+ ion/coordinating residues and hot-spot residues at the interface of the subunits, all of which led to the stabilization of the substrate and facilitation of the release of the product, thus collectively expediting the reaction rate. Importantly, we also identified a likely allosteric pocket on the phosphorylated FTase, which might be used for specific targeting of the enzyme. To the best of our knowledge, this is the first study that systematically examines the impact of phosphorylation on the enzymatic reaction steps, hence opens up new avenues for drug discovery studies that focus on targeting phosphorylated FTase.


Asunto(s)
Transferasas Alquil y Aril , Transferasas Alquil y Aril/metabolismo , Catálisis , Dominio Catalítico , Farnesiltransferasa/química , Farnesiltransferasa/metabolismo , Péptidos/química , Fosforilación
18.
Elife ; 112022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36458814

RESUMEN

Undruggability of RAS proteins has necessitated alternative strategies for the development of effective inhibitors. In this respect, phosphorylation has recently come into prominence as this reversible post-translational modification attenuates sensitivity of RAS towards RAF. As such, in this study, we set out to unveil the impact of phosphorylation on dynamics of HRASWT and aim to invoke similar behavior in HRASG12D mutant by means of small therapeutic molecules. To this end, we performed molecular dynamics (MD) simulations using phosphorylated HRAS and showed that phosphorylation of Y32 distorted Switch I, hence the RAS/RAF interface. Consequently, we targeted Switch I in HRASG12D by means of approved therapeutic molecules and showed that the ligands enabled detachment of Switch I from the nucleotide-binding pocket. Moreover, we demonstrated that displacement of Switch I from the nucleotide-binding pocket was energetically more favorable in the presence of the ligand. Importantly, we verified computational findings in vitro where HRASG12D/RAF interaction was prevented by the ligand in HEK293T cells that expressed HRASG12D mutant protein. Therefore, these findings suggest that targeting Switch I, hence making Y32 accessible might open up new avenues in future drug discovery strategies that target mutant RAS proteins.


Asunto(s)
Quinasas raf , Proteínas ras , Humanos , Células HEK293 , Ligandos , Nucleótidos/metabolismo , Fosforilación , Proteínas ras/metabolismo , Proteínas Mutantes , Quinasas raf/metabolismo
19.
Turk J Chem ; 44(2): 409-420, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33488166

RESUMEN

ß -arrestins are responsible for termination of G protein-coupled receptor (GPCR)-mediated signaling. Association of single nucleotide variants with onset of crucial diseases has made this protein family hot targets in the field of GPCR-mediated pharmacology. However, impact of these mutations on function of these variants has remained elusive. In this study, structural and dynamical properties of one of ß -arrestin2 (arrestin 3) variants, A248T, which has been identified in some cancer tissue samples, were investigated via molecular dynamics simulations. The results showed that the variant underwent structural rearrangements which are seen in crystal structures of active arrestin. Specifically, the "short helix" unravels and the "gate loop" swings forward as seen in crystal structures of receptor-bound and GPCR phosphopeptide-bound arrestin. Moreover, the "finger loop" samples upward position in the variant. Importantly, these regions harbor crucial residues that are involved in receptor binding interfaces. Cumulatively, these local structural rearrangements help the variant adopt active-like domain angle without perturbing the "polar core". Considering that phosphorylation of the receptor is required for activation of arrestin, A248T might serve as a model system to understand phosphorylation-independent activation mechanism, thus enabling modulation of function of arrestin variants which are activated independent of receptor phosphorylation as seen in cancer.

20.
J Chem Theory Comput ; 16(6): 3825-3841, 2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32324386

RESUMEN

Conformational transitions in proteins facilitate precise physiological functions. Therefore, it is crucial to understand the mechanisms underlying these processes to modulate protein function. Yet, studying structural and dynamical properties of proteins is notoriously challenging due to the complexity of the underlying potential energy surfaces (PES). We have previously developed the perturbation-response scanning (PRS) method to identify key residues that participate in the communication network responsible for specific conformational transitions. PRS is based on a residue-by-residue scan of the protein to determine the subset of residues/forces which provide the closest conformational change leading to a target conformational state, inasmuch as linear response theory applies to these motions. Here, we develop a novel method to further evaluate if conformational transitions may be triggered on the PES. We aim to study functionally relevant conformational transitions in proteins by using results obtained from PRS and feeding them as inputs to steered molecular dynamics simulations. The success and the transferability of the method are evaluated on three protein systems having different complexities of motion on the PES: calmodulin, adenylate kinase, and bacterial ferric binding protein. We find that the method captures the target conformation, while providing key residues and the optimum paths with relatively low free energy profiles.


Asunto(s)
Simulación de Dinámica Molecular/normas , Conformación Proteica , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA