Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mar Drugs ; 21(12)2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38132965

RESUMEN

Brevetoxins (BTXs) constitute a family of lipid-soluble toxic cyclic polyethers mainly produced by Karenia brevis, which is the main vector for a foodborne syndrome known as neurotoxic shellfish poisoning (NSP) in humans. To prevent health risks associated with the consumption of contaminated shellfish in France, the French Agency for Food, Environmental and Occupational Health & Safety (ANSES) recommended assessing the effects of BTXs via an acute oral toxicity study in rodents. Here, we investigated the effect of a single oral administration in both male and female mice with several doses of BTX-3 (100 to 1,500 µg kg-1 bw) during a 48 h observation period in order to provide toxicity data to be used as a starting point for establishing an acute oral reference dose (ARfD). We monitored biological parameters and observed symptomatology, revealing different effects of this toxin depending on the sex. Females were more sensitive than males to the impact of BTX-3 at the lowest doses on weight loss. For both males and females, BTX-3 induced a rapid, transient and dose-dependent decrease in body temperature, and a transient dose-dependent reduced muscle activity. Males were more sensitive to BTX-3 than females with more frequent observations of failures in the grip test, convulsive jaw movements, and tremors. BTX-3's impacts on symptomatology were rapid, appearing during the 2 h after administration, and were transient, disappearing 24 h after administration. The highest dose of BTX-3 administered in this study, 1,500 µg kg-1 bw, was more toxic to males, leading to the euthanasia of three out of five males only 4 h after administration. BTX-3 had no effect on water intake, and affected neither the plasma chemistry parameters nor the organs' weight. We identified potential points of departure that could be used to establish an ARfD (decrease in body weight, body temperature, and muscle activity).


Asunto(s)
Toxinas Marinas , Oxocinas , Humanos , Ratones , Femenino , Masculino , Animales , Toxinas Marinas/toxicidad , Toxinas Poliéteres , Oxocinas/toxicidad
2.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36768653

RESUMEN

The renin-angiotensin system (RAS) is one of the main regulatory systems of cardiovascular homeostasis. It is mainly composed of angiotensin-converting enzyme (ACE) and angiotensin II receptors AT1 and AT2. ACE and AT1 are targets of choice for the treatment of hypertension, whereas the AT2 receptor is still not exploited due to the lack of knowledge of its physiological properties. Peptide toxins from venoms display multiple biological functions associated with varied chemical and structural properties. If Brazilian viper toxins have been described to inhibit ACE, no animal toxin is known to act on AT1/AT2 receptors. We screened a library of toxins on angiotensin II receptors with a radioligand competition binding assay. Functional characterization of the selected toxin was conducted by measuring second messenger production, G-protein activation and ß-arrestin 2 recruitment using bioluminescence resonance energy transfer (BRET) based biosensors. We identified one original toxin, A-CTX-cMila, which is a 7-residues cyclic peptide from Conus miliaris with no homology sequence with known angiotensin peptides nor identified toxins, displaying a 100-fold selectivity for AT1 over AT2. This toxin shows a competitive antagonism mode of action on AT1, blocking Gαq, Gαi3, GαoA, ß-arrestin 2 pathways and ERK1/2 activation. These results describe the first animal toxin active on angiotensin II receptors.


Asunto(s)
Hipertensión , Receptor de Angiotensina Tipo 1 , Humanos , Angiotensina II/metabolismo , Antagonistas de Receptores de Angiotensina , Arrestina beta 2/metabolismo , Péptidos/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 2/metabolismo , Receptores de Angiotensina/metabolismo , Sistema Renina-Angiotensina/fisiología , Animales
3.
J Neuroinflammation ; 17(1): 266, 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32894170

RESUMEN

BACKGROUND: Experimental autoimmune encephalomyelitis (EAE) is the most commonly used and clinically relevant murine model for human multiple sclerosis (MS), a demyelinating autoimmune disease characterized by mononuclear cell infiltration into the central nervous system (CNS). The aim of the present study was to appraise the alterations, poorly documented in the literature, which may occur at the peripheral nervous system (PNS) level. METHODS: To this purpose, a multiple evaluation of peripheral nerve excitability was undertaken, by means of a minimally invasive electrophysiological method, in EAE mice immunized with the myelin oligodendrocyte glycoprotein (MOG) 35-55 peptide, an experimental model for MS that reproduces, in animals, the anatomical and behavioral alterations observed in humans with MS, including CNS inflammation, demyelination of neurons, and motor abnormalities. Additionally, the myelin sheath thickness of mouse sciatic nerves was evaluated using transmission electronic microscopy. RESULTS: As expected, the mean clinical score of mice, daily determined to describe the symptoms associated to the EAE progression, increased within about 18 days after immunization for EAE mice while it remained null for all control animals. The multiple evaluation of peripheral nerve excitability, performed in vivo 2 and 4 weeks after immunization, reveals that the main modifications of EAE mice, compared to control animals, are a decrease of the maximal compound action potential (CAP) amplitude and of the stimulation intensity necessary to generate a CAP with a 50% maximum amplitude. In addition, and in contrast to control mice, at least 2 CAPs were recorded following a single stimulation in EAE animals, reflecting various populations of sensory and motor nerve fibers having different CAP conduction speeds, as expected if a demyelinating process occurred in the PNS of these animals. In contrast, single CAPs were always recorded from the sensory and motor nerve fibers of control mice having more homogeneous CAP conduction speeds. Finally, the myelin sheath thickness of sciatic nerves of EAE mice was decreased 4 weeks after immunization when compared to control animals. CONCLUSIONS: In conclusion, the loss of immunological self-tolerance to MOG in EAE mice or in MS patients may not be only attributed to the restricted expression of this antigen in the immunologically privileged environment of the CNS but also of the PNS.


Asunto(s)
Potenciales de Acción/fisiología , Encefalomielitis Autoinmune Experimental/fisiopatología , Conducción Nerviosa/fisiología , Nervios Periféricos/fisiopatología , Animales , Progresión de la Enfermedad , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Ratones , Músculo Esquelético/inmunología , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Vaina de Mielina/inmunología , Vaina de Mielina/patología , Glicoproteína Mielina-Oligodendrócito/inmunología , Fragmentos de Péptidos/inmunología , Nervios Periféricos/inmunología , Nervios Periféricos/patología
4.
Proc Natl Acad Sci U S A ; 114(27): 7154-7159, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28630289

RESUMEN

Polycystic kidney diseases (PKDs) are genetic disorders that can cause renal failure and death in children and adults. Lowering cAMP in cystic tissues through the inhibition of the type-2 vasopressin receptor (V2R) constitutes a validated strategy to reduce disease progression. We identified a peptide from green mamba venom that exhibits nanomolar affinity for the V2R without any activity on 155 other G-protein-coupled receptors or on 15 ionic channels. Mambaquaretin-1 is a full antagonist of the V2R activation pathways studied: cAMP production, beta-arrestin interaction, and MAP kinase activity. This peptide adopts the Kunitz fold known to mostly act on potassium channels and serine proteases. Mambaquaretin-1 interacts selectively with the V2R through its first loop, in the same manner that aprotinin inhibits trypsin. Injected in mice, mambaquaretin-1 increases in a dose-dependent manner urine outflow with concomitant reduction of urine osmolality, indicating a purely aquaretic effect associated with the in vivo blockade of V2R. CD1-pcy/pcy mice, a juvenile model of PKD, daily treated with 13 [Formula: see text]g of mambaquaretin-1 for 99 d, developed less abundant (by 33%) and smaller (by 47%) cysts than control mice. Neither tachyphylaxis nor apparent toxicity has been noted. Mambaquaretin-1 represents a promising therapeutic agent against PKDs.


Asunto(s)
Antagonistas de los Receptores de Hormonas Antidiuréticas/farmacología , Dendroaspis , Péptidos Natriuréticos/farmacología , Péptidos/farmacología , Enfermedades Renales Poliquísticas/tratamiento farmacológico , Receptores de Vasopresinas/genética , Venenos de Serpiente/farmacología , Animales , Benzazepinas/farmacología , Células CHO , Cricetinae , Cricetulus , Cristalografía por Rayos X , AMP Cíclico/metabolismo , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Enfermedades Renales Poliquísticas/metabolismo , Transducción de Señal , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Factores de Tiempo , Tolvaptán , Tripsina/química
5.
Bioorg Med Chem ; 27(5): 700-707, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30692022

RESUMEN

In the field of nicotinic acetylcholine receptors (nAChRs), recognized as important therapeutic targets, much effort has been dedicated to the development of nicotinic analogues to agonize or antagonize distinct homo- and heteropentamers nAChR subtypes, selectively. In this work we developed di- and heptavalent nicotinic derivatives based on ethylene glycol (EG) and cyclodextrin cores, respectively. The compounds showed a concentration dependent inhibition of acetylcholine-induced currents on α7 nAChR expressed by Xenopus oocytes. Interesting features were observed with the divalent nicotinic derivatives, acting as antagonists with varied inhibitory concentrations (IC50) in function of the spacer arm length. The best divalent compounds showed a 16-fold lowered IC50 compared to the monovalent reference (12 vs 195 µM). Docking investigations provide guidelines to rationalize these experimental findings.


Asunto(s)
Antagonistas Nicotínicos/farmacología , Polietilenglicoles/farmacología , Piridinas/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/antagonistas & inhibidores , beta-Ciclodextrinas/farmacología , Animales , Femenino , Humanos , Ligandos , Lymnaea/química , Simulación del Acoplamiento Molecular , Antagonistas Nicotínicos/síntesis química , Antagonistas Nicotínicos/metabolismo , Oocitos/efectos de los fármacos , Polietilenglicoles/síntesis química , Polietilenglicoles/metabolismo , Unión Proteica , Piridinas/síntesis química , Piridinas/metabolismo , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa 7/química , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , beta-Ciclodextrinas/síntesis química , beta-Ciclodextrinas/metabolismo
6.
Mar Drugs ; 17(5)2019 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-31137661

RESUMEN

Pinnatoxins (PnTXs) A-H constitute an emerging family belonging to the cyclic imine group of phycotoxins. Interest has been focused on these fast-acting and highly-potent toxins because they are widely found in contaminated shellfish. Despite their highly complex molecular structure, PnTXs have been chemically synthetized and demonstrated to act on various nicotinic acetylcholine receptor (nAChR) subtypes. In the present work, PnTX-A, PnTX-G and analogue, obtained by chemical synthesis with a high degree of purity (>98%), have been studied in vivo and in vitro on adult mouse and isolated nerve-muscle preparations expressing the mature muscle-type (α1)2ß1δε nAChR. The results show that PnTX-A and G acted on the neuromuscular system of anesthetized mice and blocked the compound muscle action potential (CMAP) in a dose- and time-dependent manner, using a minimally invasive electrophysiological method. The CMAP block produced by both toxins in vivo was reversible within 6-8 h. PnTX-A and G, applied to isolated extensor digitorum longus nerve-muscle preparations, blocked reversibly isometric twitches evoked by nerve stimulation. The action of PnTX-A was reversed by 3,4-diaminopyridine. Both toxins exerted no direct action on muscle fibers, as revealed by direct muscle stimulation. PnTX-A and G blocked synaptic transmission at mouse neuromuscular junctions and PnTX-A amino ketone analogue (containing an open form of the imine ring) had no effect on neuromuscular transmission. These results indicate the importance of the cyclic imine for interacting with the adult mammalian muscle-type nAChR. Modeling and docking studies revealed molecular determinants responsible for the interaction of PnTXs with the muscle-type nAChR.


Asunto(s)
Alcaloides/farmacología , Músculo Esquelético/efectos de los fármacos , Compuestos de Espiro/farmacología , Esteroles/farmacología , Transmisión Sináptica/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Alcaloides/síntesis química , Animales , Femenino , Masculino , Ratones , Bloqueantes Neuromusculares/síntesis química , Bloqueantes Neuromusculares/farmacología , Antagonistas Nicotínicos/síntesis química , Antagonistas Nicotínicos/farmacología , Unión Proteica/efectos de los fármacos , Receptores Nicotínicos/metabolismo , Compuestos de Espiro/síntesis química , Esteroles/síntesis química
7.
Molecules ; 24(2)2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-30634526

RESUMEN

The medical staff is often powerless to treat patients affected by drug abuse or misuse and poisoning. In the case of envenomation, the treatment of choice remains horse sera administration that poses a wealth of other medical conditions and threats. Previously, we have demonstrated that DNA-based aptamers represent powerful neutralizing tools for lethal animal toxins of venomous origin. Herein, we further pursued our investigations in order to understand whether all toxin-interacting aptamers possessed equivalent potencies to neutralize αC-conotoxin PrXA in vitro and in vivo. We confirmed the high lethality in mice produced by αC-conotoxin PrXA regardless of the mode of injection and further characterized myoclonus produced by the toxin. We used high-throughput patch-clamp technology to assess the effect of αC-conotoxin PrXA on ACh-mediated responses in TE671 cells, responses that are carried by muscle-type nicotinic receptors. We show that 2 out of 4 aptamers reduce the affinity of the toxin for its receptor, most likely by interfering with the pharmacophore. In vivo, more complex responses on myoclonus and mice lethality are observed depending on the type of aptamer and mode of administration (concomitant or differed). Concomitant administration always works better than differed administration indicating the stability of the complex in vivo. The most remarkable conclusion is that an aptamer that has no or a limited efficacy in vitro may nevertheless be functional in vivo probably owing to an impact on the biodistribution or pharmacokinetics of the toxin in vivo. Overall, the results highlight that a blind selection of aptamers against toxins leads to efficient neutralizing compounds in vivo regardless of the mode of action. This opens the door to the use of aptamer mixtures as substitutes to horse sera for the neutralization of life-threatening animal venoms, an important WHO concern in tropical areas.


Asunto(s)
Aptámeros de Nucleótidos/administración & dosificación , Conotoxinas/toxicidad , Mioclonía/prevención & control , Animales , Aptámeros de Nucleótidos/farmacología , Línea Celular , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Mioclonía/mortalidad , Receptores Nicotínicos/metabolismo , Técnica SELEX de Producción de Aptámeros
8.
J Biol Chem ; 291(6): 2616-29, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26680001

RESUMEN

Mambalgins are peptides isolated from mamba venom that specifically inhibit a set of acid-sensing ion channels (ASICs) to relieve pain. We show here the first full stepwise solid phase peptide synthesis of mambalgin-1 and confirm the biological activity of the synthetic toxin both in vitro and in vivo. We also report the determination of its three-dimensional crystal structure showing differences with previously described NMR structures. Finally, the functional domain by which the toxin inhibits ASIC1a channels was identified in its loop II and more precisely in the face containing Phe-27, Leu-32, and Leu-34 residues. Moreover, proximity between Leu-32 in mambalgin-1 and Phe-350 in rASIC1a was proposed from double mutant cycle analysis. These data provide information on the structure and on the pharmacophore for ASIC channel inhibition by mambalgins that could have therapeutic value against pain and probably other neurological disorders.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Venenos Elapídicos , Péptidos , Canales Iónicos Sensibles al Ácido/genética , Animales , Venenos Elapídicos/síntesis química , Venenos Elapídicos/química , Venenos Elapídicos/farmacología , Resonancia Magnética Nuclear Biomolecular , Oocitos , Péptidos/síntesis química , Péptidos/química , Péptidos/farmacología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ratas , Xenopus laevis
9.
J Neurochem ; 142 Suppl 2: 7-18, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28326549

RESUMEN

Three-finger fold toxins are miniproteins frequently found in Elapidae snake venoms. This fold is characterized by three distinct loops rich in ß-strands and emerging from a dense, globular core reticulated by four highly conserved disulfide bridges. The number and diversity of receptors, channels, and enzymes identified as targets of three-finger fold toxins is increasing continuously. Such manifold diversity highlights the specific adaptability of this fold for generating pleiotropic functions. Although this toxin superfamily disturbs many biological functions by interacting with a large diversity of molecular targets, the most significant target is the cholinergic system. By blocking the activity of the nicotinic and muscarinic acetylcholine receptors or by inhibiting the enzyme acetylcholinesterase, three-finger fold toxins interfere most drastically with neuromuscular junction functioning. Several of these toxins have become powerful pharmacological tools for studying the function and structure of their molecular targets. Most importantly, since dysfunction of these receptors/enzyme is involved in many diseases, exploiting the three-finger scaffold to create novel, highly specific therapeutic agents may represent a major future endeavor. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.


Asunto(s)
Acetilcolina/metabolismo , Colinérgicos/farmacología , Receptores Muscarínicos/efectos de los fármacos , Venenos de Serpiente/toxicidad , Toxinas Biológicas/metabolismo , Acetilcolina/farmacología , Animales , Humanos , Modelos Moleculares
10.
J Neurochem ; 142 Suppl 2: 41-51, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28326551

RESUMEN

We present an overview of the toxicological profile of the fast-acting, lipophilic macrocyclic imine toxins, an emerging family of organic compounds associated with algal blooms, shellfish contamination and neurotoxicity. Worldwide, shellfish contamination incidents are expanding; therefore, the significance of these toxins for the shellfish food industry deserves further study. Emphasis is directed to the dinoflagellate species involved in their production, their chemical structures, and their specific mode of interaction with their principal natural molecular targets, the nicotinic acetylcholine receptors, or with the soluble acetylcholine-binding protein, used as a surrogate receptor model. The dinoflagellates Karenia selliformis and Alexandrium ostenfeldii / A. peruvianum have been implicated in the biosynthesis of gymnodimines and spirolides, while Vulcanodinium rugosum is the producer of pinnatoxins and portimine. The cyclic imine toxins are characterized by a macrocyclic skeleton comprising 14-27 carbon atoms, flanked by two conserved moieties, the cyclic imine and the spiroketal ring system. These phycotoxins generally display high affinity and broad specificity for the muscle type and neuronal nicotinic acetylcholine receptors, a feature consistent with their binding site at the receptor subunit interfaces, composed of residues highly conserved among all nAChRs, and explaining the diverse toxicity among animal species. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.


Asunto(s)
Acetilcolina/antagonistas & inhibidores , Dinoflagelados/efectos de los fármacos , Iminas/toxicidad , Antagonistas Nicotínicos/farmacología , Receptores Nicotínicos/metabolismo , Toxinas Biológicas/farmacología , Animales , Dinoflagelados/aislamiento & purificación , Humanos , Receptores Nicotínicos/efectos de los fármacos , Toxinas Biológicas/metabolismo
11.
Nat Prod Rep ; 32(3): 411-35, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25338021

RESUMEN

From a small group of exotic compounds isolated only two decades ago, Cyclic Imine (CI) toxins have become a major class of marine toxins with global distribution. Their distinct chemical structure, biological mechanism of action, and intricate chemistry ensures that CI toxins will continue to be the subject of fascinating fundamental studies in the broad fields of chemistry, chemical biology, and toxicology. The worldwide occurrence of potent CI toxins in marine environments, their accumulation in shellfish, and chemical stability are important considerations in assessing risk factors for human health. This review article aims to provide an account of chemistry, biology, and toxicology of CI toxins from their discovery to the present day.


Asunto(s)
Productos Biológicos/síntesis química , Productos Biológicos/farmacología , Iminas/química , Toxinas Marinas/síntesis química , Toxinas Marinas/farmacología , Productos Biológicos/química , Ambiente , Humanos , Iminas/síntesis química , Iminas/farmacología , Toxinas Marinas/química , Estructura Molecular , Mariscos
12.
Anal Bioanal Chem ; 407(18): 5299-307, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25935673

RESUMEN

G-protein-coupled receptors (GPCRs) constitute the largest family of transmembrane proteins. Although implicated in almost all physiological processes in the human body, most of them remain unexploited, mostly because of the lack of specific ligands. The objective of this work is to develop a new mass-spectrometry-based technique capable of identifying new peptide ligands for GPCRs. The strategy is based on the incubation of cellular membranes overexpressing GPCRs with a mixture of peptides that contains potential ligands. Peptide ligands bind to the receptors, whereas other peptides remain in the binding buffer. Bound peptides are eluted from membranes and directly detected, identified, and characterized by MALDI TOF-TOF. The results reveal the efficacy of the procedure for selecting a specific ligand of GPCRs in both simple and complex mixtures of peptides. This new approach may offer direct purification, identification, and characterization of the new ligand in a single workflow. The proposed method is labeling-free and, unlike radio-binding and other techniques, it does not require a previously known labeled ligand of the studied GPCR. All these properties greatly reduce the experimental constraints. Moreover, because it is not based on the principle of a competitive specific binding, this technique constitutes a new tool to discover new ligands not only for known GPCRs, but also for orphan GPCRs.


Asunto(s)
Péptidos/química , Péptidos/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Secuencia de Aminoácidos , Arginina Vasopresina/química , Arginina Vasopresina/farmacología , Diseño de Fármacos , Evaluación Preclínica de Medicamentos/métodos , Humanos , Ligandos , Modelos Moleculares , Unión Proteica , Receptores Acoplados a Proteínas G/química , Receptores de Vasopresinas/química , Receptores de Vasopresinas/metabolismo
13.
Mar Drugs ; 12(6): 3449-65, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24905483

RESUMEN

A novel conotoxin (conopeptide) was biochemically characterized from the crude venom of the molluscivorous marine snail, Conus bandanus (Hwass in Bruguière, 1792), collected in the south-central coast of Vietnam. The peptide was identified by screening bromotryptophan from chromatographic fractions of the crude venom. Tandem mass spectrometry techniques were used to detect and localize different post-translational modifications (PTMs) present in the BnIIID conopeptide. The sequence was confirmed by Edman's degradation and mass spectrometry revealing that the purified BnIIID conopeptide had 15 amino acid residues, with six cysteines at positions 1, 2, 7, 11, 13, and 14, and three PTMs: bromotryptophan, γ-carboxy glutamate, and amidated aspartic acid, at positions "4", "5", and "15", respectively. The BnIIID peptide was synthesized for comparison with the native peptide. Homology comparison with conopeptides having the III-cysteine framework (-CCx1x2x3x4Cx1x2x3Cx1CC-) revealed that BnIIID belongs to the M-1 family of conotoxins. This is the first report of a member of the M-superfamily containing bromotryptophan as PTM.


Asunto(s)
Conotoxinas/química , Caracol Conus/metabolismo , Péptidos/química , Animales , Péptidos/aislamiento & purificación , Procesamiento Proteico-Postraduccional , Espectrometría de Masas en Tándem , Triptófano/química , Vietnam
14.
Toxins (Basel) ; 16(4)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38668589

RESUMEN

Coralsnakes (Micrurus spp.) are the only elapids found throughout the Americas. They are recognized for their highly neurotoxic venom, which is comprised of a wide variety of toxins, including the stable, low-mass toxins known as three-finger toxins (3FTx). Due to difficulties in venom extraction and availability, research on coralsnake venoms is still very limited when compared to that of other Elapidae snakes like cobras, kraits, and mambas. In this study, two previously described 3FTx from the venom of M. corallinus, NXH1 (3SOC1_MICCO), and NXH8 (3NO48_MICCO) were characterized. Using in silico, in vitro, and ex vivo experiments, the biological activities of these toxins were predicted and evaluated. The results showed that only NXH8 was capable of binding to skeletal muscle cells and modulating the activity of nAChRs in nerve-diaphragm preparations. These effects were antagonized by anti-rNXH8 or antielapidic sera. Sequence analysis revealed that the NXH1 toxin possesses eight cysteine residues and four disulfide bonds, while the NXH8 toxin has a primary structure similar to that of non-conventional 3FTx, with an additional disulfide bond on the first loop. These findings add more information related to the structural diversity present within the 3FTx class, while expanding our understanding of the mechanisms of the toxicity of this coralsnake venom and opening new perspectives for developing more effective therapeutic interventions.


Asunto(s)
Clonación Molecular , Serpientes de Coral , Venenos Elapídicos , Músculo Esquelético , Receptores Nicotínicos , Animales , Venenos Elapídicos/química , Venenos Elapídicos/toxicidad , Venenos Elapídicos/genética , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Secuencia de Aminoácidos , Masculino
15.
Microb Cell Fact ; 12: 37, 2013 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-23607455

RESUMEN

BACKGROUND: Disulfide-rich proteins or DRPs are versatile bioactive compounds that encompass a wide variety of pharmacological, therapeutic, and/or biotechnological applications. Still, the production of DRPs in sufficient quantities is a major bottleneck for their complete structural or functional characterization. Recombinant expression of such small proteins containing multiple disulfide bonds in the bacteria E. coli is considered difficult and general methods and protocols, particularly on a high throughput scale, are limited. RESULTS: Here we report a high throughput screening approach that allowed the systematic investigation of the solubilizing and folding influence of twelve cytoplasmic partners on 28 DRPs in the strains BL21 (DE3) pLysS, Origami B (DE3) pLysS and SHuffle® T7 Express lysY (1008 conditions). The screening identified the conditions leading to the successful soluble expression of the 28 DRPs selected for the study. Amongst 336 conditions tested per bacterial strain, soluble expression was detected in 196 conditions using the strain BL21 (DE3) pLysS, whereas only 44 and 50 conditions for soluble expression were identified for the strains Origami B (DE3) pLysS and SHuffle® T7 Express lysY respectively. To assess the redox states of the DRPs, the solubility screen was coupled with mass spectrometry (MS) to determine the exact masses of the produced DRPs or fusion proteins. To validate the results obtained at analytical scale, several examples of proteins expressed and purified to a larger scale are presented along with their MS and functional characterization. CONCLUSIONS: Our results show that the production of soluble and functional DRPs with cytoplasmic partners is possible in E. coli. In spite of its reducing cytoplasm, BL21 (DE3) pLysS is more efficient than the Origami B (DE3) pLysS and SHuffle® T7 Express lysY trxB(-)/gor(-) strains for the production of DRPs in fusion with solubilizing partners. However, our data suggest that oxidation of the proteins occurs ex vivo. Our protocols allow the production of a large diversity of DRPs using DsbC as a fusion partner, leading to pure active DRPs at milligram scale in many cases. These results open up new possibilities for the study and development of DRPs with therapeutic or biotechnological interest whose production was previously a limitation.


Asunto(s)
Escherichia coli/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Citoplasma/metabolismo , Disulfuros/química , Disulfuros/metabolismo , Oxidación-Reducción , Proteína Disulfuro Isomerasas/genética , Pliegue de Proteína , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
16.
Anal Bioanal Chem ; 405(15): 5341-51, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23584713

RESUMEN

Nicotinic acetylcholine receptors (nAChRs) are one of the most important families in the ligand-gated ion channel superfamily due to their involvement in primordial brain functions and in several neurodegenerative pathologies. The discovery of new ligands which can bind with high affinity and selectivity to nAChR subtypes is of prime interest in order to study these receptors and to potentially discover new drugs for treating various pathologies. Predatory cone snails of the genus Conus hunt their prey using venoms containing a large number of small, highly structured peptides called conotoxins. Conotoxins are classified in different structural families and target a large panel of receptors and ion channels. Interestingly, nAChRs represent the only subgroup for which Conus has developed seven distinct families of conotoxins. Conus venoms have thus received much attention as they could represent a potential source of selective ligands of nAChR subtypes. We describe the mass spectrometric-based approaches which led to the discovery of a novel α-conotoxin targeting muscular nAChR from the venom of Conus ermineus. The presence of several posttranslational modifications complicated the N-terminal sequencing. To discriminate between the different possible sequences, analogs with variable N-terminus were synthesized and fragmented by MS/MS. Understanding the fragmentation pathways in the low m/z range appeared crucial to determine the right sequence. The biological activity of this novel α-conotoxin (α-EIIA) that belongs to the unusual α4/4 subfamily was determined by binding experiments. The results revealed not only its selectivity for the muscular nAChR, but also a clear discrimination between the two binding sites described for this receptor.


Asunto(s)
Conotoxinas/análisis , Caracol Conus/fisiología , Venenos de Moluscos/química , Acetilcolina/química , Acetilcolina/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Conotoxinas/metabolismo , Unión Proteica , Espectrometría de Masas en Tándem
17.
Artículo en Inglés | MEDLINE | ID: mdl-23722859

RESUMEN

ρ-Da1a toxin from eastern green mamba (Dendroaspis angusticeps) venom is a polypeptide of 65 amino acids with a strong affinity for the G-protein-coupled α(1A)-adrenoceptor. This neurotoxin has been crystallized from resolubilized lyophilized powder, but the best crystals grew spontaneously during lyophilization. The crystals belonged to the trigonal space group P3(1)21, with unit-cell parameters a = b = 37.37, c = 66.05 Å, and diffracted to 1.95 Å resolution. The structure solved by molecular replacement showed strong similarities to green mamba muscarinic toxins.


Asunto(s)
Venenos Elapídicos/química , Venenos Elapídicos/genética , Elapidae , Péptidos/química , Péptidos/genética , Secuencia de Aminoácidos , Animales , Cristalización , Liofilización , Datos de Secuencia Molecular , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
18.
Proc Natl Acad Sci U S A ; 107(13): 6076-81, 2010 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-20224036

RESUMEN

Spirolide and gymnodimine macrocyclic imine phycotoxins belong to an emerging class of chemical agents associated with marine algal blooms and shellfish toxicity. Analysis of 13-desmethyl spirolide C and gymnodimine A by binding and voltage-clamp recordings on muscle-type alpha1(2)betagammadelta and neuronal alpha3beta2 and alpha4beta2 nicotinic acetylcholine receptors reveals subnanomolar affinities, potent antagonism, and limited subtype selectivity. Their binding to acetylcholine-binding proteins (AChBP), as soluble receptor surrogates, exhibits picomolar affinities governed by diffusion-limited association and slow dissociation, accounting for apparent irreversibility. Crystal structures of the phycotoxins bound to Aplysia-AChBP ( approximately 2.4A) show toxins neatly imbedded within the nest of ar-omatic side chains contributed by loops C and F on opposing faces of the subunit interface, and which in physiological conditions accommodates acetylcholine. The structures also point to three major features: (i) the sequence-conserved loop C envelops the bound toxins to maximize surface complementarity; (ii) hydrogen bonding of the protonated imine nitrogen in the toxins with the carbonyl oxygen of loop C Trp147 tethers the toxin core centered within the pocket; and (iii) the spirolide bis-spiroacetal or gymnodimine tetrahydrofuran and their common cyclohexene-butyrolactone further anchor the toxins in apical and membrane directions, along the subunit interface. In contrast, the se-quence-variable loop F only sparingly contributes contact points to preserve the broad receptor subtype recognition unique to phycotoxins compared with other nicotinic antagonists. These data offer unique means for detecting spiroimine toxins in shellfish and identify distinctive ligands, functional determinants and binding regions for the design of new drugs able to target several receptor subtypes with high affinity.


Asunto(s)
Acetilcolina/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Toxinas Marinas/química , Toxinas Marinas/metabolismo , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/metabolismo , Receptores Nicotínicos/metabolismo , Animales , Aplysia/metabolismo , Cristalografía por Rayos X , Órgano Eléctrico/metabolismo , Femenino , Compuestos Heterocíclicos con 3 Anillos/química , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Hidrocarburos Cíclicos/química , Hidrocarburos Cíclicos/metabolismo , Hidrocarburos Cíclicos/farmacología , Iminas/química , Iminas/metabolismo , Iminas/farmacología , Técnicas In Vitro , Cinética , Ligandos , Sustancias Macromoleculares , Toxinas Marinas/farmacología , Modelos Moleculares , Estructura Molecular , Antagonistas Nicotínicos/farmacología , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Compuestos de Espiro/química , Compuestos de Espiro/metabolismo , Compuestos de Espiro/farmacología , Torpedo/metabolismo , Xenopus/metabolismo
19.
Cells ; 12(9)2023 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-37174690

RESUMEN

Many molecular targets for cancer therapy are located in the cytosol. Therapeutic macromolecules are generally not able to spontaneously translocate across membranes to reach these cytosolic targets. Therefore a strong need exists for tools that enhance cytosolic delivery. Shiga toxin B-subunit (STxB) is used to deliver therapeutic principles to disease-relevant cells that express its receptor, the glycolipid Gb3. Based on its naturally existing membrane translocation capacity, STxB delivers antigens to the cytosol of Gb3-positive dendritic cells, leading to the induction of CD8+ T cells. Here, we have explored the possibility of further increasing the membrane translocation of STxB to enable other therapeutic applications. For this, our capacity to synthesize STxB chemically was exploited to introduce unnatural amino acids at different positions of the protein. These were then functionalized with hydrophobic entities to locally destabilize endosomal membranes. Intracellular trafficking of these functionalized STxB was measured by confocal microscopy and their cytosolic arrival with a recently developed highly robust, sensitive, and quantitative translocation assay. From different types of hydrophobic moieties that were linked to STxB, the most efficient configuration was determined. STxB translocation was increased by a factor of 2.5, paving the path for new biomedical opportunities.


Asunto(s)
Linfocitos T CD8-positivos , Toxina Shiga , Citosol/metabolismo , Toxina Shiga/química , Toxina Shiga/metabolismo , Membranas Intracelulares/metabolismo , Endosomas/metabolismo
20.
Nanoscale ; 15(43): 17621-17632, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37877415

RESUMEN

Research on graphene-based nanomaterials has experienced exponential growth in the last few decades, driven by their unique properties and their future potential impact on our everyday life. With the increasing production and commercialization of these materials, there is significant interest in understanding their fate in vivo. Herein, we investigated the distribution of 14C-few-layer graphene (14C-FLG) flakes (lat. dim. ∼ 500 nm) in mice over a period of one year. Furthermore, we compared the effects of repeated low-dose and acute high-dose exposure by tracheal administration. The results showed that most of the radioactivity was found in the lungs in both cases, with longer elimination times in the case of acute high-dose administration. In order to gain deeper insights into the distribution pattern, we conducted ex vivo investigations using µ-autoradiography on tissue sections, revealing the heterogeneous distribution of the material following administration. For the first time, µ-autoradiography was used to conduct a comprehensive investigation into the distribution and potential presence of FLG within lung cells isolated from the exposed lungs. The presence of radioactivity in lung cells strongly suggests internalization of the 14C-FLG particles. Overall these results show the long-term accumulation of the material in the lungs over one year, regardless of the administration protocol, and the higher biopersistence of FLG in the case of an acute exposure. These findings highlight the importance of the exposure scenario in the context of intratracheal administration, which is of interest in the evaluation of the potential health risks of graphene-based nanomaterials.


Asunto(s)
Grafito , Nanoestructuras , Animales , Ratones , Distribución Tisular , Pulmón/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA