Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 178(1): 176-189.e15, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31155231

RESUMEN

RLR-mediated type I IFN production plays a pivotal role in elevating host immunity for viral clearance and cancer immune surveillance. Here, we report that glycolysis, which is inactivated during RLR activation, serves as a barrier to impede type I IFN production upon RLR activation. RLR-triggered MAVS-RIG-I recognition hijacks hexokinase binding to MAVS, leading to the impairment of hexokinase mitochondria localization and activation. Lactate serves as a key metabolite responsible for glycolysis-mediated RLR signaling inhibition by directly binding to MAVS transmembrane (TM) domain and preventing MAVS aggregation. Notably, lactate restoration reverses increased IFN production caused by lactate deficiency. Using pharmacological and genetic approaches, we show that lactate reduction by lactate dehydrogenase A (LDHA) inactivation heightens type I IFN production to protect mice from viral infection. Our study establishes a critical role of glycolysis-derived lactate in limiting RLR signaling and identifies MAVS as a direct sensor of lactate, which functions to connect energy metabolism and innate immunity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína 58 DEAD Box/antagonistas & inhibidores , Proteína 58 DEAD Box/metabolismo , Ácido Láctico/farmacología , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores de Superficie Celular/metabolismo , Animales , Femenino , Glucólisis , Células HEK293 , Humanos , Interferón beta/metabolismo , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células RAW 264.7 , Receptores Inmunológicos , Transducción de Señal/efectos de los fármacos , Transfección
2.
Cell ; 164(3): 433-46, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26824656

RESUMEN

The phosphoinositide 3-kinase (PI3K) pathway regulates multiple steps in glucose metabolism and also cytoskeletal functions, such as cell movement and attachment. Here, we show that PI3K directly coordinates glycolysis with cytoskeletal dynamics in an AKT-independent manner. Growth factors or insulin stimulate the PI3K-dependent activation of Rac, leading to disruption of the actin cytoskeleton, release of filamentous actin-bound aldolase A, and an increase in aldolase activity. Consistently, PI3K inhibitors, but not AKT, SGK, or mTOR inhibitors, cause a significant decrease in glycolysis at the step catalyzed by aldolase, while activating PIK3CA mutations have the opposite effect. These results point toward a master regulatory function of PI3K that integrates an epithelial cell's metabolism and its form, shape, and function, coordinating glycolysis with the energy-intensive dynamics of actin remodeling.


Asunto(s)
Fructosa-Bifosfato Aldolasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Citoesqueleto/metabolismo , Citosol/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Glucólisis , Humanos , Insulina/metabolismo , Ratones , Inhibidores de las Quinasa Fosfoinosítidos-3 , Transducción de Señal
3.
Semin Cancer Biol ; 92: 102-127, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37054904

RESUMEN

Cerebral ischemic stroke and glioma are the two leading causes of patient mortality globally. Despite physiological variations, 1 in 10 people who have an ischemic stroke go on to develop brain cancer, most notably gliomas. In addition, glioma treatments have also been shown to increase the risk of ischemic strokes. Stroke occurs more frequently in cancer patients than in the general population, according to traditional literature. Unbelievably, these events share multiple pathways, but the precise mechanism underlying their co-occurrence remains unknown. Transcription factors (TFs), the main components of gene expression programmes, finally determine the fate of cells and homeostasis. Both ischemic stroke and glioma exhibit aberrant expression of a large number of TFs, which are strongly linked to the pathophysiology and progression of both diseases. The precise genomic binding locations of TFs and how TF binding ultimately relates to transcriptional regulation remain elusive despite a strong interest in understanding how TFs regulate gene expression in both stroke and glioma. As a result, the importance of continuing efforts to understand TF-mediated gene regulation is highlighted in this review, along with some of the primary shared events in stroke and glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Glioma/complicaciones , Glioma/genética , Neoplasias Encefálicas/complicaciones , Neoplasias Encefálicas/genética , Accidente Cerebrovascular/genética
4.
Glia ; 69(8): 1966-1986, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33835598

RESUMEN

The importance of Müller glia for retinal homeostasis suggests that they may have vulnerabilities that lead to retinal disease. Here, we studied the effect of selectively knocking down key metabolic genes in Müller glia on photoreceptor health. Immunostaining indicated that murine Müller glia expressed insulin receptor (IR), hexokinase 2 (HK2) and phosphoglycerate dehydrogenase (PHGDH) but very little pyruvate dehydrogenase E1 alpha 1 (PDH-E1α) and lactate dehydrogenase A (LDH-A). We crossed Müller glial cell-CreER (MC-CreER) mice with transgenic mice carrying a floxed IR, HK2, PDH-E1α, LDH-A, or PHGDH gene to study the effect of selectively knocking down key metabolic genes in Müller glia cells on retinal health. Selectively knocking down IR, HK2, or PHGDH led to photoreceptor degeneration and reduced electroretinographic responses. Supplementing exogenous l-serine prevented photoreceptor degeneration and improved retinal function in MC-PHGDH knockdown mice. We unexpectedly found that the levels of retinal serine and glycine were not reduced but, on the contrary, highly increased in MC-PHGDH knockdown mice. Moreover, dietary serine supplementation, while rescuing the retinal phenotypes caused by genetic deletion of PHGDH in Müller glial cells, restored retinal serine and glycine homeostasis probably through regulation of serine transport. No retinal abnormalities were observed in MC-CreER mice crossed with PDH-E1α- or LDH-A-floxed mice despite Cre expression. Our findings suggest that Müller glia do not complete glycolysis but use glucose to produce serine to support photoreceptors. Supplementation with exogenous serine is effective in preventing photoreceptor degeneration caused by PHGDH deficiency in Müller glia.


Asunto(s)
Células Fotorreceptoras , Degeneración Retiniana , Animales , Células Ependimogliales/metabolismo , Ratones , Neuroglía/metabolismo , Células Fotorreceptoras/metabolismo , Retina/metabolismo , Degeneración Retiniana/metabolismo
5.
NMR Biomed ; 34(8): e4560, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34086382

RESUMEN

In many tumors, cancer cells take up large quantities of glucose and metabolize it into lactate, even in the presence of sufficient oxygen to support oxidative metabolism. It has been hypothesized that this malignant metabolic phenotype supports cancer growth and metastasis, and that reversal of this so-called "Warburg effect" may selectively harm cancer cells. Conversion of glucose to lactate can be reduced by ablation or inhibition of lactate dehydrogenase (LDH), the enzyme responsible for conversion of pyruvate to lactate at the endpoint of glycolysis. Recently developed inhibitors of LDH provide new opportunities to investigate the role of this metabolic pathway in cancer. Here we show that magnetic resonance spectroscopic imaging of hyperpolarized pyruvate and its metabolites in models of breast and lung cancer reveal that inhibition of LDH was readily visualized through reduction in label exchange between pyruvate and lactate, while genetic ablation of the LDH-A isoform alone had smaller effects. During the acute phase of LDH inhibition in breast cancer, no discernible bicarbonate signal was observed and small signals from alanine were unchanged.


Asunto(s)
Neoplasias de la Mama/enzimología , Eliminación de Gen , Lactato Deshidrogenasa 5/antagonistas & inhibidores , Lactato Deshidrogenasa 5/genética , Neoplasias Pulmonares/enzimología , Espectroscopía de Resonancia Magnética , Ácido Pirúvico/metabolismo , Animales , Proteína BRCA1/metabolismo , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Lactato Deshidrogenasa 5/metabolismo , Neoplasias Pulmonares/diagnóstico por imagen , Ratones , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Piridonas/administración & dosificación , Piridonas/farmacología , Simportadores/metabolismo , Tiofenos/administración & dosificación , Tiofenos/farmacología
6.
Stem Cells ; 38(5): 683-697, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32012382

RESUMEN

The role of miRNAs in determining human neural stem cell (NSC) fate remains elusive despite their high expression in the developing nervous system. In this study, we investigate the role of miR-137, a brain-enriched miRNA, in determining the fate of human induced pluripotent stem cells-derived NSCs (hiNSCs). We show that ectopic expression of miR-137 in hiNSCs reduces proliferation and accelerates neuronal differentiation and migration. TargetScan and MicroT-CDS predict myocyte enhancer factor-2A (MEF2A), a transcription factor that regulates peroxisome proliferator-activated receptor-gamma coactivator (PGC1α) transcription, as a target of miR-137. Using a reporter assay, we validate MEF2A as a downstream target of miR-137. Our results indicate that reduced levels of MEF2A reduce the transcription of PGC1α, which in turn impacts mitochondrial dynamics. Notably, miR-137 accelerates mitochondrial biogenesis in a PGC1α independent manner by upregulating nuclear factor erythroid 2 (NFE2)-related factor 2 (NRF2) and transcription factor A of mitochondria (TFAM). In addition, miR-137 modulates mitochondrial dynamics by inducing mitochondrial fusion and fission events, resulting in increased mitochondrial content and activation of oxidative phosphorylation (OXPHOS) and oxygen consumption rate. Pluripotency transcription factors OCT4 and SOX2 are known to have binding sites in the promoter region of miR-137 gene. Ectopic expression of miR-137 elevates the expression levels of OCT4 and SOX2 in hiNSCs which establishes a feed-forward self-regulatory loop between miR-137 and OCT4/SOX2. Our study provides novel molecular insights into NSC fate determination by miR-137.


Asunto(s)
MicroARNs/metabolismo , Dinámicas Mitocondriales/fisiología , Células-Madre Neurales/metabolismo , Diferenciación Celular/fisiología , Regulación hacia Abajo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo , MicroARNs/genética , Células-Madre Neurales/citología , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Biogénesis de Organelos , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo
7.
Indian J Med Res ; 154(3): 433-445, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35345069

RESUMEN

Zika virus (ZIKV), member of the family Flaviviridae belonging to genus Flavivirus, is an arthropod-borne virus. The ZIKV is known to cause severe congenital birth defects in neonates. Due to a large number of worldwide outbreaks and associated neurological complications with ZIKV, a public health emergency was declared by the World Health Organization on February 1, 2016. The virus exhibits neurotropism and has a specific propensity towards neural precursor cells of the developing brain. In utero ZIKV infection causes massive cell death in the developing brain resulting in various motor and cognitive disabilities in newborns. The virus modulates cell machinery at several levels to replicate itself and inhibits toll like receptors-3 signalling, deregulates microRNA circuitry and induces a chronic inflammatory response in affected cells. Several significant advances have been made to understand the mechanisms of neuropathogenesis, its prevention and treatment. The current review provides an update on cellular and molecular mechanisms of ZIKV-induced alterations in the function of various brain cells.


Asunto(s)
Células-Madre Neurales , Infección por el Virus Zika , Virus Zika , Encéfalo/patología , Brotes de Enfermedades , Humanos , Recién Nacido , Células-Madre Neurales/patología , Virus Zika/genética , Infección por el Virus Zika/complicaciones , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/genética
8.
J Neuroinflammation ; 17(1): 276, 2020 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-32951595

RESUMEN

BACKGROUND: In human immunodeficiency virus-1 (HIV-1) infection, activation of astrocytes induces imbalance in physiological functions due to perturbed astrocytic functions that unleashes toxicity on neurons. This leads to inflammatory response finally culminating into neurocognitive dysfunction. In neuroAIDS, HIV-1 protein, transactivator of transcription (Tat) is detected in the cerebrospinal fluid of infected patients. Mortalin, a multifunctional protein, has anti-inflammatory role following its activation in various stress conditions. Recent studies demonstrate downregulation of mortalin in neurodegenerative diseases. Here, we explored the mechanisms of mortalin in modulating HIV-1 Tat-mediated neuroinflammation. METHODS: Expression of mortalin in autopsy section in normal and diseased individuals were examined using immunohistochemistry. To decipher the role of mortalin in HIV-1 Tat-induced activation, human fetal brain-derived astrocytes were transiently transfected with Tat and mortalin using expression vectors. HIV-1 Tat-mediated damage was analyzed using RT-PCR and western blotting. Modulatory role of mortalin was examined by coexpressing it with Tat, followed by examination of mitochondrial morphodynamics using biochemical assay and confocal and electron microscopy. Extracellular ATP release was monitored using luciferase assay. Neuroinflammation in astrocytes was examined using flow cytometry, dye based study, immunocytochemistry, immunoprecipitation, and western blotting. Indirect neuronal damage was also analyzed. RESULTS: HIV-1 Tat downregulates the expression of mortalin in astrocytes, and this is corroborated with autopsy sections of HIV-1 patients. We found that overexpression of mortalin with Tat reduced inflammation and also rescued astrocytic-mediated neuronal death. Using bioinformatics, we discovered that binding of mortalin with Tat leads to Tat degradation and rescues the cell from neuroinflammation. Blocking of proteosomal pathway rescued the Tat degradation and revealed the ubiquitination of Tat. CONCLUSION: Overall, our data demonstrated the protective role of mortalin in combating HIV-1 Tat-mediated damage. We also showed that mortalin could degrade Tat through direct binding with HIV-1 Tat. Overexpression of mortalin in the presence of Tat could significantly reduce cytotoxic effects of Tat in astrocytes. Indirect neuronal death was also found to be rescued. Our in vitro findings were validated as we found attenuated expression of mortalin in the autopsy sections of HIV-1 patients.


Asunto(s)
Gliosis/metabolismo , VIH-1/metabolismo , Proteínas HSP70 de Choque Térmico/biosíntesis , Proteínas Mitocondriales/biosíntesis , Neuronas/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/biosíntesis , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Feto , Gliosis/genética , Gliosis/patología , VIH-1/genética , Proteínas HSP70 de Choque Térmico/genética , Humanos , Proteínas Mitocondriales/genética , Neuronas/patología , Células Madre/metabolismo , Células Madre/patología , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética
9.
RNA Biol ; 16(1): 13-24, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30574830

RESUMEN

Long non-coding RNAs have emerged as an important regulatory layer in biological systems. Of the various types of lncRNAs, one class (designated as divergent RNAs/XH), which is in head-to-head overlap with the coding genes, has emerged as a critical biotype that regulates development and cellular differentiation. This work aimed to analyze previously published data on differential expression, epigenetic and network analysis in order to demonstrate the association of divergent lncRNAs, a specific biotype with the differentiation of human neural progenitor cells (hNPCs). We have analyzed various available RNAseq databases that address the neuronal and astrocytic differentiation of hNPCs and identified differentially expressed lncRNAs (DELs) during cell-fate determination. Key DELs identified from the databases were experimentally verified by us in our in-vitro hNPC differentiation system. We also analyzed the change in promoter activity using ChIP-seq datasets of the histone markers H3K4me3 (activation) and H3K27me3 (inactivation) of these DELs. Additionally, we explored the change in the euchromatinization state of DELs (by analyzing DNase-seq data) during lineage-specific differentiation of hNPCs and performed their network analysis. We were able to identify differences between neuronal and astrocytic differentiation of hNPCs at the level of divergent DELs epigenetic markers, DNAase hypersensitive sites and gene expression network. Divergent lncRNAs are more involved in neuronal rather than astrocytic differentiation, while the sense downstream lncRNA biotype appears to be more involved in astrocytic differentiation. By studying the lncRNA involvement of distinct biotypes, we have been able to indicate the preferential role of a particular biotype during lineage-specific differentiation.


Asunto(s)
Diferenciación Celular/genética , Linaje de la Célula/genética , Epigénesis Genética , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , ARN Largo no Codificante/genética , Astrocitos/citología , Astrocitos/metabolismo , Inmunoprecipitación de Cromatina , Biología Computacional/métodos , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Histonas/metabolismo , Humanos
10.
Proc Natl Acad Sci U S A ; 113(30): E4338-47, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27402769

RESUMEN

We previously reported that combining a phosphoinositide 3-kinase (PI3K) inhibitor with a poly-ADP Rib polymerase (PARP)-inhibitor enhanced DNA damage and cell death in breast cancers that have genetic aberrations in BRCA1 and TP53. Here, we show that enhanced DNA damage induced by PI3K inhibitors in this mutational background is a consequence of impaired production of nucleotides needed for DNA synthesis and DNA repair. Inhibition of PI3K causes a reduction in all four nucleotide triphosphates, whereas inhibition of the protein kinase AKT is less effective than inhibition of PI3K in suppressing nucleotide synthesis and inducing DNA damage. Carbon flux studies reveal that PI3K inhibition disproportionately affects the nonoxidative pentose phosphate pathway that delivers Rib-5-phosphate required for base ribosylation. In vivo in a mouse model of BRCA1-linked triple-negative breast cancer (K14-Cre BRCA1(f/f)p53(f/f)), the PI3K inhibitor BKM120 led to a precipitous drop in DNA synthesis within 8 h of drug treatment, whereas DNA synthesis in normal tissues was less affected. In this mouse model, combined PI3K and PARP inhibition was superior to either agent alone to induce durable remissions of established tumors.


Asunto(s)
Daño del ADN , Nucleósidos/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Aminopiridinas/administración & dosificación , Aminopiridinas/farmacología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Femenino , Humanos , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Morfolinas/administración & dosificación , Morfolinas/farmacología , Fosfatidilinositol 3-Quinasa/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/administración & dosificación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo
11.
Glia ; 65(2): 250-263, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27761954

RESUMEN

Astroglia are indispensable component of the tripartite synapse ensheathing innumerous soma and synapses. Its proximity to neurons aids the regulation of neuronal functions, health and survival through dynamic neuroglia crosstalk. Susceptibility of astrocyte to HIV-1 infection and subsequent latency culminates in compromised neuronal health. The viral protein HIV-1 transactivator of transcription (Tat) is neurotoxic. HIV-1 Tat is detected in brain of AIDS patients even in cases where viral load is non-detectable due to successful HAART therapy. Recently, we demonstrated that HIV-1 Tat triggers excess ATP release from astrocytes that causes neuronal death by activating purinergic receptor system. Using well-characterized model system of human primary astrocytes and neurons, we probed into the molecular mechanism for enhanced ATP release in HIV-1 Tat affected astrocytes. HIV-1 Tat modulated the miRNA machinery in astrocytes and perturbed the levels of voltage dependent anion channel 1 (VDAC1), a channel present in the outer mitochondrial membrane and plasma membrane that regulates extracellular ATP release. Our studies with autopsy tissue sections also showed concordantly dysregulated VDAC1 and miR-320a levels in HIV-1 patients suffering from mild cognitive impairment (MCI). We report a novel molecular cascade of miRNA-mediated ATP release through regulation of VDAC1. Downregulation of VDAC1 either with miR-320a mimic or VDAC1 siRNA in HIV-1 Tat-affected astroglia could rescue the neurons from glia-mediated indirect death. Our findings reveal a novel upstream therapeutic target that could be employed to thwart the astroglia-mediated neurotoxicity in HIV-1 neuropathogenesis. GLIA 2017;65:250-263.


Asunto(s)
Astrocitos/metabolismo , Regulación de la Expresión Génica/genética , MicroARNs/metabolismo , Neuronas/patología , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Regiones no Traducidas 3'/fisiología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Astrocitos/efectos de los fármacos , Astrocitos/virología , Autopsia , Encéfalo/patología , Encéfalo/virología , Células Cultivadas , Disfunción Cognitiva/etiología , Disfunción Cognitiva/virología , Feto , Regulación de la Expresión Génica/efectos de los fármacos , Infecciones por VIH/complicaciones , Infecciones por VIH/patología , Humanos , Etiquetado Corte-Fin in Situ , MicroARNs/genética , Células Madre Neoplásicas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/virología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Telencéfalo/citología , Factores de Tiempo , Canal Aniónico 1 Dependiente del Voltaje/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/farmacología
12.
Magn Reson Med ; 76(4): 1102-15, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26507361

RESUMEN

PURPOSE: In balanced steady state free precession (bSSFP), the signal intensity has a well-known dependence on the off-resonance frequency, or, equivalently, the phase advance between successive radiofrequency (RF) pulses. The signal profile can be used to resolve the contributions from the spectrally separated metabolites. This work describes a method based on use of a variable RF phase advance to acquire spatial and spectral data in a time-efficient manner for hyperpolarized 13C MRI. THEORY AND METHODS: The technique relies on the frequency response from a bSSFP acquisition to acquire relatively rapid, high-resolution images that may be reconstructed to separate contributions from different metabolites. The ability to produce images from spectrally separated metabolites was demonstrated in vitro, as well as in vivo following administration of hyperpolarized 1-13C pyruvate in mice with xenograft tumors. RESULTS: In vivo images of pyruvate, alanine, pyruvate hydrate, and lactate were reconstructed from four images acquired in 2 s with an in-plane resolution of 1.25 × 1.25 mm(2) and 5 mm slice thickness. CONCLUSION: The phase advance method allowed acquisition of spectroscopically selective images with high spatial and temporal resolution. This method provides an alternative approach to hyperpolarized 13C spectroscopic MRI that can be combined with other techniques such as multiecho or fluctuating equilibrium bSSFP. Magn Reson Med 76:1102-1115, 2016. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Alanina/metabolismo , Espectroscopía de Resonancia Magnética con Carbono-13/métodos , Ácido Láctico/metabolismo , Imagen por Resonancia Magnética/métodos , Neoplasias Experimentales/metabolismo , Ácido Pirúvico/metabolismo , Procesamiento de Señales Asistido por Computador , Células A549 , Algoritmos , Animales , Biomarcadores de Tumor/metabolismo , Isótopos de Carbono/farmacocinética , Línea Celular Tumoral , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Ratones , Ratones Desnudos , Imagen Molecular/métodos , Neoplasias Experimentales/patología , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
13.
Neurol India ; 64(4): 612-23, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27381103

RESUMEN

The positive outcomes of the transplantation of fetal neural tissue in adult rat models of a variety of neurological disorders, particularly Parkinson's disease, in the 1970s, and its translation to humans in the 1980s, raised great hopes for patients suffering from these incurable disorders. This resulted in a frantic research globally to find more suitable, reliable, and ethically acceptable alternatives. The discovery of adult stem cells, embryonic stem cells, and more recently, the induced pluripotent cells further raised our expectations. The useful functional recovery in animal models using these cell transplantation techniques coupled with the desperate needs of such patients prompted many surgeons to "jump from the rat-to-man" without scientifically establishing a proof of their utility. Each new development claimed to overcome the limitations, shortcomings, safety, and other technical problems associated with the earlier technique, yet newer difficulties prevented evidence-based acceptance of their clinical use. However, thousands of patients across the globe have received these therapies without a scientifically acceptable proof of their reliability. The present review is an attempt to summarize the current status of cell therapy for neurological disorders.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Enfermedades del Sistema Nervioso/terapia , Animales , Humanos , Ratas , Trasplante de Células Madre
14.
J Neurochem ; 132(4): 464-76, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25272052

RESUMEN

During human immunodeficiency virus (HIV)-1 infection, perturbations in neuron­glia interactions may culminate in neuronal damage. Recently, purinergic receptors have been implicated in the promotion of virus-induced neurotoxicity and supporting the viral life cycle at multiple stages. The astrocytes robustly express purinergic receptors. We therefore sought to examine if P2X7R, a P2X receptor subtype, can mediate HIV-1 Tat-induced neuronal apoptosis. Tat augmented the expression of P2X7R in astrocytes. Our data reveal the involvement of P2X7R in Tat-mediated release of monocyte chemoattractant protein (MCP-1) /chemokine (C-C motif) ligand 2 (CCL2) from the astrocytes. P2X7R antagonists, such as the oxidized ATP, A438079, brilliant blue G, and broad spectrum P2 receptor antagonist suramin, attenuated Tat-induced CCL2 release in a calcium- and extracellular signal-regulated kinase (ERK)1/2-dependent manner. Calcium chelators, (1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid) acetoxymethyl ester and EGTA, and ERK1/2 inhibitor U0126 abolished chemokine (C-C motif) ligand 2 release from astrocytes. Furthermore, in human neuronal cultures, we demonstrated P2X7R involvement in Tat-mediated neuronal death. Importantly, in the TUNEL assay, the application of P2X7R-specific antagonists or the knockdown of P2X7R in human astrocytes reduced HIV-Tat-induced neuronal death significantly, underlining the critical role of P2X7R in Tat-mediated neurotoxicity. Our study provides novel insights into astrocyte-mediated neuropathogenesis in HIV-1 infection and a novel target for therapeutic management of neuroAIDS. We investigated the role of P2X7R in Tat-mediated neuroinflammation and neuronal damage. We proposed the following cascade for Tat-mediated CCL2 release from astrocytes: Tat mediates increase in P2X7R expression, which on activation evokes increase in intracellular calcium, which further leads to phosphorylation of ERK1/2 followed by the release of CCL2 from astrocytes. Tat also leads to direct and indirect (mediated via astrocytes) neuronal death that can be abrogated by inhibiting P2X7R. We believe that these finding should provide new insights into the role of astrocytes in HIV-1 Tat-mediated neurotoxicity.


Asunto(s)
Astrocitos/fisiología , VIH-1 , Activación del Canal Iónico/fisiología , Neuronas/fisiología , Receptores Purinérgicos P2X7/biosíntesis , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/administración & dosificación , Astrocitos/virología , Células Cultivadas , Femenino , Humanos , Ligandos , Neuronas/virología , Embarazo
15.
J Immunol ; 191(3): 1486-95, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23817426

RESUMEN

In this study, we explore the hypothesis that enhanced production of lactate by tumor cells, because of high glycolytic activity, results in inhibition of host immune response to tumor cells. Lactate dehydrogenase-A (LDH-A), responsible for conversion of pyruvate to lactate, is highly expressed in tumor cells. Lentiviral vector-mediated LDH-A short hairpin RNA knockdown Pan02 pancreatic cancer cells injected in C57BL/6 mice developed smaller tumors than mice injected with Pan02 cells. A decrease occurred in the frequency of myeloid-derived suppressor cells (MDSCs) in the spleens of mice carrying LDH-A-depleted tumors. NK cells from LDH-A-depleted tumors had improved cytolytic function. Exogenous lactate increased the frequency of MDSCs generated from mouse bone marrow cells with GM-CSF and IL-6 in vitro. Lactate pretreatment of NK cells in vitro inhibited cytolytic function of both human and mouse NK cells. This reduction of NK cytotoxic activity was accompanied by lower expression of perforin and granzyme in NK cells. The expression of NKp46 was decreased in lactate-treated NK cells. These studies strongly suggest that tumor-derived lactate inhibits NK cell function via direct inhibition of cytolytic function as well as indirectly by increasing the numbers of MDSCs that inhibit NK cytotoxicity. Depletion of glucose levels using a ketogenic diet to lower lactate production by glycolytic tumors resulted in smaller tumors, decreased MDSC frequency, and improved antitumor immune response. These studies provide evidence for an immunosuppressive role of tumor-derived lactate in inhibiting innate immune response against developing tumors via regulation of MDSC and NK cell activity.


Asunto(s)
Células Asesinas Naturales/inmunología , L-Lactato Deshidrogenasa/metabolismo , Ácido Láctico/metabolismo , Neoplasias/inmunología , Escape del Tumor , Animales , Antígenos Ly/biosíntesis , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Línea Celular Tumoral , Citotoxicidad Inmunológica , Femenino , Glucosa/biosíntesis , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Granzimas/biosíntesis , Humanos , Interleucina-6/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Células Asesinas Naturales/efectos de los fármacos , L-Lactato Deshidrogenasa/genética , Lactato Deshidrogenasa 5 , Ácido Láctico/farmacología , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Células Mieloides/inmunología , Receptor 1 Gatillante de la Citotoxidad Natural/biosíntesis , Neoplasias/genética , Neoplasias/metabolismo , Perforina/biosíntesis , Interferencia de ARN , ARN Interferente Pequeño , Bazo/inmunología
16.
Hepatology ; 57(1): 205-16, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22859060

RESUMEN

UNLABELLED: Liver cancer is associated with chronic inflammation, which is linked to immune dysregulation, disordered metabolism, and aberrant cell proliferation. Nucleoside triphosphate diphosphohydrolase-1; (CD39/ENTPD1) is an ectonucleotidase that regulates extracellular nucleotide/nucleoside concentrations by scavenging nucleotides to ultimately generate adenosine. These properties inhibit antitumor immune responses and promote angiogenesis, being permissive for the growth of transplanted tumors. Here we show that Cd39 deletion promotes development of both induced and spontaneous autochthonous liver cancer in mice. Loss of Cd39 results in higher concentrations of extracellular nucleotides, which stimulate proliferation of hepatocytes, abrogate autophagy, and disrupt glycolytic metabolism. Constitutive activation of Ras-mitogen-activated protein kinase (MAPK) and mammalian target of rapamycin (mTOR)-S6K1 pathways occurs in both quiescent Cd39 null hepatocytes in vitro and liver tissues in vivo. Exogenous adenosine 5'-triphosphate (ATP) boosts these signaling pathways, whereas rapamycin inhibits such aberrant responses in hepatocytes. CONCLUSION: Deletion of Cd39 and resulting changes in disordered purinergic signaling perturb hepatocellular metabolic/proliferative responses, paradoxically resulting in malignant transformation. These findings might impact adjunctive therapies for cancer. Our studies indicate that the biology of autochthonous and transplanted tumors is quite distinct.


Asunto(s)
Antígenos CD/metabolismo , Apirasa/metabolismo , Carcinoma Hepatocelular/etiología , Neoplasias Hepáticas Experimentales/etiología , Receptores Purinérgicos/metabolismo , Animales , Antígenos CD/genética , Apirasa/genética , Autofagia , Carcinoma Hepatocelular/metabolismo , Proliferación Celular , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Glucólisis , Hepatocitos/fisiología , Hígado/enzimología , Neoplasias Hepáticas Experimentales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Transducción de Señal , Sirolimus , Serina-Treonina Quinasas TOR/metabolismo
17.
Mol Neurobiol ; 61(3): 1807-1817, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37776496

RESUMEN

Stroke is a life-threatening medical condition across the world that adversely affects the integrity of the blood-brain barrier (BBB). The brain microvascular endothelial cells are the important constituent of the BBB. These cells line the blood vessels and form a semipermeable barrier. Disruptions in adherens junction and tight junction proteins of brain microvascular endothelial cells compromise the integrity of BBB. The Vascular Endothelial (VE)-cadherin is an integral adherens junction protein required for the establishment and maintenance of the endothelial barrier integrity. This study aims to investigate the role of miRNA in hypoxia-induced endothelial barrier disruption. In this study, brain endothelial cells were exposed to hypoxic conditions for different time points. Western blotting, overexpression and knockdown of miRNA, real-time PCR, TEER, and sodium fluorescein assay were used to examine the effect of hypoxic conditions on brain endothelial cells. Hypoxic exposure was validated using HIF-1α protein. Exposure to hypoxic conditions resulted to a significant decrease in endothelial barrier resistance and an increase in sodium fluorescein migration across the endothelial barrier. Reduction in endothelial barrier resistance demonstrated compromised barrier integrity, whereas the increase in migration of sodium fluorescein across the barrier indicated the increase in barrier permeability. The present study revealed microRNA-101 decreases the expression of VE-cadherin and claudin-5 in brain endothelial cells exposed to the hypoxic conditions.


Asunto(s)
Antígenos CD , Células Endoteliales , MicroARNs , Humanos , Células Endoteliales/metabolismo , Claudina-5/genética , Claudina-5/metabolismo , Fluoresceína/metabolismo , Fluoresceína/farmacología , Cadherinas/genética , Cadherinas/metabolismo , Barrera Hematoencefálica/metabolismo , Hipoxia/metabolismo , MicroARNs/metabolismo
18.
Mol Neurobiol ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227271

RESUMEN

Oligodendrocytes (OL) are the myelinating cells of the central nervous system that mediate nerve conduction. Loss of oligodendrocytes results in demyelination, triggering neurological deficits. Developing a better understanding of the cell signaling pathways influencing OL development may aid in the development of therapeutic strategies. The primary focus of this study was to investigate and elucidate the cell signaling pathways implicated in the developmental maturation of oligodendrocytes using human fetal neural stem cells (hFNSCs)-derived primary OL and MO3.13 cell line. Successful differentiation into OL was established by examining morphological changes, increased expression of mature OL markers MBP, MOG and decreased expression of pre-OL markers CSPG4 and O4. Analyzing transcriptional datasets (using RNA sequencing) in pre-OL and mature OL derived from hFNSCs revealed the novel and critical involvement of the JAK-STAT cell signaling pathway in terminal OL maturation. The finding was validated in MO3.13 cell line whose differentiation was accompanied by upregulation of IL-6 and the transcription factor STAT3. Increased phosphorylated STAT3 (pY705) levels were demonstrated by western blotting in hFNSCs-derived primary OL as well as terminal maturation in MO3.13 cells, thus validating the involvement of the JAK-STAT pathway in OL maturation. Pharmacological suppression of STAT3 phosphorylation (confirmed by western blotting) was able to prevent the increase of MBP-positive cells as demonstrated by flow cytometry. These novel findings highlight the involvement of the JAK-STAT pathway in OL maturation and raise the possibility of using this as a therapeutic strategy in demyelinating diseases.

19.
Cell Signal ; 119: 111178, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38640981

RESUMEN

STAT1 (Signal Transducer and Activator of Transcription 1), belongs to the STAT protein family, essential for cytokine signaling. It has been reported to have either context dependent oncogenic or tumor suppressor roles in different tumors. Earlier, we demonstrated that Glioblastoma multiforme (GBMs) overexpressing FAT1, an atypical cadherin, had poorer outcomes. Overexpressed FAT1 promotes pro-tumorigenic inflammation, migration/invasion by downregulating tumor suppressor gene, PDCD4. Here, we demonstrate that STAT1 is a novel mediator downstream to FAT1, in downregulating PDCD4 in GBMs. In-silico analysis of GBM databases as well as q-PCR analysis in resected GBM tumors showed positive correlation between STAT1 and FAT1 mRNA levels. Kaplan-Meier analysis showed poorer survival of GBM patients having high FAT1 and STAT1 expression. SiRNA-mediated knockdown of FAT1 decreased STAT1 and increased PDCD4 expression in glioblastoma cells (LN229 and U87MG). Knockdown of STAT1 alone resulted in increased PDCD4 expression. In silico analysis of the PDCD4 promoter revealed four putative STAT1 binding sites (Site1-Site4). ChIP assay confirmed the binding of STAT1 to site1. ChIP-PCR revealed decrease in the binding of STAT1 on the PDCD4 promoter after FAT1 knockdown. Site directed mutagenesis of Site1 resulted in increased PDCD4 luciferase activity, substantiating STAT1 mediated PDCD4 inhibition. EMSA confirmed STAT1 binding to the Site 1 sequence. STAT1 knockdown led to decreased expression of pro-inflammatory cytokines and EMT markers, and reduced migration/invasion of GBM cells. This study therefore identifies STAT1 as a novel downstream mediator of FAT1, promoting pro-tumorigenic activity in GBM, by suppressing PDCD4 expression.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Cadherinas , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Glioblastoma , Proteínas de Unión al ARN , Factor de Transcripción STAT1 , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Cadherinas/metabolismo , Cadherinas/genética , Línea Celular Tumoral , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Regiones Promotoras Genéticas/genética , Movimiento Celular , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología
20.
Am J Physiol Heart Circ Physiol ; 304(7): H966-82, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23355340

RESUMEN

Mitochondrial damage and dysfunction occur during ischemia and modulate cardiac function and cell survival significantly during reperfusion. We hypothesized that transplantation of autologously derived mitochondria immediately prior to reperfusion would ameliorate these effects. New Zealand White rabbits were used for regional ischemia (RI), which was achieved by temporarily snaring the left anterior descending artery for 30 min. Following 29 min of RI, autologously derived mitochondria (RI-mitochondria; 9.7 ± 1.7 × 10(6)/ml) or vehicle alone (RI-vehicle) were injected directly into the RI zone, and the hearts were allowed to recover for 4 wk. Mitochondrial transplantation decreased (P < 0.05) creatine kinase MB, cardiac troponin-I, and apoptosis significantly in the RI zone. Infarct size following 4 wk of recovery was decreased significantly in RI-mitochondria (7.9 ± 2.9%) compared with RI-vehicle (34.2 ± 3.3%, P < 0.05). Serial echocardiograms showed that RI-mitochondria hearts returned to normal contraction within 10 min after reperfusion was started; however, RI-vehicle hearts showed persistent hypokinesia in the RI zone at 4 wk of recovery. Electrocardiogram and optical mapping studies showed that no arrhythmia was associated with autologously derived mitochondrial transplantation. In vivo and in vitro studies show that the transplanted mitochondria are evident in the interstitial spaces and are internalized by cardiomyocytes 2-8 h after transplantation. The transplanted mitochondria enhanced oxygen consumption, high-energy phosphate synthesis, and the induction of cytokine mediators and proteomic pathways that are important in preserving myocardial energetics, cell viability, and enhanced post-infarct cardiac function. Transplantation of autologously derived mitochondria provides a novel technique to protect the heart from ischemia-reperfusion injury.


Asunto(s)
Mitocondrias/trasplante , Daño por Reperfusión Miocárdica/terapia , Animales , Apoptosis , Creatina Quinasa/metabolismo , Ecocardiografía , Espacio Extracelular/metabolismo , Células HeLa , Humanos , Masculino , Mitocondrias/metabolismo , Contracción Miocárdica , Miocardio/metabolismo , Miocardio/patología , Conejos , Trasplante Autólogo , Troponina/análisis , Troponina/metabolismo , Imagen de Colorante Sensible al Voltaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA