Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anesth Analg ; 124(4): 1153-1159, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28099286

RESUMEN

BACKGROUND: Intermittent measurement of respiratory rate via observation is routine in many patient care settings. This approach has several inherent limitations that diminish the clinical utility of these measurements because it is intermittent, susceptible to human error, and requires clinical resources. As an alternative, a software application that derives continuous respiratory rate measurement from a standard pulse oximeter has been developed. We sought to determine the performance characteristics of this new technology by comparison with clinician-reviewed capnography waveforms in both healthy subjects and hospitalized patients in a low-acuity care setting. METHODS: Two independent observational studies were conducted to validate the performance of the Medtronic Nellcor Respiration Rate Software application. One study enrolled 26 healthy volunteer subjects in a clinical laboratory, and a second multicenter study enrolled 53 hospitalized patients. During a 30-minute study period taking place while participants were breathing spontaneously, pulse oximeter and nasal/oral capnography waveforms were collected. Pulse oximeter waveforms were processed to determine respiratory rate via the Medtronic Nellcor Respiration Rate Software. Capnography waveforms reviewed by a clinician were used to determine the reference respiratory rate. RESULTS: A total of 23,243 paired observations between the pulse oximeter-derived respiratory rate and the capnography reference method were collected and examined. The mean reference-based respiratory rate was 15.3 ± 4.3 breaths per minute with a range of 4 to 34 breaths per minute. The Pearson correlation coefficient between the Medtronic Nellcor Respiration Rate Software values and the capnography reference respiratory rate is reported as a linear correlation, R, as 0.92 ± 0.02 (P < .001), whereas Lin's concordance correlation coefficient indicates an overall agreement of 0.85 ± 0.04 (95% confidence interval [CI] +0.76; +0.93) (healthy volunteers: 0.94 ± 0.02 [95% CI +0.91; +0.97]; hospitalized patients: 0.80 ± 0.06 [95% CI +0.68; +0.92]). The mean bias of the Medtronic Nellcor Respiration Rate Software was 0.18 breaths per minute with a precision (SD) of 1.65 breaths per minute (healthy volunteers: 0.37 ± 0.78 [95% limits of agreement: -1.16; +1.90] breaths per minute; hospitalized patients: 0.07 ± 1.99 [95% limits of agreement: -3.84; +3.97] breaths per minute). The root mean square deviation was 1.35 breaths per minute (healthy volunteers: 0.81; hospitalized patients: 1.60). CONCLUSIONS: These data demonstrate the performance of the Medtronic Nellcor Respiration Rate Software in healthy subjects and patients hospitalized in a low-acuity care setting when compared with clinician-reviewed capnography. The observed performance of this technology suggests that it may be a useful adjunct to continuous pulse oximetry monitoring by providing continuous respiratory rate measurements. The potential patient safety benefit of using combined continuous pulse oximetry and respiratory rate monitoring warrants assessment.


Asunto(s)
Capnografía/normas , Hospitalización/tendencias , Oximetría/normas , Frecuencia Respiratoria/fisiología , Adulto , Capnografía/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Oximetría/métodos , Fotopletismografía/métodos , Fotopletismografía/normas , Reproducibilidad de los Resultados
2.
J Anaesthesiol Clin Pharmacol ; 32(2): 192-7, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27275048

RESUMEN

BACKGROUND AND AIM: Induced hypotension limits intra-operative blood loss to provide better visibility of the surgical field and diminishes the incidence of major complications during functional endoscopic sinus surgery (FESS). We aimed at comparing nitroglycerine, esmolol and dexmedetomidine for inducing controlled hypotension in patients undergoing FESS. MATERIAL AND METHODS: One hundred and fifty American Society of Anesthesiologists physical status I or II adult patients undergoing FESS under general anesthesia were randomly allocated to three groups of 50 patients each. Group E received esmolol in a loading and maintenance dose of 1 mg/kg over 1 min and 0.5-1.0 mg/kg/h, respectively. Group D received a loading dose of dexmedetomidine 1 µg/kg over 10 min followed by an infusion 0.5-1.0 µg/kg/h, and group N received nitroglycerine infusion at a dose of 0.5-2 µg/kg/min so as to maintain mean arterial pressure (MAP) between 60 and 70 mmHg in all the groups. The visibility of the surgical field was assessed by surgeon using Fromme and Boezaart scoring system. Hemodynamic variables, total intra-operative fentanyl consumption, emergence time and time to first analgesic request were recorded. Any side-effects were noted. The postoperative sedation was assessed using Ramsay Sedation Score. RESULT: The desired MAP (60-70 mmHg) could be achieved in all the three study groups albeit with titration of study drugs during intra-operative period. No significant intergroup difference was observed in Fromme's score during the intra-operative period. The mean total dose of fentanyl (µg/kg) used was found to be significantly lower in group D compared to groups E and N (1.2 ± 0.75 vs. 3.6 ± 1.3 and 2.9 ± 1.1 respectively). The mean heart rate was significantly lower in group D compared to groups E and N at all times of measurement (P < 0.05). The MAP was found to be significantly lower in group D compared to groups E and N after infusion of study drugs, after induction, just after intubation and 5 min after intubation (P < 0.05). The Ramsay Sedation Scores were significantly higher in group D (score 3 in 46%) when compared to group E (score 2 in 50%) and group N (score 2 in 54%) (P < 0.001). The emergence time was significantly lower in group E and group N compared to group D. Time to first analgesic request was significantly longer in group D. CONCLUSION: Dexmedetomidine and esmolol provided better hemodynamic stability and operative field visibility compared to nitroglycerin during FESS. Dexmedetomidine provides an additional benefit of reducing the analgesic requirements and providing postoperative sedation.

5.
Asian J Neurosurg ; 11(2): 98-102, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27057213

RESUMEN

BACKGROUND AND AIM: The glucocorticoid dexamethasone in a bolus dose of 8-10 mg followed by quarterly dose of 4 mg is commonly used during intracranial surgery so as to reduce oedema and vascular permeability. However, the detrimental hyperglycaemic effects of dexamethasone may override its potentially beneficial effects. The present prospective, randomised study aimed at comparing the degree and magnitude of hyperglycaemia induced by prophylactic administration of dexamethasone in patients undergoing elective craniotomy. MATERIALS AND METHODS: Sixty American Society of Anaesthesiologist (ASA) grade-I and II patients were randomly assigned to three groups of 20 patients each. Group-I received dexamethasone during surgery for the first time. Group-II received dexamethasone in addition to receiving it pre-operatively, whereas Group-III (control group) patients were administered normal saline as placebo. Baseline blood glucose (BG) was measured in all the three groups before induction of anaesthesia and thereafter after every hour for 4 h and then two-hourly. Besides intra- and intergroup comparison of BG, peak BG concentration was also recorded for each patient. Statistical analysis was carried out with analysis of variance (ANOVA) and Student's t-test and value of P < 0.05 was considered statistically significant. RESULTS: Baseline BG reading were higher and statistically significant in Group-II as compared with Group-I and Group-III (P < 0.05). However, peak BG levels were significantly higher in Group-I than in Group-II and III (P < 0.05). Similarly, the magnitude of change in peak BG was significantly higher in Group-I as compared to Group-II and III (P < 0.05). CONCLUSION: Peri-operative administration of dexamethasone during neurosurgical procedures can cause significant increase in BG concentration especially in patients who receive dexamethasone intra-operatively only.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA