Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 934: 173256, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38763195

RESUMEN

Green manuring is a conservation agricultural practice that improves soil quality and crop yield. However, increasing the active nitrogen (N) and carbon (C) pools during green manure (GM) amendment may accelerate soil N transformation and stimulate N loss. Previous studies have reported the effects of cover crop incorporation on N2O emission; however, the driving mechanisms and other N losses remain unclear. Therefore, we conducted a comprehensive meta-analysis of 109 published articles (517 paired observations) to clarify the effects of GM amendment on soil reactive N (Nr) losses (N2O emissions, NH3 volatilization, and N leaching and runoff), N pools, and N cycling functional gene abundance. The results showed that green manuring increased soil microbial biomass N (MBN) and NO3--N concentrations and stimulated N2O emission but significantly lowered N leaching and yield-scaled NH3 volatilization. Practices of green manuring made a dominant contribution to the variation in N2O emissions and NH3 volatilization after GM application. Furthermore, applying legume-based GM, using N derived from GM (GMN) as an additional input, and short-term GM amendment each stimulated N2O emissions. In contrast, adopting non-legume GM, using GMN to partially substitute mineral N, and applying GM to the soil surface or paddy field mitigated NH3 loss during GM amendment. Additionally, the variation in NH3 volatilization was positively related to soil pH and N application rate (NAR) but had a negative relationship with mean annual precipitation (MAP). This study highlighted the marked effects of green manuring on soil N retention and loss. Agricultural operations that adopt GM amendment should select suitable GM species and optimize mineral N inputs to minimize N loss.

2.
Sci Total Environ ; 918: 170632, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38309333

RESUMEN

Diversified cropping systems, such as intercropping, have shown multifunctionality in agronomic productivity promotion, pest control, and soil health improvement. However, the intense interaction between crop species stimulates soil carbon and nitrogen turnover, and intercropping systems cause inexplicit effects on soil greenhouse gas emissions (GHG). Therefore, a comprehensive meta-analysis using 52 published articles (531 paired observations) was conducted to elucidate the effects of intercropping on soil N2O, CO2, and CH4 emissions under different environmental conditions and field practices to identify the primary driving factors, such as climate, soil and field practices. The results showed that intercropping treatment had a non-significant impact on the three GHG emissions on average. However, using a cereal-legume intercropping regime, adopting moderate N application rate or intercropping in alkaline soils could significantly mitigate soil N2O emission. Additionally, intercropping in soils with high soil organic carbon reduce soil CH4 emission. On the contrary, increasing intercropping duration, or adopted in soils with moderate soil total N tended to stimulate CO2 emission. The mixed-effect model selection indicated that initial soil pH, MAP, MAT, tillage regime, and intercropping duration and type were significant moderators in regulating soil GHG emissions. Our findings explicitly elucidated soil GHG responses to intercropping practice. Further studies are warranted on the evaluation of long-term intercropping effects to improve the comprehensive understanding of C and N balance and global warming potential under intercropping.

3.
Sci Total Environ ; 926: 171903, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38527555

RESUMEN

With the rapid development of industries, agriculture, and urbanization (including transportation and population growth), there has been a significant alteration in the emission and atmospheric deposition of heavy metal pollutants. This has consequently given rise to a range of ecological and environmental health issues. In this study, we conducted a comprehensive two-year investigation on the temporal and spatial distribution characteristics of heavy metals in atmospheric deposition across China based on the Nationwide Nitrogen Deposition Monitoring Network (NNDMN). The atmospheric bulk deposition of Lead (Pb), Arsenic (As), Nickel (Ni), Selenium (Se), Chromium (Cr) and Cadmium (Cd) were 6.32 ± 1.59, 4.49 ± 0.57, 1.31 ± 0.21, 1.05 ± 0.16, 0.60 ± 0.06 and 0.21 ± 0.03 mg m-2 yr-1, respectively, with a large variation among the different regions of China. The order for atmospheric deposition flux was Southwest China > Southeast China > North China > Northeast China > Qinghai-Tibet Plateau and rural area > urban area > background area. The concentrations of heavy metals in bulk deposition exhibit seasonal variation with higher levels observed during winter compared to summer and spring, which are closely associated with anthropogenic activities. The Positive Matrix Factorization (PMF) results indicated that combustion, industrial emissions and traffic are the primary contributors to atmospheric deposition of heavy metals. The single factor pollution index (Pi) of heavy metals is consistently below 1, and the composite pollution index (Ni) is 0.16 across China, indicating that atmospheric heavy metal deposition is at a pollution-free level. The comprehensive potential ecological risk index of heavy metals is 11.8, with Cd exhibiting the highest single factor potential ecological risk index at 7.09, suggesting that more attention should be paid to Cd deposition in China. The present study reveals the spatial-temporal distribution pattern of atmospheric heavy metals deposition in China, identifying regional source characteristics and providing a theoretical foundation and strategies for reducing emissions of atmospheric pollutants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA