Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503926

RESUMEN

Sex differences in the epidemiology and clinical characteristics of schizophrenia are well-known; however, the molecular mechanisms underlying these differences remain unclear. Further, the potential advantages of sex-stratified meta-analyses of epigenome-wide association studies (EWAS) of schizophrenia have not been investigated. Here, we performed sex-stratified EWAS meta-analyses to investigate whether sex stratification improves discovery, and to identify differentially methylated regions (DMRs) in schizophrenia. Peripheral blood-derived DNA methylation data from 1519 cases of schizophrenia (male n = 989, female n = 530) and 1723 controls (male n = 997, female n = 726) from three publicly available datasets, and the TOP cohort were meta-analyzed to compare sex-specific, sex-stratified, and sex-adjusted EWAS. The predictive power of each model was assessed by polymethylation score (PMS). The number of schizophrenia-associated differentially methylated positions identified was higher for the sex-stratified model than for the sex-adjusted one. We identified 20 schizophrenia-associated DMRs in the sex-stratified analysis. PMS from sex-stratified analysis outperformed that from sex-adjusted analysis in predicting schizophrenia. Notably, PMSs from the sex-stratified and female-only analyses, but not those from sex-adjusted or the male-only analyses, significantly predicted schizophrenia in males. The findings suggest that sex-stratified EWAS meta-analyses improve the identification of schizophrenia-associated epigenetic changes and highlight an interaction between sex and schizophrenia status on DNA methylation. Sex-specific DNA methylation may have potential implications for precision psychiatry and the development of stratified treatments for schizophrenia.

2.
PLoS Genet ; 18(5): e1010161, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35560157

RESUMEN

Epidemiological and clinical studies have found associations between depression and cardiovascular disease risk factors, and coronary artery disease patients with depression have worse prognosis. The genetic relationship between depression and these cardiovascular phenotypes is not known. We here investigated overlap at the genome-wide level and in individual loci between depression, coronary artery disease and cardiovascular risk factors. We used the bivariate causal mixture model (MiXeR) to quantify genome-wide polygenic overlap and the conditional/conjunctional false discovery rate (pleioFDR) method to identify shared loci, based on genome-wide association study summary statistics on depression (n = 450,619), coronary artery disease (n = 502,713) and nine cardiovascular risk factors (n = 204,402-776,078). Genetic loci were functionally annotated using FUnctional Mapping and Annotation (FUMA). Of 13.9K variants influencing depression, 9.5K (SD 1.0K) were shared with body-mass index. Of 4.4K variants influencing systolic blood pressure, 2K were shared with depression. ConjFDR identified 79 unique loci associated with depression and coronary artery disease or cardiovascular risk factors. Six genomic loci were associated jointly with depression and coronary artery disease, 69 with blood pressure, 49 with lipids, 9 with type 2 diabetes and 8 with c-reactive protein at conjFDR < 0.05. Loci associated with increased risk for depression were also associated with increased risk of coronary artery disease and higher total cholesterol, low-density lipoprotein and c-reactive protein levels, while there was a mixed pattern of effect direction for the other risk factors. Functional analyses of the shared loci implicated metabolism of alpha-linolenic acid pathway for type 2 diabetes. Our results showed polygenic overlap between depression, coronary artery disease and several cardiovascular risk factors and suggest molecular mechanisms underlying the association between depression and increased cardiovascular disease risk.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Diabetes Mellitus Tipo 2 , Proteína C-Reactiva/genética , Enfermedades Cardiovasculares/genética , Enfermedad de la Arteria Coronaria/genética , Depresión/genética , Diabetes Mellitus Tipo 2/genética , Sitios Genéticos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple/genética
3.
Mol Psychiatry ; 28(9): 4011-4019, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37864076

RESUMEN

Reaction time variability (RTV), reflecting fluctuations in response time on cognitive tasks, has been proposed as an endophenotype for many neuropsychiatric disorders. There have been no large-scale genome-wide association studies (GWAS) of RTV and little is known about its genetic underpinnings. Here, we used data from the UK Biobank to conduct a GWAS of RTV in participants of white British ancestry (n = 404,302) as well as a trans-ancestry GWAS meta-analysis (n = 44,873) to assess replication. We found 161 genome-wide significant single nucleotide polymorphisms (SNPs) distributed across 7 genomic loci in our discovery GWAS. Functional annotation of the variants implicated genes involved in synaptic function and neural development. The SNP-based heritability (h2SNP) estimate for RTV was 3%. We investigated genetic correlations between RTV and selected neuropsychological traits using linkage disequilibrium score regression, and found significant correlations with several traits, including a positive correlation with mean reaction time and schizophrenia. Despite the high genetic correlation between RTV and mean reaction time, we demonstrate distinctions in the genetic underpinnings of these traits. Lastly, we assessed the predictive ability of a polygenic score (PGS) for RTV, calculated using PRSice and PRS-CS, and found that the RTV-PGS significantly predicted RTV in independent cohorts, but that the generalisability to other ancestry groups was poor. These results identify genetic underpinnings of RTV, and support the use of RTV as an endophenotype for neurological and psychiatric disorders.


Asunto(s)
Estudio de Asociación del Genoma Completo , Esquizofrenia , Humanos , Tiempo de Reacción/genética , Predisposición Genética a la Enfermedad , Esquizofrenia/genética , Herencia Multifactorial/genética , Polimorfismo de Nucleótido Simple/genética
4.
Mol Psychiatry ; 28(11): 4924-4932, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37759039

RESUMEN

Improved understanding of the shared genetic architecture between psychiatric disorders and brain white matter may provide mechanistic insights for observed phenotypic associations. Our objective is to characterize the shared genetic architecture of bipolar disorder (BD), major depression (MD), and schizophrenia (SZ) with white matter fractional anisotropy (FA) and identify shared genetic loci to uncover biological underpinnings. We used genome-wide association study (GWAS) summary statistics for BD (n = 413,466), MD (n = 420,359), SZ (n = 320,404), and white matter FA (n = 33,292) to uncover the genetic architecture (i.e., polygenicity and discoverability) of each phenotype and their genetic overlap (i.e., genetic correlations, overlapping trait-influencing variants, and shared loci). This revealed that BD, MD, and SZ are at least 7-times more polygenic and less genetically discoverable than average FA. Even in the presence of weak genetic correlations (range = -0.05 to -0.09), average FA shared an estimated 42.5%, 43.0%, and 90.7% of trait-influencing variants as well as 12, 4, and 28 shared loci with BD, MD, and SZ, respectively. Shared variants were mapped to genes and tested for enrichment among gene-sets which implicated neurodevelopmental expression, neural cell types, myelin, and cell adhesion molecules. For BD and SZ, case vs control tract-level differences in FA associated with genetic correlations between those same tracts and the respective disorder (rBD = 0.83, p = 4.99e-7 and rSZ = 0.65, p = 5.79e-4). Genetic overlap at the tract-level was consistent with average FA results. Overall, these findings suggest a genetic basis for the involvement of brain white matter aberrations in the pathophysiology of psychiatric disorders.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Sustancia Blanca , Humanos , Estudio de Asociación del Genoma Completo , Imagen de Difusión Tensora/métodos , Trastorno Bipolar/genética , Trastorno Depresivo Mayor/genética
5.
Mol Psychiatry ; 28(7): 3111-3120, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37165155

RESUMEN

The difference between chronological age and the apparent age of the brain estimated from brain imaging data-the brain age gap (BAG)-is widely considered a general indicator of brain health. Converging evidence supports that BAG is sensitive to an array of genetic and nongenetic traits and diseases, yet few studies have examined the genetic architecture and its corresponding causal relationships with common brain disorders. Here, we estimate BAG using state-of-the-art neural networks trained on brain scans from 53,542 individuals (age range 3-95 years). A genome-wide association analysis across 28,104 individuals (40-84 years) from the UK Biobank revealed eight independent genomic regions significantly associated with BAG (p < 5 × 10-8) implicating neurological, metabolic, and immunological pathways - among which seven are novel. No significant genetic correlations or causal relationships with BAG were found for Parkinson's disease, major depressive disorder, or schizophrenia, but two-sample Mendelian randomization indicated a causal influence of AD (p = 7.9 × 10-4) and bipolar disorder (p = 1.35 × 10-2) on BAG. These results emphasize the polygenic architecture of brain age and provide insights into the causal relationship between selected neurological and neuropsychiatric disorders and BAG.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Trastornos Mentales , Humanos , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Trastorno Depresivo Mayor/genética , Estudio de Asociación del Genoma Completo , Trastornos Mentales/genética , Encéfalo , Trastorno Bipolar/genética
6.
Brain ; 146(8): 3392-3403, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36757824

RESUMEN

Psychiatric disorders and common epilepsies are heritable disorders with a high comorbidity and overlapping symptoms. However, the causative mechanisms underlying this relationship are poorly understood. Here we aimed to identify overlapping genetic loci between epilepsy and psychiatric disorders to gain a better understanding of their comorbidity and shared clinical features. We analysed genome-wide association study data for all epilepsies (n = 44 889), genetic generalized epilepsy (n = 33 446), focal epilepsy (n = 39 348), schizophrenia (n = 77 096), bipolar disorder (n = 406 405), depression (n = 500 199), attention deficit hyperactivity disorder (n = 53 293) and autism spectrum disorder (n = 46 350). First, we applied the MiXeR tool to estimate the total number of causal variants influencing the disorders. Next, we used the conjunctional false discovery rate statistical framework to improve power to discover shared genomic loci. Additionally, we assessed the validity of the findings in independent cohorts, and functionally characterized the identified loci. The epilepsy phenotypes were considerably less polygenic (1.0 K to 3.4 K causal variants) than the psychiatric disorders (5.6 K to 13.9 K causal variants), with focal epilepsy being the least polygenic (1.0 K variants), and depression having the highest polygenicity (13.9 K variants). We observed cross-trait genetic enrichment between genetic generalized epilepsy and all psychiatric disorders and between all epilepsies and schizophrenia and depression. Using conjunctional false discovery rate analysis, we identified 40 distinct loci jointly associated with epilepsies and psychiatric disorders at conjunctional false discovery rate <0.05, four of which were associated with all epilepsies and 39 with genetic generalized epilepsy. Most epilepsy risk loci were shared with schizophrenia (n = 31). Among the identified loci, 32 were novel for genetic generalized epilepsy, and two were novel for all epilepsies. There was a mixture of concordant and discordant allelic effects in the shared loci. The sign concordance of the identified variants was highly consistent between the discovery and independent datasets for all disorders, supporting the validity of the findings. Gene-set analysis for the shared loci between schizophrenia and genetic generalized epilepsy implicated biological processes related to cell cycle regulation, protein phosphatase activity, and membrane and vesicle function; the gene-set analyses for the other loci were underpowered. The extensive genetic overlap with mixed effect directions between psychiatric disorders and common epilepsies demonstrates a complex genetic relationship between these disorders, in line with their bi-directional relationship, and indicates that overlapping genetic risk may contribute to shared pathophysiological and clinical features between epilepsy and psychiatric disorders.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Epilepsias Parciales , Epilepsia Generalizada , Humanos , Trastorno del Espectro Autista/genética , Estudio de Asociación del Genoma Completo , Epilepsias Parciales/genética , Genómica , Epilepsia Generalizada/genética , Sitios Genéticos/genética , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple/genética
7.
Neurobiol Dis ; 183: 106174, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286172

RESUMEN

BACKGROUND: Neuroinflammation is involved in the pathophysiology of Alzheimer's disease (AD), including immune-linked genetic variants and molecular pathways, microglia and astrocytes. Multiple Sclerosis (MS) is a chronic, immune-mediated disease with genetic and environmental risk factors and neuropathological features. There are clinical and pathobiological similarities between AD and MS. Here, we investigated shared genetic susceptibility between AD and MS to identify putative pathological mechanisms shared between neurodegeneration and the immune system. METHODS: We analysed GWAS data for late-onset AD (N cases = 64,549, N controls = 634,442) and MS (N cases = 14,802, N controls = 26,703). Gaussian causal mixture modelling (MiXeR) was applied to characterise the genetic architecture and overlap between AD and MS. Local genetic correlation was investigated with Local Analysis of [co]Variant Association (LAVA). The conjunctional false discovery rate (conjFDR) framework was used to identify the specific shared genetic loci, for which functional annotation was conducted with FUMA and Open Targets. RESULTS: MiXeR analysis showed comparable polygenicities for AD and MS (approximately 1800 trait-influencing variants) and genetic overlap with 20% of shared trait-influencing variants despite negligible genetic correlation (rg = 0.03), suggesting mixed directions of genetic effects across shared variants. conjFDR analysis identified 16 shared genetic loci, with 8 having concordant direction of effects in AD and MS. Annotated genes in shared loci were enriched in molecular signalling pathways involved in inflammation and the structural organisation of neurons. CONCLUSIONS: Despite low global genetic correlation, the current results provide evidence for polygenic overlap between AD and MS. The shared loci between AD and MS were enriched in pathways involved in inflammation and neurodegeneration, highlighting new opportunities for future investigation.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/genética , Enfermedad de Alzheimer/genética , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad/genética , Sistema Inmunológico , Sitios Genéticos , Inflamación/genética , Polimorfismo de Nucleótido Simple
8.
Mol Psychiatry ; 27(12): 5167-5176, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36100668

RESUMEN

Patients with schizophrenia have consistently shown brain volumetric abnormalities, implicating both etiological and pathological processes. However, the genetic relationship between schizophrenia and brain volumetric abnormalities remains poorly understood. Here, we applied novel statistical genetic approaches (MiXeR and conjunctional false discovery rate analysis) to investigate genetic overlap with mixed effect directions using independent genome-wide association studies of schizophrenia (n = 130,644) and brain volumetric phenotypes, including subcortical brain and intracranial volumes (n = 33,735). We found brain volumetric phenotypes share substantial genetic variants (74-96%) with schizophrenia, and observed 107 distinct shared loci with sign consistency in independent samples. Genes mapped by shared loci revealed (1) significant enrichment in neurodevelopmental biological processes, (2) three co-expression clusters with peak expression at the prenatal stage, and (3) genetically imputed thalamic expression of CRHR1 and ARL17A was associated with the thalamic volume as early as in childhood. Together, our findings provide evidence of shared genetic architecture between schizophrenia and brain volumetric phenotypes and suggest that altered early neurodevelopmental processes and brain development in childhood may be involved in schizophrenia development.


Asunto(s)
Esquizofrenia , Humanos , Esquizofrenia/genética , Estudio de Asociación del Genoma Completo , Encéfalo/patología , Fenotipo , Tálamo , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Sitios Genéticos
9.
Acta Psychiatr Scand ; 147(2): 217-228, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36398468

RESUMEN

BACKGROUND: Mood and anxiety disorders account for a large share of the global burden of disability. Some studies suggest that early signs may emerge already in childhood. However, there is a lack of well-powered, prospective studies investigating how and when childhood mental traits and trajectories relate to adolescent mood and anxiety disorders. METHODS: We here examine cross-sectional and longitudinal association between maternally reported temperamental traits, emotional and behavioral problems in childhood (0.5-8 years) and clinical diagnosis of mood or anxiety ("emotional") disorders in adolescence (10-18 years), using the prospective Norwegian Mother, Father and Child Cohort Study (MoBa) of 110,367 children. RESULTS: Logistic regression analyses showed consistent and increasing associations between childhood negative emotionality, behavioral and emotional problems and adolescent diagnosis of emotional disorders, present from 6 months of age (negative emotionality). Latent profile analysis incorporating latent growth models identified five developmental profiles of emotional and behavioral problems. A profile of early increasing behavioral and emotional problems with combined symptoms at 8 years (1.3% of sample) was the profile most strongly associated with emotional disorders in adolescence (OR vs. reference: 5.00, 95% CI: 3.70-6.30). CONCLUSIONS: We found a consistent and increasing association between negative emotionality, behavioral and emotional problems in early to middle childhood and mood and anxiety disorders in adolescence. A developmental profile coherent with early and increasing disruptive mood dysregulation across childhood was the profile strongest associated with adolescent emotional disorders. Our results highlight the importance of early emotional dysregulation and childhood as a formative period in the development of adolescent mood and anxiety disorders, supporting potential for prevention and early intervention initiatives.


Asunto(s)
Trastornos de Ansiedad , Emociones , Femenino , Adolescente , Niño , Humanos , Trastornos de Ansiedad/psicología , Estudios Prospectivos , Estudios de Cohortes , Estudios Transversales , Trastornos del Humor/epidemiología , Ansiedad , Estudios Longitudinales
10.
Brain ; 145(1): 142-153, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-34273149

RESUMEN

Migraine is three times more prevalent in people with bipolar disorder or depression. The relationship between schizophrenia and migraine is less certain although glutamatergic and serotonergic neurotransmission are implicated in both. A shared genetic basis to migraine and mental disorders has been suggested but previous studies have reported weak or non-significant genetic correlations and five shared risk loci. Using the largest samples to date and novel statistical tools, we aimed to determine the extent to which migraine's polygenic architecture overlaps with bipolar disorder, depression and schizophrenia beyond genetic correlation, and to identify shared genetic loci. Summary statistics from genome-wide association studies were acquired from large-scale consortia for migraine (n cases = 59 674; n controls = 316 078), bipolar disorder (n cases = 20 352; n controls = 31 358), depression (n cases = 170 756; n controls = 328 443) and schizophrenia (n cases = 40 675, n controls = 64 643). We applied the bivariate causal mixture model to estimate the number of disorder-influencing variants shared between migraine and each mental disorder, and the conditional/conjunctional false discovery rate method to identify shared loci. Loci were functionally characterized to provide biological insights. Univariate MiXeR analysis revealed that migraine was substantially less polygenic (2.8 K disorder-influencing variants) compared to mental disorders (8100-12 300 disorder-influencing variants). Bivariate analysis estimated that 800 (SD = 300), 2100 (SD = 100) and 2300 (SD = 300) variants were shared between bipolar disorder, depression and schizophrenia, respectively. There was also extensive overlap with intelligence (1800, SD = 300) and educational attainment (2100, SD = 300) but not height (1000, SD = 100). We next identified 14 loci jointly associated with migraine and depression and 36 loci jointly associated with migraine and schizophrenia, with evidence of consistent genetic effects in independent samples. No loci were associated with migraine and bipolar disorder. Functional annotation mapped 37 and 298 genes to migraine and each of depression and schizophrenia, respectively, including several novel putative migraine genes such as L3MBTL2, CACNB2 and SLC9B1. Gene-set analysis identified several putative gene sets enriched with mapped genes including transmembrane transport in migraine and schizophrenia. Most migraine-influencing variants were predicted to influence depression and schizophrenia, although a minority of mental disorder-influencing variants were shared with migraine due to the difference in polygenicity. Similar overlap with other brain-related phenotypes suggests this represents a pool of 'pleiotropic' variants that influence vulnerability to diverse brain-related disorders and traits. We also identified specific loci shared between migraine and each of depression and schizophrenia, implicating shared molecular mechanisms and highlighting candidate migraine genes for experimental validation.


Asunto(s)
Trastornos Mentales , Trastornos Migrañosos , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Humanos , Trastornos Mentales/genética , Trastornos Migrañosos/genética , Herencia Multifactorial/genética , Polimorfismo de Nucleótido Simple/genética
11.
BMC Psychiatry ; 23(1): 461, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353766

RESUMEN

Psychiatric disorders are complex clinical conditions with large heterogeneity and overlap in symptoms, genetic liability and brain imaging abnormalities. Building on a dimensional conceptualization of mental health, previous studies have reported genetic overlap between psychiatric disorders and population-level mental health, and between psychiatric disorders and brain functional connectivity. Here, in 30,701 participants aged 45-82 from the UK Biobank we map the genetic associations between self-reported mental health and resting-state fMRI-based measures of brain network function. Multivariate Omnibus Statistical Test revealed 10 genetic loci associated with population-level mental symptoms. Next, conjunctional FDR identified 23 shared genetic variants between these symptom profiles and fMRI-based brain network measures. Functional annotation implicated genes involved in brain structure and function, in particular related to synaptic processes such as axonal growth (e.g. NGFR and RHOA). These findings provide further genetic evidence of an association between brain function and mental health traits in the population.


Asunto(s)
Conectoma , Salud Mental , Humanos , Conectoma/métodos , Bancos de Muestras Biológicas , Encéfalo/diagnóstico por imagen , Reino Unido , Estudio de Asociación del Genoma Completo , Imagen por Resonancia Magnética/métodos
12.
Addict Biol ; 28(6): e13282, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37252880

RESUMEN

Opioid use disorder (OUD) and mental disorders are often comorbid, with increased morbidity and mortality. The causes underlying this relationship are poorly understood. Although these conditions are highly heritable, their shared genetic vulnerabilities remain unaccounted for. We applied the conditional/conjunctional false discovery rate (cond/conjFDR) approach to analyse summary statistics from independent genome wide association studies of OUD, schizophrenia (SCZ), bipolar disorder (BD) and major depression (MD) of European ancestry. Next, we characterized the identified shared loci using biological annotation resources. OUD data were obtained from the Million Veteran Program, Yale-Penn and Study of Addiction: Genetics and Environment (SAGE) (15 756 cases, 99 039 controls). SCZ (53 386 cases, 77 258 controls), BD (41 917 cases, 371 549 controls) and MD (170 756 cases, 329 443 controls) data were provided by the Psychiatric Genomics Consortium. We discovered genetic enrichment for OUD conditional on associations with SCZ, BD, MD and vice versa, indicating polygenic overlap with identification of 14 novel OUD loci at condFDR < 0.05 and 7 unique loci shared between OUD and SCZ (n = 2), BD (n = 2) and MD (n = 7) at conjFDR < 0.05 with concordant effect directions, in line with estimated positive genetic correlations. Two loci were novel for OUD, one for BD and one for MD. Three OUD risk loci were shared with more than one psychiatric disorder, at DRD2 on chromosome 11 (BD and MD), at FURIN on chromosome 15 (SCZ, BD and MD) and at the major histocompatibility complex region (SCZ and MD). Our findings provide new insights into the shared genetic architecture between OUD and SCZ, BD and MD, indicating a complex genetic relationship, suggesting overlapping neurobiological pathways.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Esquizofrenia , Humanos , Trastorno Bipolar/genética , Trastorno Depresivo Mayor/genética , Estudio de Asociación del Genoma Completo , Esquizofrenia/genética , Depresión , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple , Sitios Genéticos
13.
PLoS Genet ; 16(5): e1008612, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32427991

RESUMEN

Estimating the polygenicity (proportion of causally associated single nucleotide polymorphisms (SNPs)) and discoverability (effect size variance) of causal SNPs for human traits is currently of considerable interest. SNP-heritability is proportional to the product of these quantities. We present a basic model, using detailed linkage disequilibrium structure from a reference panel of 11 million SNPs, to estimate these quantities from genome-wide association studies (GWAS) summary statistics. We apply the model to diverse phenotypes and validate the implementation with simulations. We find model polygenicities (as a fraction of the reference panel) ranging from ≃ 2 × 10-5 to ≃ 4 × 10-3, with discoverabilities similarly ranging over two orders of magnitude. A power analysis allows us to estimate the proportions of phenotypic variance explained additively by causal SNPs reaching genome-wide significance at current sample sizes, and map out sample sizes required to explain larger portions of additive SNP heritability. The model also allows for estimating residual inflation (or deflation from over-correcting of z-scores), and assessing compatibility of replication and discovery GWAS summary statistics.


Asunto(s)
Estudios de Asociación Genética , Heterogeneidad Genética , Patrón de Herencia/fisiología , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Simulación por Computador , Estudios de Asociación Genética/métodos , Estudios de Asociación Genética/estadística & datos numéricos , Genética de Población , Estudio de Asociación del Genoma Completo/métodos , Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Heterocigoto , Humanos , Desequilibrio de Ligamiento , Herencia Multifactorial , Distribución Normal , Fenotipo , Carácter Cuantitativo Heredable
14.
Alzheimers Dement ; 19(11): 5151-5158, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37132098

RESUMEN

INTRODUCTION: There is a pressing need for non-invasive, cost-effective tools for early detection of Alzheimer's disease (AD). METHODS: Using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), Cox proportional models were conducted to develop a multimodal hazard score (MHS) combining age, a polygenic hazard score (PHS), brain atrophy, and memory to predict conversion from mild cognitive impairment (MCI) to dementia. Power calculations estimated required clinical trial sample sizes after hypothetical enrichment using the MHS. Cox regression determined predicted age of onset for AD pathology from the PHS. RESULTS: The MHS predicted conversion from MCI to dementia (hazard ratio for 80th versus 20th percentile: 27.03). Models suggest that application of the MHS could reduce clinical trial sample sizes by 67%. The PHS alone predicted age of onset of amyloid and tau. DISCUSSION: The MHS may improve early detection of AD for use in memory clinics or for clinical trial enrichment. HIGHLIGHTS: A multimodal hazard score (MHS) combined age, genetics, brain atrophy, and memory. The MHS predicted time to conversion from mild cognitive impairment to dementia. MHS reduced hypothetical Alzheimer's disease (AD) clinical trial sample sizes by 67%. A polygenic hazard score predicted age of onset of AD neuropathology.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Biomarcadores , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/genética , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Cognición , Atrofia/patología , Progresión de la Enfermedad
15.
Acta Neuropsychiatr ; : 1-8, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37612147

RESUMEN

BACKGROUND: The corpus callosum (CC) is a brain structure with a high heritability and potential role in psychiatric disorders. However, the genetic architecture of the CC and the genetic link with psychiatric disorders remain largely unclear. We investigated the genetic architectures of the volume of the CC and its subregions and the genetic overlap with psychiatric disorders. METHODS: We applied multivariate genome-wide association study (GWAS) to genetic and T1-weighted magnetic resonance imaging (MRI) data of 40,894 individuals from the UK Biobank, aiming to boost genetic discovery and to assess the pleiotropic effects across volumes of the five subregions of the CC (posterior, mid-posterior, central, mid-anterior and anterior) obtained by FreeSurfer 7.1. Multivariate GWAS was run combining all subregions, co-varying for relevant variables. Gene-set enrichment analyses were performed using MAGMA. Linkage disequilibrium score regression (LDSC) was used to determine Single nucleotide polymorphism (SNP)-based heritability of total CC volume and volumes of its subregions as well as their genetic correlations with relevant psychiatric traits. RESULTS: We identified 70 independent loci with distributed effects across the five subregions of the CC (p < 5 × 10-8). Additionally, we identified 33 significant loci in the anterior subregion, 23 in the mid-anterior, 29 in the central, 7 in the mid-posterior and 56 in the posterior subregion. Gene-set analysis revealed 156 significant genes contributing to volume of the CC subregions (p < 2.6 × 10-6). LDSC estimated the heritability of CC to (h2SNP = 0.38, SE = 0.03) and subregions ranging from 0.22 (SE = 0.02) to 0.37 (SE = 0.03). We found significant genetic correlations of total CC volume with bipolar disorder (BD, rg = -0.09, SE = 0.03; p = 5.9 × 10-3) and drinks consumed per week (rg = -0.09, SE = 0.02; p = 4.8 × 10-4), and volume of the mid-anterior subregion with BD (rg = -0.12, SE = 0.02; p = 2.5 × 10-4), major depressive disorder (MDD) (rg = -0.12, SE = 0.04; p = 3.6 × 10-3), drinks consumed per week (rg = -0.13, SE = 0.04; p = 1.8 × 10-3) and cannabis use (rg = -0.09, SE = 0.03; p = 8.4 × 10-3). CONCLUSIONS: Our results demonstrate that the CC has a polygenic architecture implicating multiple genes and show that CC subregion volumes are heritable. We found that distinct genetic factors are involved in the development of anterior and posterior subregions, consistent with their divergent functional specialisation. Significant genetic correlation between volumes of the CC and BD, drinks per week, MDD and cannabis consumption subregion volumes with psychiatric traits is noteworthy and deserving of further investigation.

16.
Neuroimage ; 263: 119632, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36115590

RESUMEN

Genome-Wide Association studies have typically been limited to univariate analysis in which a single outcome measure is tested against millions of variants. Recent work demonstrates that a Multivariate Omnibus Statistic Test (MOSTest) is well powered to discover genomic effects distributed across multiple phenotypes. Applied to cortical brain MRI morphology measures, MOSTest has resulted in a drastic improvement in power to discover loci when compared to established approaches (min-P). One question that arises is how well these discovered loci replicate in independent data. Here we perform 10 times cross validation within 34,973 individuals from UK Biobank for imaging measures of cortical area, thickness and sulcal depth (>1,000 dimensionality for each). By deploying a replication method that aggregates discovered effects distributed across multiple phenotypes, termed PolyVertex Score (MOSTest-PVS), we demonstrate a higher replication yield and comparable replication rate of discovered loci for MOSTest (# replicated loci: 242-496, replication rate: 96-97%) in independent data when compared with the established min-P approach (# replicated loci: 26-55, replication rate: 91-93%). An out-of-sample replication of discovered loci was conducted with a sample of 4,069 individuals from the Adolescent Brain Cognitive Development® (ABCD) study, who are on average 50 years younger than UK Biobank individuals. We observe a higher replication yield and comparable replication rate of MOSTest-PVS compared to min-P. This finding underscores the importance of using well-powered multivariate techniques for both discovery and replication of high dimensional phenotypes in Genome-Wide Association studies.


Asunto(s)
Cognición , Estudio de Asociación del Genoma Completo , Humanos , Estudio de Asociación del Genoma Completo/métodos , Fenotipo , Encéfalo , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad
17.
Mol Psychiatry ; 26(8): 4055-4065, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-31792363

RESUMEN

Differential diagnosis between childhood onset attention-deficit/hyperactivity disorder (ADHD) and bipolar disorder (BD) remains a challenge, mainly due to overlapping symptoms and high rates of comorbidity. Despite this, genetic correlation reported for these disorders is low and non-significant. Here we aimed to better characterize the genetic architecture of these disorders utilizing recent large genome-wide association studies (GWAS). We analyzed independent GWAS summary statistics for ADHD (19,099 cases and 34,194 controls) and BD (20,352 cases and 31,358 controls) applying the conditional/conjunctional false discovery rate (condFDR/conjFDR) statistical framework that increases the power to detect novel phenotype-specific and shared loci by leveraging the combined power of two GWAS. We observed cross-trait polygenic enrichment for ADHD conditioned on associations with BD, and vice versa. Leveraging this enrichment, we identified 19 novel ADHD risk loci and 40 novel BD risk loci at condFDR <0.05. Further, we identified five loci jointly associated with ADHD and BD (conjFDR < 0.05). Interestingly, these five loci show concordant directions of effect for ADHD and BD. These results highlight a shared underlying genetic risk for ADHD and BD which may help to explain the high comorbidity rates and difficulties in differentiating between ADHD and BD in the clinic. Improving our understanding of the underlying genetic architecture of these disorders may aid in the development of novel stratification tools to help reduce these diagnostic difficulties.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno Bipolar , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno Bipolar/genética , Niño , Sitios Genéticos/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple
18.
Am J Med Genet B Neuropsychiatr Genet ; 189(6): 207-218, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35841185

RESUMEN

Recent genome-wide association studies of mood instability (MOOD) have found significant positive genetic correlation with major depression (DEP) and weak correlations with other psychiatric disorders. We investigated the polygenic overlap between MOOD and psychiatric disorders beyond genetic correlation to better characterize putative shared genetic determinants. GWAS summary statistics for schizophrenia (SCZ, n = 105,318), bipolar disorder (BIP, n = 413,466), DEP (n = 450,619), attention-deficit hyperactivity disorder (ADHD, n = 53,293), and MOOD (n = 363,705) were analyzed using the bivariate causal mixture model and conjunctional false discovery rate methods. MOOD correlated positively with all psychiatric disorders, but with wide variation in strength (rg = 0.10-0.62). Of 10.4 K genomic variants influencing MOOD, 4 K-9.4 K influenced psychiatric disorders. Furthermore, MOOD was jointly associated with DEP at 163 loci, SCZ at 110, BIP at 60 and ADHD at 25. Fifty-three jointly associated loci were overlapping across two or more disorders, seven of which had discordant effect directions on psychiatric disorders. Genes mapped to loci associated with MOOD and all four disorders were enriched in a single gene-set, "synapse organization." The extensive polygenic overlap indicates shared molecular underpinnings across MOOD and psychiatric disorders. However, distinct patterns of genetic correlation and effect directions may relate to differences in the core clinical features of each disorder.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Esquizofrenia , Trastorno Bipolar/genética , Trastorno Depresivo Mayor/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Humanos , Herencia Multifactorial/genética , Polimorfismo de Nucleótido Simple/genética , Esquizofrenia/genética
19.
Neuroimage ; 244: 118603, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34560273

RESUMEN

Brain morphology has been shown to be highly heritable, yet only a small portion of the heritability is explained by the genetic variants discovered so far. Here we extended the Multivariate Omnibus Statistical Test (MOSTest) and applied it to genome-wide association studies (GWAS) of vertex-wise structural magnetic resonance imaging (MRI) cortical measures from N=35,657 participants in the UK Biobank. We identified 695 loci for cortical surface area and 539 for cortical thickness, in total 780 unique genetic loci associated with cortical morphology robustly replicated in 8,060 children of mixed ethnicity from the Adolescent Brain Cognitive Development (ABCD) Study®. This reflects more than 8-fold increase in genetic discovery at no cost to generalizability compared to the commonly used univariate GWAS methods applied to region of interest (ROI) data. Functional follow up including gene-based analyses implicated 10% of all protein-coding genes and pointed towards pathways involved in neurogenesis and cell differentiation. Power analysis indicated that applying the MOSTest to vertex-wise structural MRI data triples the effective sample size compared to conventional univariate GWAS approaches. The large boost in power obtained with the vertex-wise MOSTest together with pronounced replication rates and highlighted biologically meaningful pathways underscores the advantage of multivariate approaches in the context of highly distributed polygenic architecture of the human brain.


Asunto(s)
Corteza Cerebral/anatomía & histología , Sitios Genéticos/fisiología , Estudio de Asociación del Genoma Completo/métodos , Anciano , Niño , Femenino , Predisposición Genética a la Enfermedad , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Herencia Multifactorial , Neuroimagen/métodos , Reino Unido
20.
Hum Brain Mapp ; 42(10): 3141-3155, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33788350

RESUMEN

Deriving reliable information about the structural and functional architecture of the brain in vivo is critical for the clinical and basic neurosciences. In the new era of large population-based datasets, when multiple brain imaging modalities and contrasts are combined in order to reveal latent brain structural patterns and associations with genetic, demographic and clinical information, automated and stringent quality control (QC) procedures are important. Diffusion magnetic resonance imaging (dMRI) is a fertile imaging technique for probing and visualising brain tissue microstructure in vivo, and has been included in most standard imaging protocols in large-scale studies. Due to its sensitivity to subject motion and technical artefacts, automated QC procedures prior to scalar diffusion metrics estimation are required in order to minimise the influence of noise and artefacts. However, the QC procedures performed on raw diffusion data cannot guarantee an absence of distorted maps among the derived diffusion metrics. Thus, robust and efficient QC methods for diffusion scalar metrics are needed. Here, we introduce Fast qualitY conTrol meThod foR derIved diffUsion Metrics (YTTRIUM), a computationally efficient QC method utilising structural similarity to evaluate diffusion map quality and mean diffusion metrics. As an example, we applied YTTRIUM in the context of tract-based spatial statistics to assess associations between age and kurtosis imaging and white matter tract integrity maps in U.K. Biobank data (n = 18,608). To assess the influence of outliers on results obtained using machine learning (ML) approaches, we tested the effects of applying YTTRIUM on brain age prediction. We demonstrated that the proposed QC pipeline represents an efficient approach for identifying poor quality datasets and artefacts and increases the accuracy of ML based brain age prediction.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética/normas , Sustancia Blanca/anatomía & histología , Sustancia Blanca/diagnóstico por imagen , Adulto , Factores de Edad , Anciano , Bancos de Muestras Biológicas , Femenino , Humanos , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Control de Calidad , Reino Unido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA