Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 54(6): 1137-1153.e8, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34051146

RESUMEN

Alterations in the cGAS-STING DNA-sensing pathway affect intestinal homeostasis. We sought to delineate the functional role of STING in intestinal inflammation. Increased STING expression was a feature of intestinal inflammation in mice with colitis and in humans afflicted with inflammatory bowel disease. Mice bearing an allele rendering STING constitutively active exhibited spontaneous colitis and dysbiosis, as well as progressive chronic intestinal inflammation and fibrosis. Bone marrow chimera experiments revealed STING accumulation in intestinal macrophages and monocytes as the initial driver of inflammation. Depletion of Gram-negative bacteria prevented STING accumulation in these cells and alleviated intestinal inflammation. STING accumulation occurred at the protein rather than transcript level, suggesting post-translational stabilization. We found that STING was ubiquitinated in myeloid cells, and this K63-linked ubiquitination could be elicited by bacterial products, including cyclic di-GMP. Our findings suggest a positive feedback loop wherein dysbiosis foments the accumulation of STING in intestinal myeloid cells, driving intestinal inflammation.


Asunto(s)
Colitis/inmunología , Disbiosis/inmunología , Inmunidad Innata/inmunología , Proteínas de la Membrana/inmunología , Células Mieloides/inmunología , Ubiquitinación/inmunología , Animales , Estudios de Casos y Controles , Femenino , Humanos , Inflamación/inmunología , Intestinos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/inmunología
2.
Nature ; 604(7905): 343-348, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35322228

RESUMEN

Gene therapy is a potentially curative medicine for many currently untreatable diseases, and recombinant adeno-associated virus (rAAV) is the most successful gene delivery vehicle for in vivo applications1-3. However, rAAV-based gene therapy suffers from several limitations, such as constrained DNA cargo size and toxicities caused by non-physiological expression of a transgene4-6. Here we show that rAAV delivery of a suppressor tRNA (rAAV.sup-tRNA) safely and efficiently rescued a genetic disease in a mouse model carrying a nonsense mutation, and effects lasted for more than 6 months after a single treatment. Mechanistically, this was achieved through a synergistic effect of premature stop codon readthrough and inhibition of nonsense-mediated mRNA decay. rAAV.sup-tRNA had a limited effect on global readthrough at normal stop codons and did not perturb endogenous tRNA homeostasis, as determined by ribosome profiling and tRNA sequencing, respectively. By optimizing the AAV capsid and the route of administration, therapeutic efficacy in various target tissues was achieved, including liver, heart, skeletal muscle and brain. This study demonstrates the feasibility of developing a toolbox of AAV-delivered nonsense suppressor tRNAs operating on premature termination codons (AAV-NoSTOP) to rescue pathogenic nonsense mutations and restore gene function under endogenous regulation. As nonsense mutations account for 11% of pathogenic mutations, AAV-NoSTOP can benefit a large number of patients. AAV-NoSTOP obviates the need to deliver a full-length protein-coding gene that may exceed the rAAV packaging limit, elicit adverse immune responses or cause transgene-related toxicities. It therefore represents a valuable addition to gene therapeutics.


Asunto(s)
Codón sin Sentido , Dependovirus , Terapia Genética , Adenoviridae , Animales , Codón sin Sentido/genética , Codón de Terminación/genética , Codón de Terminación/metabolismo , Dependovirus/genética , Enfermedades Genéticas Congénitas/terapia , Vectores Genéticos , Humanos , Ratones , Degradación de ARNm Mediada por Codón sin Sentido/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
3.
Cell ; 151(4): 750-764, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-23084401

RESUMEN

In addition to sculpting eukaryotic transcripts by removing introns, pre-mRNA splicing greatly impacts protein composition of the emerging mRNP. The exon junction complex (EJC), deposited upstream of exon-exon junctions after splicing, is a major constituent of spliced mRNPs. Here, we report comprehensive analysis of the endogenous human EJC protein and RNA interactomes. We confirm that the major "canonical" EJC occupancy site in vivo lies 24 nucleotides upstream of exon junctions and that the majority of exon junctions carry an EJC. Unexpectedly, we find that endogenous EJCs multimerize with one another and with numerous SR proteins to form megadalton sized complexes in which SR proteins are super-stoichiometric to EJC core factors. This tight physical association may explain known functional parallels between EJCs and SR proteins. Further, their protection of long mRNA stretches from nuclease digestion suggests that endogenous EJCs and SR proteins cooperate to promote mRNA packaging and compaction.


Asunto(s)
Exones , Proteoma/análisis , Procesamiento Postranscripcional del ARN , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Humanos , Complejos Multiproteicos/análisis , Precursores del ARN/metabolismo , Empalme del ARN
4.
Proc Natl Acad Sci U S A ; 120(33): e2305420120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549268

RESUMEN

Stimulator of interferon genes (STING) is an essential adaptor protein required for the inflammatory response to cytosolic DNA. dsDNA activates cGAS to generate cGAMP, which binds and activates STING triggering a conformational change, oligomerization, and the IRF3- and NFκB-dependent transcription of type I Interferons (IFNs) and inflammatory cytokines, as well as the activation of autophagy. Aberrant activation of STING is now linked to a growing number of both rare as well as common chronic inflammatory diseases. Here, we identify and characterize a potent small-molecule inhibitor of STING. This compound, BB-Cl-amidine inhibits STING signaling and production of type I IFNs, IFN-stimulated genes (ISGs) and NFκB-dependent cytokines, but not other pattern recognition receptors. In vivo, BB-Cl-amidine alleviated pathology resulting from accrual of cytosolic DNA in Trex-1 mutant mice. Mechanistically BB-Cl-amidine inhibited STING oligomerization through modification of Cys148. Collectively, our work uncovers an approach to inhibit STING activation and highlights the potential of this strategy for the treatment of STING-driven inflammatory diseases.


Asunto(s)
Interferón Tipo I , Proteínas de la Membrana , Ratones , Animales , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Transducción de Señal/fisiología , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Interferón Tipo I/metabolismo , FN-kappa B/metabolismo , ADN
5.
PLoS Pathog ; 19(7): e1011032, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37498934

RESUMEN

Seasonal "common-cold" human coronaviruses are widely spread throughout the world and are mainly associated with mild upper respiratory tract infections. The emergence of highly pathogenic coronaviruses MERS-CoV, SARS-CoV, and most recently SARS-CoV-2 has prompted increased attention to coronavirus biology and immunopathology, but the T-cell response to seasonal coronaviruses remains largely uncharacterized. Here we report the repertoire of viral peptides that are naturally processed and presented upon infection of a model cell line with seasonal coronavirus OC43. We identified MHC-bound peptides derived from each of the viral structural proteins (spike, nucleoprotein, hemagglutinin-esterase, membrane, and envelope) as well as non-structural proteins nsp3, nsp5, nsp6, and nsp12. Eighty MHC-II bound peptides corresponding to 14 distinct OC43-derived epitopes were identified, including many at very high abundance within the overall MHC-II peptidome. Fewer and less abundant MHC-I bound OC43-derived peptides were observed, possibly due to MHC-I downregulation induced by OC43 infection. The MHC-II peptides elicited low-abundance recall T-cell responses in most donors tested. In vitro assays confirmed that the peptides were recognized by CD4+ T cells and identified the presenting HLA alleles. T-cell responses cross-reactive between OC43, SARS-CoV-2, and the other seasonal coronaviruses were confirmed in samples of peripheral blood and peptide-expanded T-cell lines. Among the validated epitopes, spike protein S903-917 presented by DPA1*01:03/DPB1*04:01 and S1085-1099 presented by DRB1*15:01 shared substantial homology to other human coronaviruses, including SARS-CoV-2, and were targeted by cross-reactive CD4 T cells. Nucleoprotein N54-68 and hemagglutinin-esterase HE128-142 presented by DRB1*15:01 and HE259-273 presented by DPA1*01:03/DPB1*04:01 are immunodominant epitopes with low coronavirus homology that are not cross-reactive with SARS-CoV-2. Overall, the set of naturally processed and presented OC43 epitopes comprise both OC43-specific and human coronavirus cross-reactive epitopes, which can be used to follow CD4 T-cell cross-reactivity after infection or vaccination, and to guide selection of epitopes for inclusion in pan-coronavirus vaccines.


Asunto(s)
COVID-19 , Coronavirus Humano OC43 , Humanos , SARS-CoV-2 , Linfocitos T CD4-Positivos , Epítopos de Linfocito T , Hemaglutininas , Estaciones del Año , Esterasas , Glicoproteína de la Espiga del Coronavirus
6.
Proc Natl Acad Sci U S A ; 119(15): e2201632119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35380903

RESUMEN

Current chemotherapy against Mycobacterium tuberculosis (Mtb), an important human pathogen, requires a multidrug regimen lasting several months. While efforts have been made to optimize therapy by exploiting drug­drug synergies, testing new drug combinations in relevant host environments remains arduous. In particular, host environments profoundly affect the bacterial metabolic state and drug efficacy, limiting the accuracy of predictions based on in vitro assays alone. In this study, we utilized conditional Mtb knockdown mutants of essential genes as an experimentally tractable surrogate for drug treatment and probe the relationship between Mtb carbon metabolism and chemical­genetic interactions (CGIs). We examined the antitubercular drugs isoniazid, rifampicin, and moxifloxacin and found that CGIs are differentially responsive to the metabolic state, defining both environment-independent and -dependent interactions. Specifically, growth on the in vivo­relevant carbon source, cholesterol, reduced rifampicin efficacy by altering mycobacterial cell surface lipid composition. We report that a variety of perturbations in cell wall synthesis pathways restore rifampicin efficacy during growth on cholesterol, and that both environment-independent and cholesterol-dependent in vitro CGIs could be leveraged to enhance bacterial clearance in the mouse infection model. Our findings present an atlas of chemical­genetic­environmental interactions that can be used to optimize drug­drug interactions, as well as provide a framework for understanding in vitro correlates of in vivo efficacy.


Asunto(s)
Antituberculosos , Carbono , Pared Celular , Interacciones Farmacológicas , Interacción Gen-Ambiente , Mycobacterium tuberculosis , Antituberculosos/farmacología , Carbono/metabolismo , Pared Celular/ultraestructura , Humanos , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/ultraestructura
7.
Nat Immunol ; 13(10): 1010-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22922362

RESUMEN

The transcription factor Foxp3 is indispensible for the differentiation and function of regulatory T cells (T(reg) cells). To gain insights into the molecular mechanisms of Foxp3-mediated gene expression, we purified Foxp3 complexes and explored their composition. Biochemical and mass-spectrometric analyses revealed that Foxp3 forms multiprotein complexes of 400-800 kDa or larger and identified 361 associated proteins, ∼30% of which were transcription related. Foxp3 directly regulated expression of a large proportion of the genes encoding its cofactors. Some transcription factor partners of Foxp3 facilitated its expression. Functional analysis of the cooperation of Foxp3 with one such partner, GATA-3, provided additional evidence for a network of transcriptional regulation afforded by Foxp3 and its associates to control distinct aspects of T(reg) cell biology.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Animales , Diferenciación Celular , Factores de Transcripción Forkhead/genética , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo , Humanos , Ratones , Ratones Transgénicos , Estructura Terciaria de Proteína , Proteómica
8.
Acta Psychiatr Scand ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923502

RESUMEN

BACKGROUND: Perinatal depression (PND) is a debilitating condition affecting maternal well-being and child development. Allopregnanolone (ALLO) is important to perinatal neuroplasticity, however its relationship with depression severity and postpartum structural brain volume is unknown. METHOD: We examined perinatal temporal dynamics and bidirectional associations between ALLO and depression severity and the association between these variables and postpartum gray matter volume, using a random intercept cross-lagged panel model. RESULTS: We identified a unidirectional predictive relationship between PND severity and ALLO concentration, suggesting greater depression severity early in the perinatal period may contribute to subsequent changes in ALLO concentration (ß = 0.26, p = 0.009), while variations in ALLO levels during the perinatal period influences the development and severity of depressive symptoms later in the postpartum period (ß = 0.38, p = 0.007). Antepartum depression severity (Visit 2, ß = 0.35, p = 0.004), ALLO concentration (Visit 2, ß = 0.37, p = 0.001), and postpartum depression severity (Visit 3, ß = 0.39, p = 0.031), each predicted the right anterior cingulate volume. Antepartum ALLO concentration (Visit 2, ß = 0.29, p = 0.001) predicted left suborbital sulcus volume. Antepartum depression severity (Visit 1, ß = 0.39, p = 0.006 and Visit 2, ß = 0.48, p < 0.001) predicted the right straight gyrus volume. Postpartum depression severity (Visit 3, ß = 0.36, p = 0.001) predicted left middle-posterior cingulate volume. CONCLUSION: These results provide the first evidence of bidirectional associations between perinatal ALLO and depression severity with postpartum gray matter volume.

9.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33875592

RESUMEN

The amino acid sequences of proteins have evolved over billions of years, preserving their structures and functions while responding to evolutionary forces. Are there conserved sequence and structural elements that preserve the protein folding mechanisms? The functionally diverse and ancient (ßα)1-8 TIM barrel motif may answer this question. We mapped the complex six-state folding free energy surface of a ∼3.6 billion y old, bacterial indole-3-glycerol phosphate synthase (IGPS) TIM barrel enzyme by equilibrium and kinetic hydrogen-deuterium exchange mass spectrometry (HDX-MS). HDX-MS on the intact protein reported exchange in the native basin and the presence of two thermodynamically distinct on- and off-pathway intermediates in slow but dynamic equilibrium with each other. Proteolysis revealed protection in a small (α1ß2) and a large cluster (ß5α5ß6α6ß7) and that these clusters form cores of stability in Ia and Ibp The strongest protection in both states resides in ß4α4 with the highest density of branched aliphatic side chain contacts in the folded structure. Similar correlations were observed previously for an evolutionarily distinct archaeal IGPS, emphasizing a key role for hydrophobicity in stabilizing common high-energy folding intermediates. A bioinformatics analysis of IGPS sequences from the three superkingdoms revealed an exceedingly high hydrophobicity and surprising α-helix propensity for ß4, preceded by a highly conserved ßα-hairpin clamp that links ß3 and ß4. The conservation of the folding mechanisms for archaeal and bacterial IGPS proteins reflects the conservation of key elements of sequence and structure that first appeared in the last universal common ancestor of these ancient proteins.


Asunto(s)
Indol-3-Glicerolfosfato Sintasa/metabolismo , Dominios Proteicos/fisiología , Estructura Secundaria de Proteína/genética , Secuencia de Aminoácidos/genética , Aminoácidos/genética , Proteínas Bacterianas/química , Enlace de Hidrógeno , Indol-3-Glicerolfosfato Sintasa/fisiología , Cinética , Modelos Moleculares , Conformación Proteica , Dominios Proteicos/genética , Pliegue de Proteína , Homología de Secuencia de Aminoácido , Termodinámica
10.
J Am Chem Soc ; 144(46): 21035-21045, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36356199

RESUMEN

Given the current impact of SARS-CoV2 and COVID-19 on human health and the global economy, the development of direct acting antivirals is of paramount importance. Main protease (MPro), a cysteine protease that cleaves the viral polyprotein, is essential for viral replication. Therefore, MPro is a novel therapeutic target. We identified two novel MPro inhibitors, D-FFRCMKyne and D-FFCitCMKyne, that covalently modify the active site cysteine (C145) and determined cocrystal structures. Medicinal chemistry efforts led to SM141 and SM142, which adopt a unique binding mode within the MPro active site. Notably, these inhibitors do not inhibit the other cysteine protease, papain-like protease (PLPro), involved in the life cycle of SARS-CoV2. SM141 and SM142 block SARS-CoV2 replication in hACE2 expressing A549 cells with IC50 values of 8.2 and 14.7 nM. Detailed studies indicate that these compounds also inhibit cathepsin L (CatL), which cleaves the viral S protein to promote viral entry into host cells. Detailed biochemical, proteomic, and knockdown studies indicate that the antiviral activity of SM141 and SM142 results from the dual inhibition of MPro and CatL. Notably, intranasal and intraperitoneal administration of SM141 and SM142 lead to reduced viral replication, viral loads in the lung, and enhanced survival in SARS-CoV2 infected K18-ACE2 transgenic mice. In total, these data indicate that SM141 and SM142 represent promising scaffolds on which to develop antiviral drugs against SARS-CoV2.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Hepatitis C Crónica , Animales , Ratones , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Antivirales/química , Proteasas 3C de Coronavirus , Catepsina L/química , Catepsina L/metabolismo , ARN Viral , SARS-CoV-2 , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/uso terapéutico , Inhibidores de Proteasas/química , Péptido Hidrolasas , Proteómica , Proteínas no Estructurales Virales/química , Simulación del Acoplamiento Molecular
12.
Biochemistry ; 60(38): 2902-2914, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34491035

RESUMEN

Citrullination is an enzyme-catalyzed post-translational modification (PTM) that is essential for a host of biological processes, including gene regulation, programmed cell death, and organ development. While this PTM is required for normal cellular functions, aberrant citrullination is a hallmark of autoimmune disorders as well as cancer. Although aberrant citrullination is linked to human pathology, the exact role of citrullination in disease remains poorly characterized, in part because of the challenges associated with identifying the specific arginine residues that are citrullinated. Tandem mass spectrometry is the most precise method for uncovering sites of citrullination; however, due to the small mass shift (+0.984 Da) that results from citrullination, current database search algorithms commonly misannotate spectra, leading to a high number of false-positive assignments. To address this challenge, we developed an automated workflow to rigorously and rapidly mine proteomic data to unambiguously identify the sites of citrullination from complex peptide mixtures. The crux of this streamlined workflow is the ionFinder software program, which classifies citrullination sites with high confidence on the basis of the presence of diagnostic fragment ions. These diagnostic ions include the neutral loss of isocyanic acid, which is a dissociative event that is unique to citrulline residues. Using the ionFinder program, we have mapped the sites of autocitrullination on purified protein arginine deiminases (PAD1-4) and mapped the global citrullinome in a PAD2-overexpressing cell line. The ionFinder algorithm is a highly versatile, user-friendly, and open-source program that is agnostic to the type of instrument and mode of fragmentation that are used.


Asunto(s)
Citrulinación/fisiología , Minería de Datos/métodos , Proteómica/métodos , Algoritmos , Arginina/metabolismo , Citrulinación/genética , Citrulina/química , Citrulina/genética , Citrulina/metabolismo , Análisis de Datos , Manejo de Datos/métodos , Humanos , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Desiminasas de la Arginina Proteica/genética , Desiminasas de la Arginina Proteica/metabolismo , Espectrometría de Masas en Tándem/métodos
13.
J Am Chem Soc ; 143(46): 19257-19261, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34762412

RESUMEN

Mapping protein-protein interactions is crucial for understanding various signaling pathways in living cells, and developing new techniques for this purpose has attracted significant interest. Classic methods (e.g., the yeast two-hybrid) have been supplanted by more sophisticated chemical approaches that label proximal proteins (e.g., BioID, APEX). Herein we describe a proximity-based approach that uniquely labels cysteines. Our approach exploits the nicotinamide N-methyltransferase (NNMT)-catalyzed methylation of an alkyne-substituted 4-chloropyridine (SS6). Upon methylation of the pyridinium nitrogen, this latent electrophile diffuses out of the active site and labels proximal proteins on short time scales (≤5 min). We validated this approach by identifying known (and novel) interacting partners of protein arginine deiminase 2 (PAD2) and pyruvate dehydrogenase kinase 1 (PDK1). To our knowledge, this technology uniquely exploits a suicide substrate to label proximal cysteines in live cells.


Asunto(s)
Cisteína/metabolismo , Mapeo de Interacción de Proteínas , Arginina Deiminasa Proteína-Tipo 2/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Biocatálisis , Línea Celular , Cisteína/química , Humanos , Modelos Moleculares , Estructura Molecular , Arginina Deiminasa Proteína-Tipo 2/química , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/química
14.
Hum Mol Genet ; 28(13): 2143-2160, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30806671

RESUMEN

Aberrant translational repression is a feature of multiple neurodegenerative diseases. The association between disease-linked proteins and stress granules further implicates impaired stress responses in neurodegeneration. However, our knowledge of the proteins that evade translational repression is incomplete. It is also unclear whether disease-linked proteins influence the proteome under conditions of translational repression. To address these questions, a quantitative proteomics approach was used to identify proteins that evade stress-induced translational repression in arsenite-treated cells expressing either wild-type or amyotrophic lateral sclerosis (ALS)-linked mutant FUS. This study revealed hundreds of proteins that are actively synthesized during stress-induced translational repression, irrespective of FUS genotype. In addition to proteins involved in RNA- and protein-processing, proteins associated with neurodegenerative diseases such as ALS were also actively synthesized during stress. Protein synthesis under stress was largely unperturbed by mutant FUS, although several proteins were found to be differentially expressed between mutant and control cells. One protein in particular, COPBI, was downregulated in mutant FUS-expressing cells under stress. COPBI is the beta subunit of the coat protein I (COPI), which is involved in Golgi to endoplasmic reticulum (ER) retrograde transport. Further investigation revealed reduced levels of other COPI subunit proteins and defects in COPBI-relatedprocesses in cells expressing mutant FUS. Even in the absence of stress, COPBI localization was altered in primary and human stem cell-derived neurons expressing ALS-linked FUS variants. Our results suggest that Golgi to ER retrograde transport may be important under conditions of stress and is perturbed upon the expression of disease-linked proteins such as FUS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Neuronas Motoras/metabolismo , Biosíntesis de Proteínas , Proteína FUS de Unión a ARN/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Arsenitos/farmacología , Línea Celular Tumoral , Proteína Coat de Complejo I/metabolismo , Gránulos Citoplasmáticos/efectos de los fármacos , Gránulos Citoplasmáticos/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Aparato de Golgi/efectos de los fármacos , Humanos , Ratones , Neuronas Motoras/efectos de los fármacos , Mutación , Biosíntesis de Proteínas/efectos de los fármacos , Proteómica , Proteína FUS de Unión a ARN/metabolismo
15.
Nat Methods ; 15(6): 433-436, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29735996

RESUMEN

Mapping proteomic composition at distinct genomic loci in living cells has been a long-standing challenge. Here we report that dCas9-APEX2 biotinylation at genomic elements by restricted spatial tagging (C-BERST) allows the rapid, unbiased mapping of proteomes near defined genomic loci, as demonstrated for telomeres and centromeres. C-BERST enables the high-throughput identification of proteins associated with specific sequences, thereby facilitating annotation of these factors and their roles.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Proteómica/métodos , Línea Celular Tumoral , Mapeo Cromosómico , Endonucleasas , Regulación de la Expresión Génica , Genoma , Genómica , Humanos , Enzimas Multifuncionales , Ingeniería de Proteínas , Proteoma
16.
PLoS Biol ; 16(11): e2006951, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30481169

RESUMEN

Glycosylation is a fundamental modification of proteins and membrane lipids. Toxins that utilize glycans as their receptors have served as powerful tools to identify key players in glycosylation processes. Here, we carried out Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9-mediated genome-wide loss-of-function screens using two related bacterial toxins, Shiga-like toxins (Stxs) 1 and 2, which use a specific glycolipid, globotriaosylceramide (Gb3), as receptors, and the plant toxin ricin, which recognizes a broad range of glycans. The Stxs screens identified major glycosyltransferases (GTs) and transporters involved in Gb3 biosynthesis, while the ricin screen identified GTs and transporters involved in N-linked protein glycosylation and fucosylation. The screens also identified lysosomal-associated protein transmembrane 4 alpha (LAPTM4A), a poorly characterized four-pass membrane protein, as a factor specifically required for Stxs. Mass spectrometry analysis of glycolipids and their precursors demonstrates that LAPTM4A knockout (KO) cells lack Gb3 biosynthesis. This requirement of LAPTM4A for Gb3 synthesis is not shared by its homolog lysosomal-associated protein transmembrane 4 beta (LAPTM4B), and switching the domains between them determined that the second luminal domain of LAPTM4A is required, potentially acting as a specific "activator" for the GT that synthesizes Gb3. These screens also revealed two Golgi proteins, Transmembrane protein 165 (TMEM165) and Transmembrane 9 superfamily member 2 (TM9SF2), as shared factors required for both Stxs and ricin. TMEM165 KO and TM9SF2 KO cells both showed a reduction in not only Gb3 but also other glycosphingolipids, suggesting that they are required for maintaining proper levels of glycosylation in general in the Golgi. In addition, TM9SF2 KO cells also showed defective endosomal trafficking. These studies reveal key Golgi proteins critical for regulating glycosylation and glycolipid synthesis and provide novel therapeutic targets for blocking Stxs and ricin toxicity.


Asunto(s)
Ricina/genética , Toxinas Shiga/genética , Toxinas Bacterianas/metabolismo , Sistemas CRISPR-Cas , Endosomas/metabolismo , Estudio de Asociación del Genoma Completo/métodos , Glucolípidos/metabolismo , Glicoesfingolípidos , Glicosilación , Aparato de Golgi/metabolismo , Aparato de Golgi/fisiología , Células HEK293 , Células HeLa , Humanos , Mutación con Pérdida de Función/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/fisiología , Proteínas Oncogénicas/metabolismo , Transporte de Proteínas , Ricina/metabolismo , Toxinas Shiga/metabolismo , Trihexosilceramidas/metabolismo , Trihexosilceramidas/fisiología
17.
Mol Cell Proteomics ; 18(3): 490-503, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30573663

RESUMEN

Presentation of antigenic peptides on MHC-II molecules is essential for tolerance to self and for initiation of immune responses against foreign antigens. DO (HLA-DO in humans, H2-O in mice) is a nonclassical MHC-II protein that has been implicated in control of autoimmunity and regulation of neutralizing antibody responses to viruses. These effects likely are related to a role of DO in selecting MHC-II epitopes, but previous studies examining the effect of DO on presentation of selected CD4 T cell epitopes have been contradictory. To understand how DO modulates MHC-II antigen presentation, we characterized the full spectrum of peptides presented by MHC-II molecules expressed by DO-sufficient and DO-deficient antigen-presenting cells in vivo and in vitro using quantitative mass spectrometry approaches. We found that DO controlled the diversity of the presented peptide repertoire, with a subset of peptides presented only when DO was expressed. Antigen-presenting cells express another nonclassical MHC-II protein, DM, which acts as a peptide editor by preferentially catalyzing the exchange of less stable MHC-II peptide complexes, and which is inhibited when bound to DO. Peptides presented uniquely in the presence of DO were sensitive to DM-mediated exchange, suggesting that decreased DM editing was responsible for the increased diversity. DO-deficient mice mounted CD4 T cell responses against wild-type antigen-presenting cells, but not vice versa, indicating that DO-dependent alterations in the MHC-II peptidome could be recognized by circulating T cells. These data suggest that cell-specific and regulated expression of HLA-DO serves to fine-tune MHC-II peptidomes, in order to enhance self-tolerance to a wide spectrum of epitopes while allowing focused presentation of immunodominant epitopes during an immune response.


Asunto(s)
Antígenos HLA-D/genética , Antígenos de Histocompatibilidad Clase II/química , Péptidos/metabolismo , Animales , Presentación de Antígeno , Línea Celular , Epítopos de Linfocito T/metabolismo , Antígenos HLA-D/química , Antígenos de Histocompatibilidad Clase II/genética , Humanos , Epítopos Inmunodominantes/metabolismo , Ratones , Ratones Endogámicos C57BL
18.
Eur J Immunol ; 49(8): 1167-1185, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31020640

RESUMEN

Human herpes virus 6B (HHV-6B) is a widespread virus that infects most people early in infancy and establishes a chronic life-long infection with periodic reactivation. CD4 T cells have been implicated in control of HHV-6B, but antigenic targets and functional characteristics of the CD4 T-cell response are poorly understood. We identified 25 naturally processed MHC-II peptides, derived from six different HHV-6B proteins, and showed that they were recognized by CD4 T-cell responses in HLA-matched donors. The peptides were identified by mass spectrometry after elution from HLA-DR molecules isolated from HHV-6B-infected T cells. The peptides showed strong binding to matched HLA alleles and elicited recall T-cell responses in vitro. T-cell lines expanded in vitro were used for functional characterization of the response. Responding cells were mainly CD3+ CD4+ , produced IFN-γ, TNF-α, and low levels of IL-2, alone or in combination, highlighting the presence of polyfunctional T cells in the overall response. Many of the responding cells mobilized CD107a, stored granzyme B, and mediated specific killing of peptide-pulsed target cells. These results highlight a potential role for polyfunctional cytotoxic CD4 T cells in the long-term control of HHV-6B infection.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Herpesvirus Humano 6/fisiología , Infecciones por Roseolovirus/inmunología , Presentación de Antígeno , Antígenos Virales/metabolismo , Linfocitos T CD4-Positivos/virología , Células Cultivadas , Citotoxicidad Inmunológica , Mapeo Epitopo , Antígeno HLA-DR3/metabolismo , Humanos , Epítopos Inmunodominantes , Interferón gamma/metabolismo , Activación de Linfocitos , Espectrometría de Masas , Péptidos/metabolismo
19.
J Exp Biol ; 223(Pt 23)2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33268565

RESUMEN

Understanding the environmental and behavioral factors that influence how organisms maintain energy balance can inform us about their potential resiliency to rapid environmental changes. Flexibility in maintaining energy balance is particularly important to long-lived, central-place foraging seabirds that are constrained when locating food for offspring in a dynamic ocean environment. To understand the role of environmental interactions, behavioral flexibility and morphological constraints on energy balance, we used doubly labeled water to measure the at-sea daily energy expenditure (DEE) of two sympatrically breeding seabirds, Campbell (Thalassarche impavida) and grey-headed (Thalassarchechrysostoma) albatrosses. We found that species and sexes had similar foraging costs, but DEE varied between years for both species and sexes during early chick rearing in two consecutive seasons. For both species, greater DEE was positively associated with larger proportional mass gain, lower mean wind speeds during water take-offs, greater proportions of strong tailwinds (>12 m s-1), and younger chick age. Greater proportional mass gains were marginally more costly in male albatrosses that already have higher wing loading. DEE was higher during flights with a greater proportion of strong headwinds for grey-headed albatrosses only. Poleward winds are forecasted to intensify over the next century, which may increase DEE for grey-headed albatrosses that heavily use this region during early chick rearing. Female Campbell albatrosses may be negatively affected by forecasted slackening winds at lower latitudes due to an expected greater reliance on less energy efficient sit-and-wait foraging strategies. Behavioral plasticity associated with environmental variation may influence future population responses to climate change of both species.


Asunto(s)
Aves , Viento , Animales , Femenino , Masculino , Estaciones del Año , Simpatría , Alas de Animales
20.
J Immunol ; 200(2): 768-774, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29212905

RESUMEN

Innate immune receptors have a key role in the sensing of malaria and initiating immune responses. As a consequence of infection, systemic inflammation emerges and is directly related to signs and symptoms during acute disease. We have previously reported that plasmodial DNA is the primary driver of systemic inflammation in malaria, both within the phagolysosome and in the cytosol of effector cells. In this article, we demonstrate that Plasmodium falciparum genomic DNA delivered to the cytosol of human monocytes binds and activates cyclic GMP-AMP synthase (cGAS). Activated cGAS synthesizes 2'3'-cGAMP, which we subsequently can detect using liquid chromatography-tandem mass spectrometry. 2'3'-cGAMP acts as a second messenger for STING activation and triggers TBK1/IRF3 activation, resulting in type I IFN production in human cells. This induction of type I IFN was independent of IFI16. Access of DNA to the cytosolic compartment is mediated by hemozoin, because incubation of purified malaria pigment with DNase abrogated IFN-ß induction. Collectively, these observations implicate cGAS as an important cytosolic sensor of P. falciparum genomic DNA and reveal the role of the cGAS/STING pathway in the induction of type I IFN in response to malaria parasites.


Asunto(s)
ADN Protozoario/metabolismo , Interferón Tipo I/metabolismo , Nucleotidiltransferasas/metabolismo , Plasmodium falciparum/genética , Adolescente , Adulto , Células Cultivadas , Eritrocitos/metabolismo , Eritrocitos/parasitología , Femenino , Humanos , Factor 3 Regulador del Interferón/metabolismo , Malaria Falciparum/metabolismo , Malaria Falciparum/parasitología , Masculino , Proteínas de la Membrana/metabolismo , Persona de Mediana Edad , Nucleótidos Cíclicos/metabolismo , Fosforilación , Transducción de Señal , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA