Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 50(17): 9098-104, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27548999

RESUMEN

A series of the British nuclear tests conducted on mainland Australia between 1953 and 1963 dispersed long-lived radioactivity and nuclear weapons debris including plutonium (Pu), the legacy of which is a long-lasting source of radioactive contamination to the surrounding biosphere. A reliable assessment of the environmental impact of Pu contaminants and their implications for human health requires an understanding of their physical/chemical characteristics at the molecular scale. In this study, we identify the chemical form of the Pu remaining in the local soils at the Taranaki site, one of the former nuclear testing sites at Maralinga, South Australia. We herein reveal direct spectroscopic evidence that the Pu legacy remaining at the site exists as particulates of Pu(IV) oxyhydroxide compounds, a very concentrated and low-soluble form of Pu, which will serve as ongoing radioactive sources far into the future. Gamma-ray spectrometry and X-ray fluorescence analysis on a collected Pu particle indicate that the Pu in the particle originated in the so-called "Minor trials" that involved the dispersal of weapon components by highly explosive chemicals, not in the nuclear explosion tests called "Major trials". A comprehensive analysis of the data acquired from X-ray fluorescence mapping (XFM), X-ray absorption near-edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) suggests that the collected Pu particle forms a "core-shell" structure with the Pu(IV) oxyhydroxide core surrounded by an external layer containing Ca, Fe, and U, which further helps us to deduce a possible scenario of the physical/chemical transformation of the original Pu materials dispersed in the semiarid environment at Maralinga more than 50 years ago. These findings also highlight the importance of the comprehensive physical/chemical characterization of Pu contaminants for reliable environmental- and radiotoxicological assessment.


Asunto(s)
Plutonio , Contaminantes Radiactivos del Suelo , Australia , Armas Nucleares , Espectrometría gamma
2.
J Environ Radioact ; 211: 106081, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31666204

RESUMEN

This paper examines the distributions of several anthropogenic radionuclides (239+240Pu, 241Am, 137Cs, 90Sr, 60Co and 3H) at a legacy trench disposal site in eastern Australia. We compare the results to previously published data for Pu and tritium at the site. Plutonium has previously been shown to reach the surface by a bath-tubbing mechanism, following filling of the former trenches with water during intense rainfall events. This has led to some movement of Pu away from the trenched area, and we also provide evidence of elevated Pu concentrations in shallow subsurface layers above the trenched area. The distribution of 241Am is similar to Pu, and this is attributed to the similar chemistry of these actinides and the likely in-situ generation of 241Am from its parent 241Pu. Concentrations of 137Cs are mostly low in surface soils immediately above the trenches. However, similar to the actinides, there is evidence of elevated 137Cs and 90Sr concentrations in shallow subsurface layers above the trenched area. While the subsurface radionuclide peaks suggest a mechanism of subsurface transport, their interpretation is complicated by the presence of soil layers added following disposals and during the subsequent years. The distribution of 90Sr and 137Cs at the ground surface shows some elevated levels immediately above the trenches which were filled during the final 24 months of disposal operations. This is in agreement with disposal records, which indicate that greater amounts of fission products were disposed in this period. The surface distribution of 239+240Pu is also consistent with the disposal documents. Although there is extensive evidence of a mobile tritium plume in groundwater, migration of the other radionuclides by this pathway is limited. The data highlight the importance of taking into account multiple pathways for the mobilisation of key radioactive contaminants at legacy waste trench sites.


Asunto(s)
Monitoreo de Radiación , Contaminantes Radiactivos del Suelo/análisis , Australia , Contaminantes Radiactivos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA