RESUMEN
Chronic myeloid leukemia (CML) is a model of genomically based diagnosis and management where BCR::ABL1 is successfully targeted by tyrosine kinase inhibitor (TKI) therapy in most patients. The dynamics of BCR::ABL1 transcript decline during therapy is a dependable biomarker of response, relapse, and drug resistance. Missense mutations acquired within the BCR::ABL1 kinase domain that disrupt TKI binding can evolve during therapy and are frequently detected in patients for whom TKI treatment fails. Importantly, specific BCR::ABL1 missense mutations are targetable alterations and direct therapeutic decisions based on the individual mutant TKI sensitivity profile. Nevertheless, BCR::ABL1 mutations are only implicated in approximately half of the cases of acquired resistance. Furthermore, not all patients with a single BCR::ABL1 mutation that is predicted to be sensitive to a specific TKI will experience a response when switched to that TKI. Progression to blast phase heralds independence from BCR::ABL1, and this phase of the disease is notoriously difficult to treat. The independent drivers of resistance and disease progression have long been investigated to both predict progression and to find targets for therapeutic intervention. Recent data reaffirm that drug resistance and disease progression is a mutation-driven process in CML, and somatic variants in genes that are known to drive acute myeloid and lymphoid leukemia have been detected in patients in the advanced phases of CML. Genomic testing over the last few decades for patients with blood cancer has revealed of variety of genomic aberrations that drive disease. Consequently, incorporation of genomic factors into patient management for a range of blood cancers has led to the implementation of high-throughput gene testing to detect clinically actionable variants. Is it time to integrate broader genomic screening into clinical management strategies for patients with CML?
Asunto(s)
Proteínas de Fusión bcr-abl , Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Proteínas de Fusión bcr-abl/genética , Resistencia a Antineoplásicos/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/diagnóstico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Genómica , Progresión de la EnfermedadRESUMEN
The BCR::ABL1 gene fusion initiates chronic myeloid leukemia (CML); however, evidence has accumulated from studies of highly selected cohorts that variants in other cancer-related genes are associated with treatment failure. Nevertheless, the true incidence and impact of additional genetic abnormalities (AGA) at diagnosis of chronic phase (CP)-CML is unknown. We sought to determine whether AGA at diagnosis in a consecutive imatinib-treated cohort of 210 patients enrolled in the TIDEL-II trial influenced outcome despite a highly proactive treatment intervention strategy. Survival outcomes including overall survival, progression-free survival, failure-free survival, and BCR::ABL1 kinase domain mutation acquisition were evaluated. Molecular outcomes were measured at a central laboratory and included major molecular response (MMR, BCR::ABL1 ≤0.1%IS), MR4 (BCR::ABL1 ≤0.01%IS), and MR4.5 (BCR::ABL1 ≤0.0032%IS). AGA included variants in known cancer genes and novel rearrangements involving the formation of the Philadelphia chromosome. Clinical outcomes and molecular response were assessed based on the patient's genetic profile and other baseline factors. AGA were identified in 31% of patients. Potentially pathogenic variants in cancer-related genes were detected in 16% of patients at diagnosis (including gene fusions and deletions) and structural rearrangements involving the Philadelphia chromosome (Ph-associated rearrangements) were detected in 18%. Multivariable analysis demonstrated that the combined genetic abnormalities plus the EUTOS long-term survival clinical risk score were independent predictors of lower molecular response rates and higher treatment failure. Despite a highly proactive treatment intervention strategy, first-line imatinib-treated patients with AGA had poorer response rates. These data provide evidence for the incorporation of genomically-based risk assessment for CML.