Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Anal Bioanal Chem ; 414(15): 4391-4399, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35091760

RESUMEN

Short-chain fatty acids (SCFAs) are volatile fatty acids produced by gut microbial fermentation of dietary nondigestible carbohydrates. Acetate, propionate, and butyrate SCFA measures are important to clinical and nutritional studies for their established roles in promoting healthy immune and gut function. Additionally, circulating SCFAs may influence the metabolism and allied function of additional tissues and organs. The accurate quantification of SCFAs in plasma/serum is critical to understanding the biological role of SCFAs. The low concentrations of circulating SCFAs and their volatile nature present challenges for quantitative analysis. Herein, we report a sensitive method for SCFA quantification via extraction with methyl tert-butyl ether after plasma/serum acidification. The organic extract of SCFAs is injected directly with separation and detection using a polar GC column coupled to mass spectrometry. The solvent-to-sample ratio, plasma volume, and amount of HCl needed for SCFA protonation were optimized. Method validation shows good within-day and inter-day repeatability. The limit of detection was 0.3-0.6 µg/mL for acetate and 0.03-0.12 µg/mL for propionate and butyrate. Successful application of this method on clinical plasma and serum samples was demonstrated in six datasets. By simplifying the sample preparation procedure, the present method reduces the risk of contamination, lowers the cost of analysis, increases throughput, and offers the potential for automated sample preparation.


Asunto(s)
Ácidos Grasos Volátiles , Propionatos , Acetatos/análisis , Butiratos/análisis , Ácidos Grasos Volátiles/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos
2.
Microbiome ; 12(1): 31, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38383483

RESUMEN

BACKGROUND: People living with HIV (PLWH), even when viral replication is controlled through antiretroviral therapy (ART), experience persistent inflammation. This inflammation is partly attributed to intestinal microbial dysbiosis and translocation, which may lead to non-AIDS-related aging-associated comorbidities. The extent to which living with HIV - influenced by the infection itself, ART usage, sexual orientation, or other associated factors - affects the biological age of the intestines is unclear. Furthermore, the role of microbial dysbiosis and translocation in the biological aging of PLWH remains to be elucidated. To investigate these uncertainties, we used a systems biology approach, analyzing colon and ileal biopsies, blood samples, and stool specimens from PLWH on ART and people living without HIV (PLWoH) as controls. RESULTS: PLWH exhibit accelerated biological aging in the colon, ileum, and blood, as measured by various epigenetic aging clocks, compared to PLWoH. Investigating the relationship between microbial translocation and biological aging, PLWH had decreased levels of tight junction proteins in the intestines, along with increased microbial translocation. This intestinal permeability correlated with faster biological aging and increased inflammation. When investigating the relationship between microbial dysbiosis and biological aging, the intestines of PLWH had higher abundance of specific pro-inflammatory bacteria, such as Catenibacterium and Prevotella. These bacteria correlated with accelerated biological aging. Conversely, the intestines of PLWH had lower abundance of bacteria known for producing the anti-inflammatory short-chain fatty acids, such as Subdoligranulum and Erysipelotrichaceae, and these bacteria were associated with slower biological aging. Correlation networks revealed significant links between specific microbial genera in the colon and ileum (but not in feces), increased aging, a rise in pro-inflammatory microbe-related metabolites (e.g., those in the tryptophan metabolism pathway), and a decrease in anti-inflammatory metabolites like hippuric acid. CONCLUSIONS: We identified specific microbial compositions and microbiota-related metabolic pathways that are intertwined with intestinal and systemic biological aging. This microbial signature of biological aging is likely reflecting various factors including the HIV infection itself, ART usage, sexual orientation, and other aspects associated with living with HIV. A deeper understanding of the mechanisms underlying these connections could offer potential strategies to mitigate accelerated aging and its associated health complications. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Infecciones por VIH , Humanos , Femenino , Masculino , Infecciones por VIH/tratamiento farmacológico , Disbiosis/microbiología , Microbioma Gastrointestinal/genética , Intestinos/microbiología , Envejecimiento , Bacterias/genética , Inflamación/microbiología , Antiinflamatorios
3.
Res Sq ; 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37961645

RESUMEN

Background: People with HIV (PWH), even with controlled viral replication through antiretroviral therapy (ART), experience persistent inflammation. This is partly due to intestinal microbial dysbiosis and translocation. Such ongoing inflammation may lead to the development of non-AIDS-related aging-associated comorbidities. However, there remains uncertainty regarding whether HIV affects the biological age of the intestines and whether microbial dysbiosis and translocation influence the biological aging process in PWH on ART. To fill this knowledge gap, we utilized a systems biology approach, analyzing colon and ileal biopsies, blood samples, and stool specimens from PWH on ART and their matched HIV-negative counterparts. Results: Despite having similar chronological ages, PWH on ART exhibit accelerated biological aging in the colon, ileum, and blood, as measured by various epigenetic aging clocks, compared to HIV-negative controls. Investigating the relationship between microbial translocation and biological aging, PWH on ART had decreased levels of tight junction proteins in the colon and ileum, along with increased microbial translocation. This increased intestinal permeability correlated with faster intestinal and systemic biological aging, as well as increased systemic inflammation. When investigating the relationship between microbial dysbiosis and biological aging, the intestines of PWH on ART had higher abundance of specific pro-inflammatory bacterial genera, such as Catenibacterium and Prevotella. These bacteria significantly correlated with accelerated local and systemic biological aging. Conversely, the intestines of PWH on ART had lower abundance of bacterial genera known for producing short-chain fatty acids and exhibiting anti-inflammatory properties, such as Subdoligranulum and Erysipelotrichaceae, and these bacteria taxa were associated with slower biological aging. Correlation networks revealed significant links between specific microbial genera in the colon and ileum (but not in feces), increased aging, a rise in pro-inflammatory microbial-related metabolites (e.g., those in the tryptophan metabolism pathway), and a decrease in anti-inflammatory metabolites like hippuric acid and oleic acid. Conclusions: We identified a specific microbial composition and microbiome-related metabolic pathways that are intertwined with both intestinal and systemic biological aging in PWH on ART. A deeper understanding of the mechanisms underlying these connections could potentially offer strategies to counteract premature aging and its associated health complications in PWH.

5.
Front Immunol ; 12: 686240, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177935

RESUMEN

A disruption of the crosstalk between the gut and the lung has been implicated as a driver of severity during respiratory-related diseases. Lung injury causes systemic inflammation, which disrupts gut barrier integrity, increasing the permeability to gut microbes and their products. This exacerbates inflammation, resulting in positive feedback. We aimed to test whether severe Coronavirus disease 2019 (COVID-19) is associated with markers of disrupted gut permeability. We applied a multi-omic systems biology approach to analyze plasma samples from COVID-19 patients with varying disease severity and SARS-CoV-2 negative controls. We investigated the potential links between plasma markers of gut barrier integrity, microbial translocation, systemic inflammation, metabolome, lipidome, and glycome, and COVID-19 severity. We found that severe COVID-19 is associated with high levels of markers of tight junction permeability and translocation of bacterial and fungal products into the blood. These markers of disrupted intestinal barrier integrity and microbial translocation correlate strongly with higher levels of markers of systemic inflammation and immune activation, lower levels of markers of intestinal function, disrupted plasma metabolome and glycome, and higher mortality rate. Our study highlights an underappreciated factor with significant clinical implications, disruption in gut functions, as a potential force that may contribute to COVID-19 severity.


Asunto(s)
COVID-19/inmunología , Microbioma Gastrointestinal/inmunología , Inflamación/inmunología , Intestinos/fisiología , SARS-CoV-2/fisiología , Femenino , Glicómica , Haptoglobinas/metabolismo , Humanos , Lipidómica , Masculino , Metabolómica , Persona de Mediana Edad , Permeabilidad , Precursores de Proteínas/metabolismo , Uniones Estrechas/metabolismo
6.
mBio ; 12(2)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33879594

RESUMEN

Beyond neutralization, antibodies binding to their Fc receptors elicit several innate immune functions including antibody-dependent complement deposition (ADCD), antibody-dependent cell-mediated phagocytosis (ADCP), and antibody-dependent cell-mediated cytotoxicity (ADCC). These functions are beneficial, as they contribute to pathogen clearance; however, they also can induce inflammation. We tested the possibility that qualitative differences in SARS-CoV-2-specific antibody-mediated innate immune functions contribute to coronavirus disease 2019 (COVID-19) severity. We found that anti-S1 and anti-RBD antibodies from hospitalized COVID-19 patients elicited higher ADCD but lower ADCP compared to antibodies from nonhospitalized COVID-19 patients. Consistently, higher ADCD was associated with higher systemic inflammation, whereas higher ADCP was associated with lower systemic inflammation during COVID-19. Our study points to qualitative, differential features of anti-SARS-CoV-2 specific antibodies as potential contributors to COVID-19 severity. Understanding these qualitative features of natural and vaccine-induced antibodies will be important in achieving optimal efficacy and safety of SARS-CoV-2 vaccines and/or COVID-19 therapeutics.IMPORTANCE A state of hyperinflammation and increased complement activation has been associated with coronavirus disease 2019 (COVID-19) severity. However, the pathophysiological mechanisms that contribute to this phenomenon remain mostly unknown. Our data point to a qualitative, rather than quantitative, difference in SARS-CoV-2-specific antibodies' ability to elicit Fc-mediated innate immune functions as a potential contributor to COVID-19 severity and associated inflammation. These data highlight the need for further studies to understand these qualitative features and their potential contribution to COVID-19 severity. This understanding could be essential to develop antibody-based COVID-19 therapeutics and SARS-CoV-2 vaccines with an optimal balance between efficacy and safety.


Asunto(s)
Anticuerpos Antivirales , COVID-19/inmunología , Inmunidad Innata , SARS-CoV-2/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Especificidad de Anticuerpos , Citotoxicidad Celular Dependiente de Anticuerpos , Biomarcadores/sangre , COVID-19/etiología , COVID-19/virología , Estudios de Casos y Controles , Estudios de Cohortes , Activación de Complemento , Femenino , Humanos , Fragmentos Fc de Inmunoglobulinas/inmunología , Inflamación/sangre , Inflamación/etiología , Inflamación/inmunología , Masculino , Persona de Mediana Edad , Pandemias , Fagocitosis , Receptores Fc/inmunología , Índice de Severidad de la Enfermedad , Glicoproteína de la Espiga del Coronavirus/inmunología
8.
Int J Hematol ; 75(3): 289-97, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11999358

RESUMEN

Labeling index (LI), apoptosis, levels of 2 pro-apoptotic cytokines tumor necrosis factor-alpha (TNF-alpha) and transforming growth factor-beta(TGF-beta), and the number of monocyte/macrophage cells that are the likely source of the cytokines were simultaneously measured in plastic-embedded bone marrow (BM) biopsy sections of 145 patients with myelodysplastic syndromes (MDS). TNF-alpha was correlated with TGF-beta (P = .001) and with monocyte/macrophage cells (P = .003). Patients with excess blasts in their marrows had a higher TGF-beta level (P = .01) and monocyte/macrophage number (P = .05). In a linear regression model,TGF-beta emerged as the most significant biological difference between patients who have excess of blasts and those who do not (P = .01). We conclude that in addition to TNF-alpha, TGF-beta also plays a significant role in the initiation and pathogenesis of MDS, and that a more precise definition of its role will likely identify better preventive and therapeutic strategies.


Asunto(s)
Apoptosis , Células de la Médula Ósea/patología , Citocinas/análisis , Macrófagos/patología , Monocitos/patología , Síndromes Mielodisplásicos/patología , Anemia Refractaria/patología , Anemia Refractaria con Exceso de Blastos/patología , Animales , División Celular , Femenino , Humanos , Leucemia Mielomonocítica Crónica/patología , Masculino , Análisis de Regresión , Fase S , Factor de Crecimiento Transformador beta/análisis , Factor de Necrosis Tumoral alfa/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA