Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Analyst ; 149(6): 1746-1752, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38349197

RESUMEN

In this work, the supersensitive and selective determination of lincomycin (Lin) was achieved using a novel electroluminescent (ECL) aptasensor based on the synergistic integration of gold functionalized upconversion nanoparticles (UCNPs) and thiolated 3,4,9,10-perylene tetracarboxylic acid (PTCA). The integration of two luminophores of UCNPs and PTCA combined the merits of the cathodoluminescence stability of UCNPs and the high quantum yield of PTCA, which significantly promoted the ECL signal and analytical performance of the proposed sensor. The introduction of gold nanoparticles in UCNPs can not only improve the conductivity and ECL performance of UCNPs but also cause them to easily integrate with thiolated PTCA (t-PTCA) via an Au-S bond. The ECL signal of UCNPs@Au/t-PTCA/GCE was almost twice as strong as that of t-PTCA/GCE and tenfold higher than that of UCNPs@Au/GCE. Because of the non-conductive protein of the Lin aptamer, the ECL intensity of apt/UCNPs@Au/t-PTCA/GCE noticeably decreased. In the presence of Lin, the aptamer was pulled down from the sensing interface, resulting in the recovery of the ECL intensity of the sensor. Under optimal conditions, our proposed sensor can quantify the concentration of Lin in the range from 1.0 × 10-15 to 1.0 × 10-7 M with a low detection limit of 2.4 × 10-16 M (S/N = 3), exhibiting high sensitivity and specificity for the determination of Lin.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Perileno/análogos & derivados , Nanopartículas del Metal/química , Oro/química , Aptámeros de Nucleótidos/química , Lincomicina , Técnicas Biosensibles/métodos , Límite de Detección , Mediciones Luminiscentes , Técnicas Electroquímicas/métodos
2.
Analyst ; 149(8): 2291-2298, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38511612

RESUMEN

Building a high-performance sensing platform is the key to developing sensitive sensors. Herein, a highly sensitive self-powered electrochemical sensor (SPES) was constructed using a WO3·H2O film as the cathode prepared by a hydrothermal method and Zn as the anode, and it could be applied to sensitive detection of microcystin (MC-RR). The WO3·H2O film with a larger specific surface area could boost the oxygen reduction reaction (ORR), which could achieve signal amplification and significantly increase the sensitivity of the sensors. Under the optimal conditions, there was a good linear relationship between the increased electrical power density and the logarithm of MC-RR concentration with a detection limit of 1.31 × 10-15 M (S/N = 3). This method had good anti-interference ability and stability when applied to the determination of MC-RR content in actual samples, which could boost the potential application of electrochemical sensors in the field of environmental monitoring.

3.
Anal Chem ; 95(34): 12595-12599, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37522904

RESUMEN

Self-powered electrochemical sensors, which can function without external electricity, are incredibly valuable in the realm of sensing. However, most of the present testing methods are normally confined to high environmental requirements, restricted lighting conditions, and temperature differences. Herein, an innovative self-powered electrochemical sensor was successfully developed based on hydrovoltaic effect coupling with capacitor amplification. Due to the combined merits from the two-dimensional transition metal carbides and nitrides (MXene)-polyaniline (PANI) with high surface potential and good hydrophilicity, and the capacitor amplification strategy, the device could harvest electric energy from water evaporation and displayed a high short circuit current value. Under optimal conditions, the proposed self-powered electrochemical sensor presented excellent sensitivity and high specificity for enrofloxacin (ENR) detection in the concentration range from 1 fM to 1 nM with a detection limit of 0.585 fM. Such a proposed sensor also has the advantages of environmental friendliness and ease of use, which is an ideal choice for accurately and precisely detecting ENR in real samples. The mode of such electrochemical detection outlined in this technical note implements a breakthrough in designing self-powered electrochemical sensors, providing a rational basis for development of a diversified sensing platform.

4.
Anal Chem ; 95(33): 12358-12364, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37605797

RESUMEN

This study focused on the electrochemical properties of tetrazolium salts to develop a simple method for evaluating viable bacterial counts, which are indicators of hygiene control at food and pharmaceutical manufacturing sites. Given that the oxidized form of 3-(4,5-di-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), which has excellent cell membrane permeability, changes to the insoluble reduced form of formazan inside the cell, the number of viable cells was estimated by focusing on the reduction current of MTT remaining in the suspension. Dissolved oxygen is an important substance for bacterial activity; however, it interferes with the electrochemical response of MTT. We investigated the electrochemical properties of MTT to obtain a potential-selective current response that was not affected by dissolved oxygen. Real-time observation of viable bacteria in suspension revealed that uptake of MTT into bacteria was completed within 10 min, including the lag period. In addition, we observed that the current response depends on viable cell density regardless of the bacterial species present. Our method enables a rapid estimation of the number of viable bacteria, making it possible to confirm the safety of food products before they are shipped from the factory and thereby prevent food poisoning.


Asunto(s)
Bacterias , Bromuros , Sales de Tetrazolio , Transporte Biológico , Oxígeno
5.
Analyst ; 148(23): 6087-6096, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37916516

RESUMEN

Nowadays, bacterial resistance caused by the abuse of antibiotics has become a worldwide problem. In this work, a quinolone antibiotic, enrofloxacin (ENR), was rapidly monitored by combining a selective molecular imprinting polymer (MIP) with the electrochemiluminescence (ECL) method. Zn-PTC, a novel zinc-based metal-organic framework (MOF) that has a large specific surface area and ultra-high luminous efficiency, was used as the ECL luminophore. Chitosan (CHIT) was used to contact the specific surface area of molecularly imprinted polymer films and further improved the detection sensitivity. Subsequently, the molecularly imprinted polypyrrole was electropolymerized on the surface of the Zn-PTC and CHIT modified glassy carbon electrode (GCE). The specific sites that could target recombining ENR were shaped on the surface of MIP after extracting the ENR templates. The specific concentrations of ENR could be detected according to the difference in ECL intensity (ΔECL) between the eluting and rebinding of ENR. After optimization, a good linear response of ΔECL and a logarithm of specific ENR concentrations could be obtained in the range of 1.0 × 10-12-1.0 × 10-4 mol L-1, with a detection limit of 9.3 × 10-13 mol L-1 (S/N = 3). Notably, this study provided a rapid, convenient, and cheap method for the detection of ENR in actual samples.


Asunto(s)
Quitosano , Estructuras Metalorgánicas , Polímeros , Enrofloxacina , Pirroles , Zinc , Antibacterianos
6.
Mikrochim Acta ; 190(9): 373, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37648847

RESUMEN

Ciprofloxacin (CIP), a quinolone antibiotic, was rapidly and sensitively detected by integrating the molecularly imprinted polymer (MIP) with an ultra-sensitive electrochemiluminescence (ECL) method. g-C3N4, a typical polymer semiconductor, exhibited outstanding ECL efficiency and excellent ECL stability after combining with an iron-based metal-organic framework (MIL-101). Subsequently, the molecularly imprinted polypyrrole was electropolymerized on the composites of MIL-101-g-C3N4 modified glassy carbon electrode (GCE). The specific sites that could target rebinding the CIP molecules were formed on the surface of MIP after extracting the CIP templates. The determination of specific concentrations of CIP could be realized according to the difference in ECL intensity (△ECL) between the eluting and rebinding of the CIP. Under optimal conditions, a good linear response of △ECL and the logarithm of CIP concentrations was obtained in the range 1.0 × 10-9 ~ 1.0 × 10-5 mol/L, with a detection limit of 4.5 × 10-10 mol/L (S/N = 3) (the working potential was -1.8 ~ 0 V). The RSD of all points in the calibration plot was less than 5.0% and the real samples recovery was between 98.0 and 104%. This paper displays satisfactory selectivity and sensitivity, providing a rapid, convenient, and cheap method for the determination of CIP in real samples.


Asunto(s)
Estructuras Metalorgánicas , Polímeros , Pirroles , Ciprofloxacina , Polímeros Impresos Molecularmente
7.
Mikrochim Acta ; 190(5): 180, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37043083

RESUMEN

A one-step electrodeposition-assisted self-assembly technique has been developed for preparation of ZnTCPP@MOF films with three-dimensional mesoporous structure in a three-electrode system. The internal structure of the ZnTCPP@MOF films was tuned by adjusting the electrochemical deposition voltage, deposition time, and the concentration of ZnTCPP at room temperature. The ZnTCPP@MOF films under different deposition conditions were characterized by scanning electron microscopy, Fourier transformation infrared spectroscopy, and X-ray photoelectron spectroscopy. The prepared ZnTCPP@MOF films exhibited excellent fluorescence properties, in which ZnTCPP molecules were encapsulated inside the MOF as fluorescent signal probes and structure-directing agents, which affected the electrochemical response of the ZnTCPP@MOF films. The sensing platform based on ZnTCPP@MOF film was used to detect microcystin with a wide determination range (1.0 × 10-12 mol/L ~ 1.0 × 10-5 mol/L), low determination limit (3.8 × 10-13 mol/L), and high sensitivity. More importantly, the strategy is simple, low-cost, green, and environmentally friendly, and it provides a new strategy for the direct use of MOFs films as signaling components.

8.
Analyst ; 147(22): 5194-5202, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36250305

RESUMEN

Herein, a novel molecular imprinting polypyrrole electrochemical sensor was fabricated based on a zirconia and carbon core-shell structure (ZrO2@C) and a nitrogen-doped graphene (NPG) modified glassy carbon electrode (GCE) for ultrasensitive recognition of dopamine (DA). The NPG was prepared by a sacrificial-template-assisted pyrolysis method and ZrO2@C was synthesized via annealing treatment of a zirconium-based metal-organic framework (UiO-66). A convenient electropolymerization method was used to prepare the pyrrole (Py) conductive molecularly imprinted polymer (MIP) in the presence of DA. The elution process of DA was performed by a simple overoxidation process under alkaline conditions. Differential pulse voltammetry (DPV) was used to assess the electrochemical performance of the sensors. The MIP-based electrochemical sensor with specific binding sites could be used for selective recognition of DA. Under the optimal conditions, the linear range of such a sensor was 5.0 × 10-9-1.0 × 10-4 mol L-1 and the detection limit was 3.3 × 10-10 mol L-1 (S/N = 3). This sensor exhibited suitable selectivity, stability, and reproducibility, which suggested that it could be a promising candidate for rapid diagnostic methods in dopamine investigations.


Asunto(s)
Grafito , Impresión Molecular , Grafito/química , Polímeros/química , Dopamina/química , Pirroles/química , Carbono/química , Técnicas Electroquímicas/métodos , Nitrógeno , Porosidad , Reproducibilidad de los Resultados , Límite de Detección , Impresión Molecular/métodos , Electrodos
9.
Analyst ; 147(11): 2355-2360, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35420076

RESUMEN

Gold nanoparticles (AuNPs) are chemically stable and serve as excellent labels because their characteristic red coloration based on the localized surface plasmon resonance (LSPR) does not fade. However, it is necessary to control the structure of AuNPs to use them as labels for various analyses, because their optical properties depend strongly on their size, shape, and state of aggregation. In this study, we developed gold nanostructures (AuNSs) by encapsulating many small AuNPs within a polymer for scattering light-based bacterial detection. The AuNSs consisting of many small nanoparticles provided stronger scattered light intensity than a single AuNP of the same particle size. We found that the aggregation of the AuNSs enhanced the scattering light intensity, depending strongly on their aggregation states, and did not affect the wavelength of the scattering light observed under a dark-field microscope. By specifically binding the antibody-introduced AuNSs to the antigen on the bacterial surface, it was possible to label the target bacteria and detect them based on their light scattering characteristics. In addition, to improve the accuracy of the selective identification of the cells of interest, labels based on scattered light should ideally have a fixed wavelength of scattered light with high intensity. From these perspectives, we developed a method of constructing an optical antenna on the surface of target bacterial cells using antibody-introduced NSs.


Asunto(s)
Oro , Nanopartículas del Metal , Bacterias , Oro/química , Nanopartículas del Metal/química , Tamaño de la Partícula , Resonancia por Plasmón de Superficie/métodos
10.
Analyst ; 146(13): 4254-4260, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34100481

RESUMEN

In this work, a novel electrochemiluminescence (ECL) aptasensor based on the resonance energy transfer (RET) effect between Ag3PO4-Cu-MOF (ii) and silver nanoparticles (Ag NPs) is proposed. The ECL emission spectra of Ag3PO4-Cu-MOF and the ultraviolet absorption spectra of Ag NPs showed a good spectral overlap. Based on this, we designed an "on-off-on" ECL sensing strategy for the sensitive and specific detection of diethylstilbestrol (DES). Under the optimal conditions, the linear range of the sensor for DES detection was 1.0 × 10-12-1.0 × 10-4 M, with a detection limit of 7.2 × 10-13 M (S/N = 3). The method showed simple and fast operation, high sensitivity and selectivity, a strong anti-interference ability and good stability. More importantly, the developed aptasensor exhibited excellent recognition towards residual DES in actual water samples. The sensor has superior measurement capability and potential application value in the field of environment water quality monitoring.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Dietilestilbestrol , Técnicas Electroquímicas , Transferencia de Energía , Límite de Detección , Mediciones Luminiscentes , Plata
11.
Analyst ; 146(11): 3493-3499, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-33960345

RESUMEN

Black phosphorus quantum dots (BPQDs), as a new type of nanomaterial, have excellent electrical and optical properties. In this work, an efficient monitoring method for kanamycin (KAN) was developed based on a sensitive and selective electrochemiluminescence (ECL) aptasensor. The construction of the ECL illuminant was based on BPQDs loaded on silver-nanoparticle modified high-luminescence polydopamine nanospheres (HLPNs@Ag). HLPNs possessed a large specific surface area and strong adhesion, which could support a great deal of BPQDs. Meanwhile, Ag NPs could accelerate the electron-transfer (ET) rate of the sensor and amplify the ECL signal of the BPQDs. Based on the synergistic enhancement effects between the above materials, the as-fabricated nanocomposites exhibited superior ECL performance. With the assistance of a KAN aptamer, the sensor can detect KAN sensitively and selectively. Under optimal conditions, the aptasensor could detect KAN in a wide linear range from 1 × 10-12 to 1.0 × 10-7 M with a detection limit of 1.7 × 10-13 M (S/N = 3). More importantly, this ultra-sensitive and rapid ECL aptasensor-based KAN detection system provided excellent applicability for the monitoring of environmental safety.

12.
Analyst ; 146(20): 6220-6227, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34523620

RESUMEN

In this work, a novel visible light-driven self-powered photoelectrochemical (PEC) platform was designed based on 3D N-doped graphene hydrogel/hematite nanocomposites (NGH/Fe2O3) via a facile one-pot hydrothermal route. The coupling NGH with Fe2O3 could generate a Schottky junction, which promoted the separation of charges. Moreover, Mott-Schottky measurements validated that the carrier concentration achieved by NGH/Fe2O3 was about 3.4 × 103 times in comparison to that of pure Fe2O3, which was beneficial for efficient charge transfer. Owing to the carrier density effect and Schottky junction, the photocurrent of the as-fabricated NGH/Fe2O3 nanocomposites was 6.9-fold higher than that of pure Fe2O3. On the basis of such excellent Schottky junctions, an ultrasensitive visible light-induced self-powered PEC aptasensor was developed using a Microcystin-LR (MC-LR) aptamer. The as-fabricated PEC aptasensor displayed good analytical performance toward MC-LR detection in terms of wide linear range (1 pM-5 nM), low detection limit (0.23 pM, S/N = 3), excellent selectivity and high stability. This new strategy can provide a way for regulating nanostructures for more sensitive PEC sensors by increasing the carrier density.


Asunto(s)
Técnicas Biosensibles , Grafito , Técnicas Electroquímicas , Compuestos Férricos , Hidrogeles , Luz , Límite de Detección , Toxinas Marinas , Microcistinas
13.
Analyst ; 146(6): 2029-2036, 2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33528465

RESUMEN

In this study, a sensitive and effective monitoring method for ractopamine (RAC) was developed based on a sensitive electrochemiluminescence (ECL) aptasensor. Here, we employed a perylene derivative (PTC-PEI) with a Cu-based metal-organic framework (HKUST-1), which could accelerate the electron-transfer (ET) rate and strengthen interactions by the amido bond, resulting in enhanced ECL sensitivity and stability. Astonishingly, compared with the response of PTC-PEI and complex, the ECL signal of the MOF-based ECL material was noticeably raised by 6 times higher than that of PTC-PEI. HKUST-1 exhibited an excellent catalytic effect towards the electrochemical reduction process of S2O82-, thus allowing more sulfate radical anions (SO4˙-) to be generated. The strong ECL intensity of HKUST-1/PTC-PEI not only stemmed from the fixation of PTC-PEI that utilized its excellent film-forming abilities but also originated from the high porosity of HKUST-1 that carried more luminophores able to be excited. Satisfyingly, in the presence of the target molecule RAC, we observed an obvious quenching effect of signal, which could be attributed to aptamer recognition resulting in RAC being specifically captured on the electrode. Under optimal conditions, the developed sensor for the RAC assay displayed a desired linear range of 1.0 × 10-12-1.0 × 10-6 M and a low detection limit of 6.17 × 10-13 M (S/N = 3). This ECL sensor showed high sensitivity, good stability and excellent selectivity. More importantly, the proposed aptasensor exhibited excellent determination towards RAC detection and potential practical utility for real samples.

14.
Mikrochim Acta ; 188(7): 231, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34132907

RESUMEN

The combination of localized surface plasmon resonance (LSPR) and electrochemiluminescence (ECL) can be an effective way to amplify the signal intensity. In this work, an ECL aptasensor with 3,4,9,10-perylenetetracarboxylic acid-decorated cobalt phosphate (denoted as PTCA/CoP) as the ECL emitter and Au nanoparticles (NPs) as plasma was proposed for diclofenac assay. The prepared PTCA/CoP with special 1D/2D structure exhibited good ability and excellent ECL performance. The diclofenac aptamer acted as a bridge to link the PTCA/CoP and Au NPs; thus, the ECL performance of PTCA/CoP was greatly improved due to the plasma effect of Au NPs. Besides, it was found that the ECL signal of the aptasensor was obviously quenched by the introduction of diclofenac, which might be due to the transformation from the LSPR process to the resonance energy transform (RET) process. Under optimal conditions, the difference of ECL intensity was negatively correlated with the concentration of diclofenac in the range 0.1 pM to 10 µM with a low detection limit of 0.072 pM at the potential of -1.8 V vs. Ag/AgCl (S/N = 3). The aptasensor was proved to be suitable for the detection of diclofenac in real samples, suggesting its great practicability.


Asunto(s)
Técnicas Biosensibles/métodos , Diclofenaco/uso terapéutico , Técnicas Electroquímicas/métodos , Oro/química , Nanopartículas del Metal/química , Diclofenaco/farmacología , Humanos
15.
Mikrochim Acta ; 188(2): 44, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33462661

RESUMEN

A novel aptasensor has been fabricated based on the resonance energy transform (RET) system from MoS2QDs-PATP/PTCA (donor) to NH2-UiO-66 (acceptor). The electrochemiluminescence (ECL) signal of PTCA was greatly amplified due to the decoration of MoS2QDs-PATP, and the NH2-UiO-66 was utilized to label the signal probe DNA (pDNA), which hybridizes with the exposed aptamer anchored on the surface of MoS2QDs-PATP/PTCA. With the target acetamiprid, the specific binding of acetamiprid to aptamer causes the connection between the donor and the acceptor to be interrupted and produce an "on" ECL signal. Thus, an "off-on" ECL sensing platform for sensitive and selective acetamiprid assay was designed. Under the optimal condition, the ECL signal of the aptasensor was found to be linearly related to the logarithm of the acetamiprid concentration ranging from 0.1 fM to 0.1 µM with a detection limit of 0.064 fM. More importantly, the recovery rate of the ECL aptasensor was calculated to be 98.7 ~ 106% with a RSD lower 5.1% for the residual acetamiprid assay in real food samples, which indicated that the aptasensor has high potential for practical applications.

16.
Analyst ; 145(23): 7616-7622, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33001071

RESUMEN

In this work, a solid-state electrochemiluminescence (ECL) sensor based on resonance energy transfer (RET) was proposed using MoS2QDs@g-C3N4 as a donor and NH2-SiO2@PTCA as an acceptor. Herein, MoS2QDs could significantly facilitate the stability and efficiency of the ECL of g-C3N4. PTCA provided a large platform to anchor NH2-SiO2 nanoparticles. The prepared MoS2QDs@g-C3N4 exhibited good spectral overlap with the UV-vis absorption spectrum of NH2-SiO2@PTCA. Based on this, we designed an "off-on" ECL sensing strategy for sensitive and selective detection of glutathione (GSH). Under the best conditions, the linear range of the sensor for GSH detection was from 0.001 to 100 µM with a detection limit of 0.63 nM (S/N = 3). More importantly, GSH in commercial samples can be detected using the proposed sensor, which indicated its superior detection capabilities and potential application value in commercial medicines.


Asunto(s)
Técnicas Biosensibles , Dióxido de Silicio , Técnicas Electroquímicas , Transferencia de Energía , Glutatión , Mediciones Luminiscentes
17.
Analyst ; 145(9): 3306-3312, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32195485

RESUMEN

In this work, a sensitive and selective electrochemiluminescent aptasensor was proposed based on the enhancing mechanism of the metal-organic framework NH2-MIL-125(Ti) in a 3,4,9,10-perylenetetracarboxylic acid/K2S2O8 system for a diethylstilbestrol assay. Herein, 3,4,9,10-perylenetetracarboxylic acid was selected as the major luminophore, and the metal-organic framework NH2-MIL-125(Ti) displayed a large specific surface area to immobilize abundant PTCA molecules to facilitate electrochemiluminescence efficiency. Besides, the metal-organic framework NH2-MIL-125(Ti) was used as a novel catalyst in the 3,4,9,10-perylenetetracarboxylic acid/K2S2O8 system, which could react with the co-reactant K2S2O8 to produce more SO4˙-. In addition, we introduced the amino-aptamer of diethylstilbestrol; due to the specific binding affinity between the aptamer and diethylstilbestrol, a selective electrochemiluminescent aptasensor for diethylstilbestrol was thus developed here. Under the optimal conditions, a wide detection range from 1.0 fM to 1.0 µM with a low detection limit of 0.28 fM (S/N = 3) was obtained. More importantly, the residual diethylstilbestrol in water was detected by the developed aptasensor; this confirmed that this method has good performance and potential applications in real samples.


Asunto(s)
Aptámeros de Nucleótidos/química , Dietilestilbestrol/análisis , Mediciones Luminiscentes/métodos , Estructuras Metalorgánicas/química , Perileno/análogos & derivados , Compuestos de Potasio/química , Sulfatos/química , Catálisis , Dietilestilbestrol/química , Técnicas Electroquímicas , Electrodos , Agua Dulce/análisis , Límite de Detección , Perileno/química , Reproducibilidad de los Resultados , Titanio/química
18.
Mikrochim Acta ; 187(8): 474, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32734519

RESUMEN

A novel "off-on" electrochemiluminescence (ECL) aptasensor based on ECL resonance energy transfer (RET) system from 3,4,9,10-perylenetetracar-boxylic acid/the metal-organic frameworks NH2-MIL-125(Ti) (PTCA/NH2-MIL-125) to Au nanoparticles (Au NPs) was put forward for microcystin-LR (MC-LR) assay. The electrochemiluminescence (ECL) emission spectra of PTCA/NH2-MIL-125 show excellent spectral overlap with the UV-vis absorption spectrum of Au NPs. A linear response ranging from 10 fM (9.95 × 10-6 µg L-1) to 0.1 µM (99.5 µg L-1) was obtained, and the detection limit was 3.6 fM (3.58 × 10-6 µg L-1) under optimal conditions at a potential of - 1.6 V (S/N = 3). Besides, the prepared ECL-RET MC-LR aptasensor exhibited good selectivity and stability. Graphical abstract.

19.
Mikrochim Acta ; 187(4): 227, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32170403

RESUMEN

Ultrasensitive and selective determination of bisphenol A (BPA) was achieved by a solid-state electrochemiluminescence (ECL) aptasensor. The Ti-based MOFs (MIL-125, MIL stands for Materials of Institute Lavoisier) have porous structure and large specific surface area. They were used as a carrier for Ru(bpy)32+ by a hydrothermal synthesis method. The Ru(bpy)32+ encapsulated MIL-125 (Ru(bpy)32+@MIL-125) was dropped on a glass carbon electrode (GCE) and used as working electrode. After that, the thiol-based aptamer of BPA was used to modify the working electrode by Ti-S bond. As a result of the specific binding affinity between aptamer and BPA, the ECL signal was significantly quenched. Thus, a selective electrochemiluminescence (ECL) aptasensor for BPA was developed. The ECL aptasensor based on Ru(bpy)32+@MIL-125 has a good ECL response toward detecting BPA. Under optimal conditions, the aptasensor can detect BPA in a wide linear range from 1.0 × 10-12 to 1.0 × 10-6 M with an excellent determination limit of 6.1 × 10-13 M (S/N = 3). The ECL aptasensor can selectively detect BPA in a mixture containing BPA interference compounds.

20.
Analyst ; 143(7): 1568-1574, 2018 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-29379911

RESUMEN

Bacterial detection has attracted substantial interest in recent years owing to its importance in biology, medical care, drug discovery, and public health. For such applications, bacterial cell-imprinting technologies are regarded as potential methods, as they can fabricate artificial tailor-made receptors for cellular recognition. In comparison to conventional methods, which generally require a few days for bacterial determination, cell-imprinted polymers can save a substantial amount of time. Here, we report a high-throughput bacterial detection method based on a cell-imprinted 96-well microplate. The fabrication of the bacterial cell-imprinted polypyrrole and nafion complex was accomplished on a gold nanoparticle-coated microplate. The cell-imprinted polymer complex on the microplate can spontaneously rebind and specifically detect target cells with high selectivity in a short time frame (within 30 min). Furthermore, the microplates could discriminate particular target Escherichia coli O157:H7 cells from bacterial mixtures. This simple method may be used for a variety of applications such as clinical testing, food safety, and continuous environmental monitoring.


Asunto(s)
Escherichia coli O157/aislamiento & purificación , Oro , Nanopartículas del Metal , Polímeros de Fluorocarbono , Polímeros , Pirroles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA