Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Opt Express ; 32(8): 13672-13687, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38859331

RESUMEN

Ronchi lateral shearing interferometry is a promising wavefront sensing technology with the advantages of simple structure and no reference light, which can realize a high-precision wavefront aberration measurement. To obtain shear information in both directions, the conventional double-Ronchi interferometer sequentially applies two orthogonal one-dimensional Ronchi gratings as the object-plane splitting element of the optics under test. Simultaneously, another Ronchi grating is positioned on the image plane in the same orientation to capture two sets of interferograms, thereby enabling two-dimensional wavefront reconstruction. Mechanical errors will inevitably be introduced during grating conversion, affecting reconstruction accuracy. Based on this, we propose a lateral shearing interferometry applying double-checkerboard grating. Only unidirectional phase shift is needed to obtain shear information in two directions while evading the grating conversion step, aiming to streamline operational processes and mitigate the potential for avoidable errors. We employ scalar diffraction theory to analyze the full optical path propagation process of the double-checkerboard shearing interferometry and introduce a new reconstruction algorithm to effectively extract the two-dimensional shear phase by changing the grating morphology, suppressing the aliasing effect of irrelevant diffraction orders. We reduce the fitting error through iterative optimization to realize high-precision wavefront reconstruction. Compared with conventional Ronchi lateral shearing interferometry, the proposed method exhibits better robustness and stability in noisy environments.

2.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(6): 761-768, 2024 Jun 10.
Artículo en Zh | MEDLINE | ID: mdl-38818566

RESUMEN

Structural maintenance of chromosomes (SMC), including cohesin, condensin and the SMC5/6 complex, are protein complexes which maintain the higher structure and dynamic stability of chromatin. Such circular complexes, with similar structures, play pivotal roles in chromatid cohesion, chromosomal condensation, DNA replication and repair, as well as gene transcription. Despite extensive research on the functions of the SMCs, our understanding of the SMC5/6 complex has remained limited compared with the other two complexes. This article has reviewed the architecture and crucial physiological roles of the SMCs, and explored the associated phenotypes resulting from mutations of the SMC components such as Cornelia de Lange syndrome (CdLS) and microcephaly, with an aim to provide insights into their functions in eukaryotic cells and implications for human diseases.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Humanos , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Ciclo Celular/genética , Cohesinas , Complejos Multiproteicos/genética , Proteínas de Unión al ADN/genética , Adenosina Trifosfatasas/genética , Animales , Síndrome de Cornelia de Lange/genética , Mutación
3.
Molecules ; 28(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36838868

RESUMEN

Starch hydrolysis by gut microbiota involves a diverse range of different enzymatic activities. Glucan-branching enzyme GlgB was identified as the most abundant glycosidase in Firmicutes in the swine intestine. GlgB converts α-(1→4)-linked amylose to form α-(1→4,6) branching points. This study aimed to characterize GlgB cloned from a swine intestinal metagenome and to investigate its potential role in formation of α-(1→4,6)-branched α-glucans from starch. The branching activity of purified GlgB was determined with six different starches and pure amylose by quantification of amylose after treatment. GlgB reduced the amylose content of all 6 starches and amylose by more than 85% and displayed a higher preference towards amylose. The observed activity on raw starch indicated a potential role in the primary starch degradation in the large intestine as an enzyme that solubilizes amylose. The oligosaccharide profile showed an increased concentration of oligosaccharide introduced by GlgB that is not hydrolyzed by intestinal enzymes. This corresponded to a reduced in vitro starch digestibility when compared to untreated starch. The study improves our understanding of colonic starch fermentation and may allow starch conversion to produce food products with reduced digestibility and improved quality.


Asunto(s)
Enzima Ramificadora de 1,4-alfa-Glucano , Glucanos , Animales , Porcinos , Glucanos/metabolismo , Amilosa , Enzima Ramificadora de 1,4-alfa-Glucano/genética , Enzima Ramificadora de 1,4-alfa-Glucano/metabolismo , Almidón/metabolismo , Bacterias/metabolismo
4.
J Neurosci ; 41(12): 2566-2580, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33536197

RESUMEN

We show for the first time that the neuropeptide orexin modulates pupillary light response, a non-image-forming visual function, in mice of either sex. Intravitreal injection of the orexin receptor (OXR) antagonist TCS1102 and orexin-A reduced and enhanced pupillary constriction in response to light, respectively. Orexin-A activated OX1Rs on M2-type intrinsically photosensitive retinal ganglion cells (M2 cells), and caused membrane depolarization of these cells by modulating inward rectifier potassium channels and nonselective cation channels, thus resulting in an increase in intrinsic excitability. The increased intrinsic excitability could account for the orexin-A-evoked increase in spontaneous discharges and light-induced spiking rates of M2 cells, leading to an intensification of pupillary constriction. Orexin-A did not alter the light response of M1 cells, which could be because of no or weak expression of OX1Rs on them, as revealed by RNAscope in situ hybridization. In sum, orexin-A is likely to decrease the pupil size of mice by influencing M2 cells, thereby improving visual performance in awake mice via enhancing the focal depth of the eye's refractive system.SIGNIFICANCE STATEMENT This study reveals the role of the neuropeptide orexin in mouse pupillary light response, a non-image-forming visual function. Intravitreal orexin-A administration intensifies light-induced pupillary constriction via increasing the excitability of M2 intrinsically photosensitive retinal ganglion cells by activating the orexin receptor subtype OX1R. Modulation of inward rectifier potassium channels and nonselective cation channels were both involved in the ionic mechanisms underlying such intensification. Orexin could improve visual performance in awake mice by reducing the pupil size and thereby enhancing the focal depth of the eye's refractive system.


Asunto(s)
Orexinas/administración & dosificación , Estimulación Luminosa/métodos , Pupila/efectos de los fármacos , Reflejo Pupilar/efectos de los fármacos , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/efectos de los fármacos , Animales , Bencimidazoles/administración & dosificación , Femenino , Inyecciones Intravítreas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Orexina/agonistas , Receptores de Orexina/metabolismo , Orexinas/antagonistas & inhibidores , Pupila/fisiología , Pirrolidinas/administración & dosificación , Reflejo Pupilar/fisiología , Células Ganglionares de la Retina/metabolismo
5.
Front Genet ; 15: 1379366, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655056

RESUMEN

Objective: The article aims to provide genetic counseling to a family with two children who were experiencing growth and developmental delays. Methods: Clinical information of the proband was collected. Peripheral blood was collected from core family members to identify the initial reason for growth and developmental delays by whole exome sequencing (WES) and Sanger sequencing. To ascertain the consequences of the newly discovered variants, details of the variants detected were analyzed by bioinformatic tools. Furthermore, we performed in vitro experimentation targeting SNX14 gene expression to confirm whether the variants could alter the expression of SNX14. Results: The proband had prenatal ultrasound findings that included flattened frontal bones, increased interocular distance, widened bilateral cerebral sulci, and shortened long bones, which resulted in subsequent postnatal developmental delays. The older sister also displayed growth developmental delays and poor muscle tone. WES identified compound heterozygous variants of c.712A>T (p.Arg238Ter) and .2744A>T (p.Gln915Leu) in the SNX14 gene in these two children. Both are novel missense variant that originates from the father and mother, respectively. Sanger sequencing confirmed this result. Following the guideline of the American College of Medical Genetics and Genomics (ACMG), the SNX14 c.712A>T (p.Arg238Ter) variant was predicted to be pathogenic (P), while the SNX14 c.2744A>T (p.Gln915Leu) variant was predicted to be a variant of uncertain significance (VUS). The structural analysis revealed that the c.2744A>T (p.Gln915Leu) variant may impact the stability of the SNX14 protein. In vitro experiments demonstrated that both variants reduced SNX14 expression. Conclusion: The SNX14 gene c.712A>T (p.Arg238Ter) and c.2744A>T (p.Gln915Leu) were identified as the genetic causes of growth and developmental delay in two affected children. This conclusion was based on the clinical presentations of the children, structural analysis of the mutant protein, and in vitro experimental validation. This discovery expands the range of SNX14 gene variants and provides a foundation for genetic counseling and guidance for future pregnancies in the affected children's families.

6.
Mol Cytogenet ; 17(1): 4, 2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38369498

RESUMEN

OBJECTIVE: The primary object of this study is to analyze chromosomal abnormalities in miscarriages detected by copy number variants sequencing (CNV-Seq), establish potential pathways or genes related to miscarriages, and provide guidance for birth health in the following pregnancies. METHODS: This study enrolled 580 miscarriage cases with paired clinical information and chromosomal detection results analyzed by CNV-Seq. Further bioinformatic analyses were performed on validated pathogenic CNVs (pCNVs). RESULTS: Of 580 miscarriage cases, three were excluded as maternal cell contamination, 357 cases showed abnormal chromosomal results, and the remaining 220 were normal, with a positive detection rate of 61.87% (357/577). In the 357 miscarriage cases, 470 variants were discovered, of which 65.32% (307/470) were pathogenic. Among all variants detected, 251 were numerical chromosomal abnormalities, and 219 were structural abnormalities. With advanced maternal age, the proportion of numerical abnormalities increased, but the proportion of structural abnormalities decreased. Kyoto Encyclopedia of Genes and Genomes pathway and gene ontology analysis revealed that eleven pathways and 636 biological processes were enriched in pCNVs region genes. Protein-protein interaction analysis of 226 dosage-sensitive genes showed that TP53, CTNNB1, UBE3A, EP300, SOX2, ATM, and MECP2 might be significant in the development of miscarriages. CONCLUSION: Our study provides evidence that chromosomal abnormalities contribute to miscarriages, and emphasizes the significance of microdeletions or duplications in causing miscarriages apart from numerical abnormalities. Essential genes found in pCNVs regions may account for miscarriages which need further validation.

7.
Neural Regen Res ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38934389

RESUMEN

ABSTRACT: Diabetic retinopathy is a prominent cause of blindness in adults, with early retinal ganglion cell (RGC) loss contributing to visual dysfunction or blindness. In the brain, defects in y-aminobutyric acid (GABA) synaptic transmission are associated with pathophysiological and neurodegenerative disorders, whereas glucagon-like peptide-1 (GLP-1) has demonstrated neuroprotective effects. However, it is not yet clear whether diabetes causes alterations in inhibitory input to RGCs and whether and how GLP-1 protects against neurodegeneration in the diabetic retina through regulating inhibitory synaptic transmission to RGCs. In the present study, we used the patch-clamp technique to record GABA subtype A receptor-mediated miniature inhibitory postsynaptic currents (mIPSCs) in RGCs from streptozotocin-induced diabetes model rats. We found that early diabetes (4 weeks of hyperglycemia) decreased the frequency of GABAergic mIPSCs in RGCs without altering their amplitude, suggesting a reduction in the spontaneous release of GABA to RGCs. Topical administration of GLP-1 eyedrops over a period of 2 weeks effectively countered the hyperglycemia-induced downregulation of GABAergic mIPSC frequency, subsequently enhancing the survival of RGCs. Concurrently, the protective effects of GLP-1 on RGCs in diabetic rats were eliminated by topical administration of exendin-9-39, a specific GLP-1 receptor antagonist, or SR95531, a specific antagonist of the GABA subtype A receptor. Furthermore, extracellular perfusion of GLP-1 was found to elevate the frequencies of GABAergic mIPSCs in both ON- and OFF-type RGCs. This elevation was shown to be mediated by activation of the phosphatidylinositol-phospholipase C/inositol 1,4,5-trisphosphate receptor/Ca2+/protein kinase C signaling pathway downstream of GLP-1 receptor activation. Moreover, multielectrode array recordings revealed that GLP-1 functionally augmented the photoresponses of ON-type RGCs. Optomotor response tests demonstrated that diabetic rats exhibited reductions in visual acuity and contrast sensitivity that were significantly ameliorated by topical administration of GLP-1. These results suggest that GLP-1 facilitates the release of GABA onto RGCs through the activation of GLP-1 receptor, leading to the de-excitation of RGC circuits and the inhibition of excitotoxic processes associated with diabetic retinopathy. Collectively, our findings indicate that the GABA system has potential as a therapeutic target for mitigating early-stage diabetic retinopathy. Furthermore, the topical administration of GLP-1 eyedrops represents a non-invasive and effective treatment approach for managing early-stage diabetic retinopathy.

8.
iScience ; 26(9): 107680, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37680468

RESUMEN

Progressive damage of retinal ganglion cells (RGCs) is observed in early diabetic retinopathy. Intracellular Ca2+ overload mediated by Ca2+ influx through voltage-gated Ca2+ channels (VGCCs) is involved in neurodegeneration, whereas glucagon-like peptide-1 (GLP-1) provides neuroprotection. However, whether GLP-1 plays a neuroprotective role in diabetic retinas by modulating VGCCs remains unknown. We found that eye drops of exendin-4, a long-acting GLP-1 receptor (GLP-1R) agonist, prevented the increase of L-type Ca2+ current (ILCa) densities of RGCs induced by 4-week hyperglycemia and promoted RGC survival by suppressing L-type VGCC (L-VGCC) activity in streptozotocin-induced diabetic rats. Moreover, exendin-4-induced suppression of ILCa in RGCs may be mediated by a GLP-1R/Gs/cAMP-PKA/ryanodine/Ca2+/calmodulin/calcineurin/PP1 signaling pathway. Furthermore, exendin-4 functionally improved the light-evoked spiking ability of diabetic RGCs. These results suggest that GLP-1R activation enhances cAMP to PP1 signaling and that PP1 inactivates L-VGCCs by dephosphorylating them, thereby reducing Ca2+ influx, which could protect RGCs against excitotoxic Ca2+ overload.

9.
Sci Adv ; 9(12): eadf4651, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36947616

RESUMEN

Light modulates mood through various retina-brain pathways. We showed that mice treated with short-term acute bright light exposure displayed anxiety-related phenotypes in a prolonged manner even after the termination of the exposure. Such a postexposure anxiogenic effect depended upon melanopsin-based intrinsically photosensitive retinal ganglion cell (ipRGC) activities rather than rod/cone photoreceptor inputs. Chemogenetic manipulation of specific central nuclei demonstrated that the ipRGC-central amygdala (CeA) visual circuit played a key role in this effect. The corticosterone system was likely to be involved in this effect, as evidenced by enhanced expression of the glucocorticoid receptor (GR) protein in the CeA and the bed nucleus of the stria terminalis and by the absence of this effect in animals treated with the GR antagonist. Together, our findings reveal a non-image forming visual circuit specifically designed for "the delayed" extinction of anxiety against potential threats, thus conferring a survival advantage.


Asunto(s)
Núcleo Amigdalino Central , Células Ganglionares de la Retina , Ratones , Animales , Células Ganglionares de la Retina/metabolismo , Retina , Células Fotorreceptoras Retinianas Conos , Células Fotorreceptoras de Vertebrados/metabolismo , Luz
10.
Neurosci Bull ; 38(6): 622-636, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35278196

RESUMEN

Glucagon-like peptide-1 (GLP-1) is expressed in retinal neurons, but its role in the retina is largely unknown. Here, we demonstrated that GLP-1 or the GLP-1 receptor (GLP-1R; a G protein-coupled receptor) agonist exendin-4 suppressed γ-aminobutyric acid receptor (GABAR)-mediated currents through GLP-1Rs in isolated rat retinal ganglion cells (GCs). Pre-incubation with the stimulatory G protein (Gs) inhibitor NF 449 abolished the exendin-4 effect. The exendin-4-induced suppression was mimicked by perfusion with 8-Br-cAMP (a cAMP analog), but was eliminated by the protein kinase A (PKA) inhibitor Rp-cAMP/KT-5720. The exendin-4 effect was accompanied by an increase in [Ca2+]i of GCs through the IP3-sensitive pathway and was blocked in Ca2+-free solution. Furthermore, when the activity of calmodulin (CaM) and CaM-dependent protein kinase II (CaMKII) was inhibited, the exendin-4 effect was eliminated. Consistent with this, exendin-4 suppressed GABAR-mediated light-evoked inhibitory postsynaptic currents in GCs in rat retinal slices. These results suggest that exendin-4-induced suppression may be mediated by a distinct Gs/cAMP-PKA/IP3/Ca2+/CaM/CaMKII signaling pathway, following the activation of GLP-1Rs.


Asunto(s)
Péptido 1 Similar al Glucagón , Células Ganglionares de la Retina , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Exenatida/metabolismo , Exenatida/farmacología , Péptido 1 Similar al Glucagón/farmacología , Ratas , Receptores de GABA/metabolismo , Células Ganglionares de la Retina/fisiología , Transducción de Señal
11.
Nanomaterials (Basel) ; 12(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36234434

RESUMEN

The rareness and weak durability of Pt-based electrocatalysts for oxygen reduction reactions (ORRs) have hindered the large-scale application of fuel cells. Here, we developed an efficient metal-free catalyst consisting of N, S co-doped graphene nanoribbons (N, S-GNR-2s) for ORRs. GNRs were firstly synthesized via the chemical unzipping of carbon nanotubes, and then N, S co-doping was conducted using urea as the primary and sulfourea as the secondary heteroatom sources. The successful incorporation of nitrogen and sulfur was confirmed by elemental mapping analysis as well as X-ray photoelectron spectroscopy. Electrochemical testing revealed that N, S-GNR-2s exhibited an Eonset of 0.89 V, E1/2 of 0.79 V and an average electron transfer number of 3.72, as well as good stability and methanol tolerance. As a result, N, S-GNR-2s displayed better ORR property than either N-GNRs or N, S-GNRs, the control samples prepared with only a primary heteroatom source, strongly clarifying the significance of secondary-heteroatom-doping on enhancing the catalytic activity of carbon-based nanomaterials.

12.
Sci Adv ; 8(23): eabm9027, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35675393

RESUMEN

The increasing global prevalence of myopia calls for elaboration of the pathogenesis of this disease. Here, we show that selective ablation and activation of intrinsically photosensitive retinal ganglion cells (ipRGCs) in developing mice induced myopic and hyperopic refractive shifts by modulating the corneal radius of curvature (CRC) and axial length (AL) in an opposite way. Melanopsin- and rod/cone-driven signals of ipRGCs were found to influence refractive development by affecting the AL and CRC, respectively. The role of ipRGCs in myopia progression is evidenced by attenuated form-deprivation myopia magnitudes in ipRGC-ablated and melanopsin-deficient animals and by enhanced melanopsin expression/photoresponses in form-deprived eyes. Cell subtype-specific ablation showed that M1 subtype cells, and probably M2/M3 subtype cells, are involved in ocular development. Thus, ipRGCs contribute substantially to mouse eye growth and myopia development, which may inspire novel strategies for myopia intervention.


Asunto(s)
Miopía , Células Ganglionares de la Retina , Animales , Ratones , Miopía/etiología , Células Fotorreceptoras de Vertebrados , Células Ganglionares de la Retina/fisiología , Visión Ocular
13.
J Inflamm Res ; 14: 6523-6542, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34887675

RESUMEN

BACKGROUND: Osteoarthritis (OA) is the most prevalent chronic joint disease globally. Loss of extracellular matrix (ECM) by chondrocytes is a classic feature of OA. Inflammatory cytokines, such as interleukin-1ß (IL-1ß) and interleukin-18 (IL-18), secreted mainly by macrophages, promote expression of matrix degrading proteins and further aggravate progression of OA. 1,25-dihydroxyvitamin D (1,25VD) modulates inflammation thus exerting protective effects on cartilage tissue. However, the underlying mechanisms of 1,25VD activity have not been fully elucidated. METHODS: The destabilization of the medial meniscus (DMM)-induced mice model of OA was established to investigate the protective effects of 1,25VD by micro-CT and Safranin-O and Fast Green staining. And the co-culture system between THP-1 cells and primary chondrocytes was constructed to explore the effects of vitamin D receptor (VDR) and 1,25VD on chondrogenic proliferation, apoptosis, and migration. The immunofluorescence staining and Western blot analysis were used to detect the expressions of ECM proteins and matrix degradation-associated proteases. Enzyme-linked immunosorbent assay (ELISA) was used to examine the expression levels of inflammatory cytokines. RESULTS: The findings of the study showed that 1,25VD prevented cartilage degeneration and osteophyte formation by inhibiting secretion of inflammatory cytokines in OA mice model. These protective effects were exerted through the vitamin D receptor (VDR). Further studies showed that 1,25VD increased ubiquitination level of NLRP3 by binding to VDR, resulting in decrease in IL-1ß and IL-18 secretion. These findings indicate that 1,25VD binds to VDR thus preventing chondrogenic ECM degradation by modulating macrophage NLRP3 activation and secretion of inflammatory cytokines, thus alleviating OA progression. CONCLUSION: Here, our study suggests that 1,25VD, targeting to VDR, prevents chondrogenic ECM degradation through regulating macrophage NLRP3 activation and inflammatory cytokines secretion, thereby alleviating OA. These findings provide information on a novel molecular mechanism for application of 1,25VD as OA therapy.

14.
Stem Cell Res Ther ; 12(1): 427, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34321073

RESUMEN

BACKGROUND: Previous studies report that lipopolysaccharide (LPS)-preconditioned mesenchymal stem cells have enhanced trophic support and improved regenerative and repair properties. Extracellular vesicles secreted by synovial mesenchymal stem cells (EVs) can reduce cartilage damage caused by osteoarthritis (OA). Previous studies show that extracellular vesicles secreted by LPS-preconditioned synovial mesenchymal stem cells (LPS-pre EVs) can improve the response to treatment of osteoarthritis (OA). This study sought to explore effects of LPS-pre EVs on chondrocyte proliferation, migration, and chondrocyte apoptosis, as well as the protective effect of LPS-pre EVs on mouse articular cartilage. METHODS: Chondrocytes were extracted to explore the effect of LPS-pre EVs on proliferation, migration, and apoptosis of chondrocytes. In addition, the effect of LPS-pre EVs on expression level of important proteins of chondrocytes was explored suing in vitro experiments. Further, intraarticular injection of LPS-pre EVs was performed on the destabilization of the medial meniscus (DMM)-induced mouse models of OA to explore the therapeutic effect of LPS-pre EVs on osteoarthritis in vivo. RESULTS: Analysis showed that LPS-pre EVs significantly promoted proliferation and migration of chondrocytes and inhibited the apoptosis of chondrocytes compared with PBS and EVs. Moreover, LPS-pre EVs inhibited decrease of aggrecan and COL2A1 and increase of ADAMTS5 caused by IL-1ß through let-7b. Furthermore, LPS-pre EVs significantly prevented development of OA in DMM-induced mouse models of OA. CONCLUSIONS: LPS pretreatment is an effective and promising method to improve therapeutic effect of extracellular vesicles secreted from SMSCs on OA.


Asunto(s)
Cartílago Articular , Vesículas Extracelulares , Células Madre Mesenquimatosas , Osteoartritis de la Rodilla , Animales , Condrocitos , Matriz Extracelular , Humanos , Lipopolisacáridos , Ratones , Osteoartritis de la Rodilla/terapia
15.
Oncotarget ; 8(28): 45105-45116, 2017 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-28187447

RESUMEN

The specific mechanisms for epigenetic regulation of gene transcription remain to be elucidated. We previously demonstrated that hyperacetylation of histone H3K9 in promoter II of glioma cells promotes high transcription of the glial cell line-derived neurotrophic factor (GDNF) gene. This hyperacetylation significantly enhanced Egr-1 binding and increased the recruitment of RNA polymerase II (RNA POL II) to that region (P < 0.05). Egr-1 expression was abnormally increased in C6 glioma cells. Further overexpression of Egr-1 significantly increased Egr-1 binding to GDNF promoter II, while increasing RNA POL II recruitment, thus increasing GDNF transcription (P < 0.01). When the acetylation of H3K9 in the Egr-1 binding site was significantly reduced by the histone acetyltransferase (HAT) inhibitor curcumin, binding of Egr-1 to GDNF promoter II, RNA POL II recruitment, and GDNF mRNA expression were significantly downregulated (P < 0.01). Moreover, curcumin attenuated the effects of Egr-1 overexpression on Egr-1 binding, RNA POL II recruitment, and GDNF transcription (P < 0.01). Egr-1 and RNA POL II co-existed in the nucleus of C6 glioma cells, with overlapping regions, but they were not bound to each other. In conclusion, highly expressed Egr-1 may be involved in the recruitment of RNA POL II in GDNF promoter II in a non-binding manner, and thereby involved in regulating GDNF transcription in high-grade glioma cells. This regulation is dependent on histone hyperacetylation in GDNF promoter II.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Glioma/metabolismo , Histonas/metabolismo , ARN Polimerasa II/metabolismo , Acetilación , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Glioma/genética , Glioma/patología , Histonas/genética , Humanos , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , Ratas , Transcripción Genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA