Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell ; 166(1): 258-258.e1, 2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27368105

RESUMEN

Brown and beige adipose tissues have been identified as potential therapeutic targets for combating diet-induced obesity and metabolic disease. Here, we present transcriptional and developmental regulation of brown and beige adipose tissue, as well as critical physiological and pharmaceutical activators of thermogenesis in both tissues.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo/metabolismo , Termogénesis , Regulación de la Expresión Génica , Humanos , Inmunidad Innata
2.
Genes Dev ; 31(7): 660-673, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28428261

RESUMEN

The transcription factor early B-cell factor 2 (EBF2) is an essential mediator of brown adipocyte commitment and terminal differentiation. However, the mechanisms by which EBF2 regulates chromatin to activate brown fat-specific genes in adipocytes were unknown. ChIP-seq (chromatin immunoprecipitation [ChIP] followed by deep sequencing) analyses in brown adipose tissue showed that EBF2 binds and regulates the activity of lineage-specific enhancers. Mechanistically, EBF2 physically interacts with the chromatin remodeler BRG1 and the BAF chromatin remodeling complex in brown adipocytes. We identified the histone reader protein DPF3 as a brown fat-selective component of the BAF complex that was required for brown fat gene programming and mitochondrial function. Loss of DPF3 in brown adipocytes reduced chromatin accessibility at EBF2-bound enhancers and led to a decrease in basal and catecholamine-stimulated expression of brown fat-selective genes. Notably, Dpf3 is a direct transcriptional target of EBF2 in brown adipocytes, thereby establishing a regulatory module through which EBF2 activates and also recruits DPF3-anchored BAF complexes to chromatin. Together, these results reveal a novel mechanism by which EBF2 cooperates with a tissue-specific chromatin remodeling complex to activate brown fat identity genes.


Asunto(s)
Adipogénesis/genética , Tejido Adiposo Pardo/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/genética , Histonas/metabolismo , Factores de Transcripción/genética , Tejido Adiposo Pardo/metabolismo , Animales , Linaje de la Célula/genética , Células Cultivadas , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transcripción Genética
3.
J Lipid Res ; 65(2): 100434, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37640283

RESUMEN

Adipose tissue is the site of long-term energy storage. During the fasting state, exercise, and cold exposure, the white adipose tissue mobilizes energy for peripheral tissues through lipolysis. The mobilization of lipids from white adipose tissue to the liver can lead to excess triglyceride accumulation and fatty liver disease. Although the white adipose tissue is known to release free fatty acids, a comprehensive analysis of lipids mobilized from white adipocytes in vivo has not been completed. In these studies, we provide a comprehensive quantitative analysis of the adipocyte-secreted lipidome and show that there is interorgan crosstalk with liver. Our analysis identifies multiple lipid classes released by adipocytes in response to activation of lipolysis. Time-dependent analysis of the serum lipidome showed that free fatty acids increase within 30 min of ß3-adrenergic receptor activation and subsequently decrease, followed by a rise in serum triglycerides, liver triglycerides, and several ceramide species. The triglyceride composition of liver is enriched for linoleic acid despite higher concentrations of palmitate in the blood. To further validate that these findings were a specific consequence of lipolysis, we generated mice with conditional deletion of adipose tissue triglyceride lipase exclusively in adipocytes. This loss of in vivo adipocyte lipolysis prevented the rise in serum free fatty acids and hepatic triglycerides. Furthermore, conditioned media from adipocytes promotes lipid remodeling in hepatocytes with concomitant changes in genes/pathways mediating lipid utilization. Together, these data highlight critical role of adipocyte lipolysis in interorgan crosstalk between adipocytes and liver.


Asunto(s)
Ácidos Grasos no Esterificados , Lipólisis , Ratones , Animales , Lipólisis/fisiología , Ácidos Grasos no Esterificados/metabolismo , Lipidómica , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Hígado/metabolismo , Triglicéridos/metabolismo
4.
Genes Dev ; 29(3): 298-307, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25644604

RESUMEN

PR (PRD1-BF1-RIZ1 homologous) domain-containing 16 (PRDM16) drives a brown fat differentiation program, but the mechanisms by which PRDM16 activates brown fat-selective genes have been unclear. Through chromatin immunoprecipitation (ChIP) followed by deep sequencing (ChIP-seq) analyses in brown adipose tissue (BAT), we reveal that PRDM16 binding is highly enriched at a broad set of brown fat-selective genes. Importantly, we found that PRDM16 physically binds to MED1, a component of the Mediator complex, and recruits it to superenhancers at brown fat-selective genes. PRDM16 deficiency in BAT reduces MED1 binding at PRDM16 target sites and causes a fundamental change in chromatin architecture at key brown fat-selective genes. Together, these data indicate that PRDM16 controls chromatin architecture and superenhancer activity in BAT.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Subunidad 1 del Complejo Mediador/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología , Animales , Cromatina/química , Cromatina/genética , Elementos de Facilitación Genéticos , Ratones
5.
Genes Dev ; 27(7): 719-24, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23520387

RESUMEN

Cellular reprogramming-the ability to interconvert distinct cell types with defined factors-is transforming the field of regenerative medicine. However, this phenomenon has rarely been observed in vivo without exogenous factors. Here, we report that activation of Notch, a signaling pathway that mediates lineage segregation during liver development, is sufficient to reprogram hepatocytes into biliary epithelial cells (BECs). Moreover, using lineage tracing, we show that hepatocytes undergo widespread hepatocyte-to-BEC reprogramming following injuries that provoke a biliary response, a process requiring Notch. These results provide direct evidence that mammalian regeneration prompts extensive and dramatic changes in cellular identity under injury conditions.


Asunto(s)
Células Epiteliales/citología , Hepatocitos/citología , Regeneración Hepática/fisiología , Animales , Linaje de la Célula , Células Epiteliales/metabolismo , Hepatocitos/metabolismo , Ratones , Receptores Notch/metabolismo , Transducción de Señal , Células Madre/citología
6.
Cell Metab ; 34(12): 1906-1913, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36206763

RESUMEN

In this perspective, we provide an overview of a recently established National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) initiative, the Human Pancreas Analysis Program for Type 2 Diabetes (HPAP-T2D). This program is designed to define the molecular pathogenesis of islet dysfunction by studying human pancreatic tissue samples from organ donors with T2D. HPAP-T2D generates detailed datasets of physiological, histological, transcriptomic, epigenomic, and genomic information. Importantly, all data collected, generated, and analyzed by HPAP-T2D are made immediately and freely available through a centralized database, PANC-DB, thus providing a comprehensive data resource for the diabetes research community.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Epigenómica , Páncreas
7.
Trends Cell Biol ; 30(7): 566-576, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32359707

RESUMEN

Adult tissue stem cells mediate organ homeostasis and regeneration and thus are continually making decisions about whether to remain quiescent, proliferate, or differentiate into mature cell types. These decisions often integrate external cues, such as energy balance and the nutritional status of the organism. Metabolic substrates and byproducts that regulate epigenetic and signaling pathways are now appreciated to have instructive rather than bystander roles in regulating cell fate decisions. In this review, we highlight recent literature focused on how metabolites and dietary manipulations can impact cell fate decisions, with a focus on the regulation of adult tissue stem cells.


Asunto(s)
Especificidad de Órganos , Células Madre/metabolismo , Animales , Dieta , Epigénesis Genética , Homeostasis , Humanos , Neoplasias/metabolismo , Neoplasias/patología
8.
Cell Rep ; 30(9): 2869-2878.e4, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32130892

RESUMEN

Brown adipose tissue (BAT) activity protects animals against hypothermia and represents a potential therapeutic target to combat obesity. The transcription factor early B cell factor-2 (EBF2) promotes brown adipocyte differentiation, but its roles in maintaining brown adipocyte fate and in stimulating BAT recruitment during cold exposure were unknown. We find that the deletion of Ebf2 in adipocytes of mice ablates BAT character and function, resulting in cold intolerance. Unexpectedly, prolonged exposure to cold restores the thermogenic profile and function of Ebf2 mutant BAT. Enhancer profiling and genetic assays identified EBF1 as a candidate regulator of the cold response in BAT. Adipocyte-specific deletion of both Ebf1 and Ebf2 abolishes BAT recruitment during chronic cold exposure. Mechanistically, EBF1 and EBF2 promote thermogenic gene transcription through increasing the expression and activity of ERRα and PGC1α. Together, these studies demonstrate that EBF proteins specify the developmental fate and control the adaptive cold response of brown adipocytes.


Asunto(s)
Adipocitos Marrones/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Termogénesis/genética , Tejido Adiposo Pardo/metabolismo , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Frío , Dieta Alta en Grasa , Regulación de la Expresión Génica , Ratones , Células 3T3 NIH , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Receptores de Estrógenos , Transcripción Genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Receptor Relacionado con Estrógeno ERRalfa
9.
Obesity (Silver Spring) ; 27(1): 13-21, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30569639

RESUMEN

Adipose tissue, once viewed as an inert organ of energy storage, is now appreciated to be a central node for the dynamic regulation of systemic metabolism. There are three general types of adipose tissue: white, brown, and brown-in-white or "beige" fat. All three types of adipose tissue communicate extensively with other organs in the body, including skin, liver, pancreas, muscle, and brain, to maintain energy homeostasis. When energy intake chronically exceeds energy expenditure, obesity and its comorbidities can develop. Thus, understanding the molecular mechanisms by which different types of adipose tissues develop and function could uncover new therapies for combating disorders of energy imbalance. In this review, the recent findings on the transcriptional and chromatin-mediated regulation of brown and beige adipose tissue activity are highlighted.


Asunto(s)
Tejido Adiposo Beige/metabolismo , Tejido Adiposo Pardo/metabolismo , Obesidad/metabolismo , Humanos
10.
Nat Cell Biol ; 19(9): 1006-1007, 2017 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-28855730

RESUMEN

Brown adipose tissue is a key metabolic organ that oxidizes fatty acids and glucose to generate heat. Through epigenomic analyses of multiple adipose depots, the transcription factor nuclear factor I-A (NFIA) is now shown to drive the brown fat genetic program through binding to lineage-specific cis-regulatory elements.


Asunto(s)
Tejido Adiposo Pardo , Factores de Transcripción NFI , Ácidos Grasos , Humanos , Obesidad
11.
Mol Metab ; 5(1): 57-65, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26844207

RESUMEN

OBJECTIVE: The induction of beige/brite adipose cells in white adipose tissue (WAT) is associated with protection against high fat diet-induced obesity and insulin resistance in animals. The helix-loop-helix transcription factor Early B-Cell Factor-2 (EBF2) regulates brown adipose tissue development. Here, we asked if EBF2 regulates beige fat cell biogenesis and protects animals against obesity. METHODS: In addition to primary cell culture studies, we used ​Ebf2 knockout mice and mice overexpressing EBF2 in the adipose tissue to study the necessity and sufficiency of EBF2 to induce beiging in vivo. RESULTS: We found that EBF2 is required for beige adipocyte development in mice. Subcutaneous WAT or primary adipose cell cultures from Ebf2 knockout mice did not induce Uncoupling Protein 1 (UCP1) or a thermogenic program following adrenergic stimulation. Conversely, over-expression of EBF2 in adipocyte cultures induced UCP1 expression and a brown-like/beige fat-selective differentiation program. Transgenic expression of Ebf2 in adipose tissues robustly stimulated beige adipocyte development in the WAT of mice, even while housed at thermoneutrality. EBF2 overexpression was sufficient to increase mitochondrial function in WAT and protect animals against high fat diet-induced weight gain. CONCLUSIONS: Taken together, our results demonstrate that EBF2 controls the beiging process and suggest that activation of EBF2 in WAT could be used to reduce obesity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA