Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
N Engl J Med ; 390(18): 1649-1662, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38661449

RESUMEN

BACKGROUND: Exagamglogene autotemcel (exa-cel) is a nonviral cell therapy designed to reactivate fetal hemoglobin synthesis by means of ex vivo clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene editing of autologous CD34+ hematopoietic stem and progenitor cells (HSPCs) at the erythroid-specific enhancer region of BCL11A. METHODS: We conducted a phase 3, single-group, open-label study of exa-cel in patients 12 to 35 years of age with sickle cell disease who had had at least two severe vaso-occlusive crises in each of the 2 years before screening. CD34+ HSPCs were edited with the use of CRISPR-Cas9. Before the exa-cel infusion, patients underwent myeloablative conditioning with pharmacokinetically dose-adjusted busulfan. The primary end point was freedom from severe vaso-occlusive crises for at least 12 consecutive months. A key secondary end point was freedom from inpatient hospitalization for severe vaso-occlusive crises for at least 12 consecutive months. The safety of exa-cel was also assessed. RESULTS: A total of 44 patients received exa-cel, and the median follow-up was 19.3 months (range, 0.8 to 48.1). Neutrophils and platelets engrafted in each patient. Of the 30 patients who had sufficient follow-up to be evaluated, 29 (97%; 95% confidence interval [CI], 83 to 100) were free from vaso-occlusive crises for at least 12 consecutive months, and all 30 (100%; 95% CI, 88 to 100) were free from hospitalizations for vaso-occlusive crises for at least 12 consecutive months (P<0.001 for both comparisons against the null hypothesis of a 50% response). The safety profile of exa-cel was generally consistent with that of myeloablative busulfan conditioning and autologous HSPC transplantation. No cancers occurred. CONCLUSIONS: Treatment with exa-cel eliminated vaso-occlusive crises in 97% of patients with sickle cell disease for a period of 12 months or more. (CLIMB SCD-121; ClinicalTrials.gov number, NCT03745287.).


Asunto(s)
Anemia de Células Falciformes , Hemoglobina Fetal , Trasplante de Células Madre Hematopoyéticas , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Adulto Joven , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Antígenos CD34 , Busulfano/uso terapéutico , Sistemas CRISPR-Cas , Hemoglobina Fetal/biosíntesis , Hemoglobina Fetal/genética , Edición Génica , Células Madre Hematopoyéticas , Proteínas Represoras , Acondicionamiento Pretrasplante , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Agonistas Mieloablativos/uso terapéutico , Europa (Continente) , América del Norte
2.
Nature ; 595(7866): 295-302, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34079130

RESUMEN

Sickle cell disease (SCD) is caused by a mutation in the ß-globin gene HBB1. We used a custom adenine base editor (ABE8e-NRCH)2,3 to convert the SCD allele (HBBS) into Makassar ß-globin (HBBG), a non-pathogenic variant4,5. Ex vivo delivery of mRNA encoding the base editor with a targeting guide RNA into haematopoietic stem and progenitor cells (HSPCs) from patients with SCD resulted in 80% conversion of HBBS to HBBG. Sixteen weeks after transplantation of edited human HSPCs into immunodeficient mice, the frequency of HBBG was 68% and hypoxia-induced sickling of bone marrow reticulocytes had decreased fivefold, indicating durable gene editing. To assess the physiological effects of HBBS base editing, we delivered ABE8e-NRCH and guide RNA into HSPCs from a humanized SCD mouse6 and then transplanted these cells into irradiated mice. After sixteen weeks, Makassar ß-globin represented 79% of ß-globin protein in blood, and hypoxia-induced sickling was reduced threefold. Mice that received base-edited HSPCs showed near-normal haematological parameters and reduced splenic pathology compared to mice that received unedited cells. Secondary transplantation of edited bone marrow confirmed that the gene editing was durable in long-term haematopoietic stem cells and showed that HBBS-to-HBBG editing of 20% or more is sufficient for phenotypic rescue. Base editing of human HSPCs avoided the p53 activation and larger deletions that have been observed following Cas9 nuclease treatment. These findings point towards a one-time autologous treatment for SCD that eliminates pathogenic HBBS, generates benign HBBG, and minimizes the undesired consequences of double-strand DNA breaks.


Asunto(s)
Adenina/metabolismo , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Edición Génica , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Globinas beta/genética , Animales , Antígenos CD34/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Modelos Animales de Enfermedad , Femenino , Terapia Genética , Genoma Humano/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/patología , Humanos , Masculino , Ratones
3.
N Engl J Med ; 389(9): 820-832, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37646679

RESUMEN

BACKGROUND: Sickle cell disease is caused by a defect in the ß-globin subunit of adult hemoglobin. Sickle hemoglobin polymerizes under hypoxic conditions, producing deformed red cells that hemolyze and cause vaso-occlusion that results in progressive organ damage and early death. Elevated fetal hemoglobin levels in red cells protect against complications of sickle cell disease. OTQ923, a clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9-edited CD34+ hematopoietic stem- and progenitor-cell (HSPC) product, has a targeted disruption of the HBG1 and HBG2 (γ-globin) gene promoters that increases fetal hemoglobin expression in red-cell progeny. METHODS: We performed a tiling CRISPR-Cas9 screen of the HBG1 and HBG2 promoters by electroporating CD34+ cells obtained from healthy donors with Cas9 complexed with one of 72 guide RNAs, and we assessed the fraction of fetal hemoglobin-immunostaining erythroblasts (F cells) in erythroid-differentiated progeny. The gRNA resulting in the highest level of F cells (gRNA-68) was selected for clinical development. We enrolled participants with severe sickle cell disease in a multicenter, phase 1-2 clinical study to assess the safety and adverse-effect profile of OTQ923. RESULTS: In preclinical experiments, CD34+ HSPCs (obtained from healthy donors and persons with sickle cell disease) edited with CRISPR-Cas9 and gRNA-68 had sustained on-target editing with no off-target mutations and produced high levels of fetal hemoglobin after in vitro differentiation or xenotransplantation into immunodeficient mice. In the study, three participants received autologous OTQ923 after myeloablative conditioning and were followed for 6 to 18 months. At the end of the follow-up period, all the participants had engraftment and stable induction of fetal hemoglobin (fetal hemoglobin as a percentage of total hemoglobin, 19.0 to 26.8%), with fetal hemoglobin broadly distributed in red cells (F cells as a percentage of red cells, 69.7 to 87.8%). Manifestations of sickle cell disease decreased during the follow-up period. CONCLUSIONS: CRISPR-Cas9 disruption of the HBG1 and HBG2 gene promoters was an effective strategy for induction of fetal hemoglobin. Infusion of autologous OTQ923 into three participants with severe sickle cell disease resulted in sustained induction of red-cell fetal hemoglobin and clinical improvement in disease severity. (Funded by Novartis Pharmaceuticals; ClinicalTrials.gov number, NCT04443907.).


Asunto(s)
Anemia de Células Falciformes , Sistemas CRISPR-Cas , Eritrocitos , Hemoglobina Fetal , Trasplante de Células Madre Hematopoyéticas , Animales , Ratones , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Antígenos CD34 , Hemoglobina Fetal/biosíntesis , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Hemoglobina Falciforme , Regiones Promotoras Genéticas
4.
Blood ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39356871

RESUMEN

In 2023, two different gene therapies were approved for individuals with severe sickle cell disease (SCD). The small number of patients treated on the pivotal clinical trials that led to these approvals have experienced dramatic short-term reductions in the occurrence of painful vaso-occlusive crises, but the long-term safety and efficacy of these genetic therapies are yet to be ascertained. Several challenges and treatment-related concerns have emerged in regard to administering these therapies in clinical practice. In this article, I discuss the selection and preparation of individuals with SCD who wish to receive autologous gene therapies. I also review salient features of the care needed to support them through the long and arduous treatment process. I specifically focus on post-infusion care, as it relates to immune monitoring and infection prevention. Compared with allogeneic hematopoietic cell transplantation, delivering autologous gene therapy to an individual with SCD has distinct nuances that require awareness and special interventions. Using clinical vignettes derived from real-life patients, I provide perspectives on the complex decision-making process for gene therapy for SCD, based on currently available data, and I make recommendations for evaluating and supporting these patients.

5.
Blood ; 144(6): 672-675, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38691679

RESUMEN

ABSTRACT: Serial cardiovascular magnetic resonance evaluation of children and young adults with SCD who underwent hematopoietic cell transplantation showed mean ECV, representing diffuse myocardial fibrosis, decreased 3.4% from baseline to 12 months posttransplantation. This trial was registered at www.clinicaltrials.gov as #NCT04362293.


Asunto(s)
Anemia de Células Falciformes , Fibrosis , Trasplante de Células Madre Hematopoyéticas , Humanos , Anemia de Células Falciformes/terapia , Anemia de Células Falciformes/patología , Anemia de Células Falciformes/complicaciones , Masculino , Femenino , Adolescente , Niño , Adulto Joven , Cardiomiopatías/etiología , Cardiomiopatías/terapia , Cardiomiopatías/patología , Adulto , Miocardio/patología , Imagen por Resonancia Magnética , Preescolar
6.
Mol Ther ; 32(10): 3433-3452, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39086133

RESUMEN

Sickle cell disease (SCD) is a common, severe genetic blood disorder. Current pharmacotherapies are partially effective and allogeneic hematopoietic stem cell transplantation is associated with immune toxicities. Genome editing of patient hematopoietic stem cells (HSCs) to reactivate fetal hemoglobin (HbF) in erythroid progeny offers an alternative potentially curative approach to treat SCD. Although the FDA released guidelines for evaluating genome editing risks, it remains unclear how best to approach pre-clinical assessment of genome-edited cell products. Here, we describe rigorous pre-clinical development of a therapeutic γ-globin gene promoter editing strategy that supported an investigational new drug application cleared by the FDA. We compared γ-globin promoter and BCL11A enhancer targets, identified a potent HbF-inducing lead candidate, and tested our approach in mobilized CD34+ hematopoietic stem progenitor cells (HSPCs) from SCD patients. We observed efficient editing, HbF induction to predicted therapeutic levels, and reduced sickling. With single-cell analyses, we defined the heterogeneity of HbF induction and HBG1/HBG2 transcription. With CHANGE-seq for sensitive and unbiased off-target discovery followed by targeted sequencing, we did not detect off-target activity in edited HSPCs. Our study provides a blueprint for translating new ex vivo HSC genome editing strategies toward clinical trials for treating SCD and other blood disorders.


Asunto(s)
Anemia de Células Falciformes , Hemoglobina Fetal , Edición Génica , Animales , Humanos , Anemia de Células Falciformes/terapia , Anemia de Células Falciformes/genética , Antígenos CD34/metabolismo , Sistemas CRISPR-Cas , Hemoglobina Fetal/genética , gamma-Globinas/genética , Edición Génica/métodos , Terapia Genética/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas/metabolismo , Regiones Promotoras Genéticas
7.
N Engl J Med ; 384(3): 252-260, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33283989

RESUMEN

Transfusion-dependent ß-thalassemia (TDT) and sickle cell disease (SCD) are severe monogenic diseases with severe and potentially life-threatening manifestations. BCL11A is a transcription factor that represses γ-globin expression and fetal hemoglobin in erythroid cells. We performed electroporation of CD34+ hematopoietic stem and progenitor cells obtained from healthy donors, with CRISPR-Cas9 targeting the BCL11A erythroid-specific enhancer. Approximately 80% of the alleles at this locus were modified, with no evidence of off-target editing. After undergoing myeloablation, two patients - one with TDT and the other with SCD - received autologous CD34+ cells edited with CRISPR-Cas9 targeting the same BCL11A enhancer. More than a year later, both patients had high levels of allelic editing in bone marrow and blood, increases in fetal hemoglobin that were distributed pancellularly, transfusion independence, and (in the patient with SCD) elimination of vaso-occlusive episodes. (Funded by CRISPR Therapeutics and Vertex Pharmaceuticals; ClinicalTrials.gov numbers, NCT03655678 for CLIMB THAL-111 and NCT03745287 for CLIMB SCD-121.).


Asunto(s)
Anemia de Células Falciformes/terapia , Sistemas CRISPR-Cas , Hemoglobina Fetal/biosíntesis , Edición Génica/métodos , Terapia Genética , Proteínas Represoras/genética , Talasemia beta/terapia , Adulto , Anemia de Células Falciformes/genética , Femenino , Hemoglobina Fetal/genética , Humanos , Proteínas Represoras/metabolismo , Adulto Joven , Talasemia beta/genética
8.
Eur Respir J ; 63(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38485149

RESUMEN

Chronic graft-versus-host disease (cGvHD) is a common complication after allogeneic haematopoietic stem cell transplantation, characterised by a broad disease spectrum that can affect virtually any organ. Although pulmonary cGvHD is a less common manifestation, it is of great concern due to its severity and poor prognosis. Optimal management of patients with pulmonary cGvHD is complicated and no standardised approach is available. The purpose of this joint European Respiratory Society (ERS) and European Society for Blood and Marrow Transplantation task force was to develop evidence-based recommendations regarding the treatment of pulmonary cGvHD phenotype bronchiolitis obliterans syndrome in adults. A multidisciplinary group representing specialists in haematology, respiratory medicine and methodology, as well as patient advocates, formulated eight PICO (patient, intervention, comparison, outcome) and two narrative questions. Following the ERS standardised methodology, we conducted systematic reviews to address these questions and used the Grading of Recommendations Assessment, Development and Evaluation approach to develop recommendations. The resulting guideline addresses common therapeutic options (inhalation therapy, fluticasone-azithromycin-montelukast, imatinib, ibrutinib, ruxolitinib, belumosudil, extracorporeal photopheresis and lung transplantation), as well as other aspects of general management, such as lung functional and radiological follow-up and pulmonary rehabilitation, for adults with pulmonary cGvHD phenotype bronchiolitis obliterans syndrome. These recommendations include important advancements that could be incorporated in the management of adults with pulmonary cGvHD, primarily aimed at improving and standardising treatment and improving outcomes.


Asunto(s)
Síndrome de Bronquiolitis Obliterante , Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Trasplante de Pulmón , Adulto , Humanos , Enfermedad Injerto contra Huésped/terapia , Enfermedad Injerto contra Huésped/etiología , Pulmón , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante de Pulmón/efectos adversos , Enfermedad Crónica
9.
Cytotherapy ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39320295

RESUMEN

BACKGROUND: The advent of autologous gene modified cell therapies to treat monogenic disorders has been a major step forward for the field of hematopoietic stem cell transplantation (HCT) and cellular therapies. The need for disease-specific conditioning to enable these products to provide a potential cure has required extrapolation from experience in myeloablative and non-myeloablative HCT for these disorders. METHODS: In this manuscript, we review the current datasets and clinical experience using different conditioning regimens for autologous gene therapies in hemoglobinopathies, metabolic and lysosomal disorders, inborn errors of immunity (IEI) and bone marrow failure (BMF) syndromes. RESULTS: The disease specific and unique conditioning requirements of each disorder are considered in order to achieve maximal benefit while minimizing associated toxicities. CONCLUSIONS: Standardized recommendations based on these data are made for each set of disorders to harmonize treatment. Future directions and the possibility of non-genotoxic conditioning regimens for autologous gene therapies are also discussed. Ethical Statement: The authors followed all relevant ethical considerations in writing this manuscript.

10.
Cytotherapy ; 26(11): 1411-1420, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38970612

RESUMEN

Genetic manipulation of hematopoietic stem cells (HSCs) is being developed as a therapeutic strategy for several inherited disorders. This field is rapidly evolving with several novel tools and techniques being employed to achieve desired genetic changes. While commercial products are now available for sickle cell disease, transfusion-dependent ß-thalassemia, metachromatic leukodystrophy and adrenoleukodystrophy, several challenges remain in patient selection, HSC mobilization and collection, genetic manipulation of stem cells, conditioning, hematologic recovery and post-transplant complications, financial issues, equity of access and institutional and global preparedness. In this report, we explore the current state of development of these therapies and provide a comprehensive assessment of the challenges these therapies face as well as potential solutions.


Asunto(s)
Terapia Genética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas , Humanos , Adrenoleucodistrofia/terapia , Adrenoleucodistrofia/genética , Anemia de Células Falciformes/terapia , Anemia de Células Falciformes/genética , Talasemia beta/terapia , Talasemia beta/genética , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Terapia Genética/métodos , Genómica/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo
11.
Cytotherapy ; 26(7): 660-671, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38483362

RESUMEN

There is lack of guidance for immune monitoring and infection prevention after administration of ex vivo genetically modified hematopoietic stem cell therapies (GMHSCT). We reviewed current infection prevention practices as reported by providers experienced with GMHSCTs across North America and Europe, and assessed potential immunologic compromise associated with the therapeutic process of GMHSCTs described to date. Based on these assessments, and with consensus from members of the International Society for Cell & Gene Therapy (ISCT) Stem Cell Engineering Committee, we propose risk-adapted recommendations for immune monitoring, infection surveillance and prophylaxis, and revaccination after receipt of GMHSCTs. Disease-specific and GMHSCT-specific considerations should guide decision making for each therapy.


Asunto(s)
Terapia Genética , Trasplante de Células Madre Hematopoyéticas , Humanos , Trasplante de Células Madre Hematopoyéticas/métodos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Terapia Genética/métodos , Células Madre Hematopoyéticas/citología , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Infecciones/terapia , Infecciones/etiología
12.
Epilepsia ; 65(3): 542-555, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38265348

RESUMEN

We sought to perform a systematic review and individual participant data meta-analysis to identify predictors of treatment response following thalamic neuromodulation in pediatric patients with medically refractory epilepsy. Electronic databases (MEDLINE, Ovid, Embase, and Cochrane) were searched, with no language or data restriction, to identify studies reporting seizure outcomes in pediatric populations following deep brain stimulation (DBS) or responsive neurostimulation (RNS) implantation in thalamic nuclei. Studies featuring individual participant data of patients with primary or secondary generalized drug-resistant epilepsy were included. Response to therapy was defined as >50% reduction in seizure frequency from baseline. Of 417 citations, 21 articles reporting on 88 participants were eligible. Mean age at implantation was 13.07 ± 3.49 years. Fifty (57%) patients underwent DBS, and 38 (43%) RNS. Sixty (68%) patients were implanted in centromedian nucleus and 23 (26%) in anterior thalamic nucleus, and five (6%) had both targets implanted. Seventy-four (84%) patients were implanted bilaterally. The median time to last follow-up was 12 months (interquartile range = 6.75-26.25). Sixty-nine percent of patients achieved response to treatment. Age, target, modality, and laterality had no significant association with response in univariate logistic regression. Until thalamic neuromodulation gains widespread approval for use in pediatric patients, data on efficacy will continue to be limited to small retrospective cohorts and case series. The inherent bias of these studies can be overcome by using individual participant data. Thalamic neuromodulation appears to be a safe and effective treatment for epilepsy. Larger, prolonged prospective, multicenter studies are warranted to further evaluate the efficacy of DBS over RNS in this patient population where resection for curative intent is not a safe option.


Asunto(s)
Estimulación Encefálica Profunda , Epilepsia Refractaria , Tálamo , Humanos , Epilepsia Refractaria/terapia , Epilepsia Refractaria/fisiopatología , Estimulación Encefálica Profunda/métodos , Niño , Tálamo/fisiopatología , Adolescente , Resultado del Tratamiento , Femenino , Masculino
13.
J Neurooncol ; 170(1): 153-160, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39102118

RESUMEN

PURPOSE: Seizures are a common clinical occurrence in high-grade glioma (HGG). While many studies have explored seizure incidence and prevalence in HGG, limited studies have examined the prognostic effect of seizures occurring in the post-diagnosis setting. This study aims to assess the impact of seizure presentation on HGG survival outcomes. METHODS: Single-center retrospective review identified 950 patients with histologically-confirmed high-grade glioma. Seizure presentation was determined by clinical history and classified as early onset (occurring within 30 days of HGG presentation) or late onset (first seizure occurring after beginning HGG treatment). The primary outcome, hazard ratios for overall survival and progression-free survival, was assessed with multivariable Cox proportional-hazards models. IDH1 mutation status (assessed through immunohistochemistry) was only consistently available beginning in 2015; subgroup analyses were performed in the subset of patients with known IDH1 status. RESULTS: Epileptic activity before (HR = 0.81, 95% CI = 0.68-0.96, P = 0.017) or after (HR = 0.74, 95% CI = 0.60-0.91, P = 0.005) HGG diagnosis associated with improved overall survival. Additionally, late seizure onset significantly associated with lower odds of achieving partial (OR = 0.25, 95% CI = 0.12-0.53, P = < 0.001) or complete (OR = 0.30, 95% CI = 0.18-0.50, P < 0.001) seizure control than patients with early seizure onset. CONCLUSIONS: Clinical seizures both at the time of diagnosis and later during the HGG treatment course are associated with improved overall survival. This association potentially persists for both IDH1-wildtype and IDH1-mutant patients, but further study is required.


Asunto(s)
Neoplasias Encefálicas , Epilepsia , Glioma , Humanos , Masculino , Femenino , Glioma/mortalidad , Glioma/complicaciones , Glioma/patología , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/complicaciones , Persona de Mediana Edad , Estudios Retrospectivos , Epilepsia/etiología , Epilepsia/mortalidad , Adulto , Isocitrato Deshidrogenasa/genética , Anciano , Análisis de Supervivencia , Pronóstico , Mutación , Tasa de Supervivencia , Clasificación del Tumor , Estudios de Seguimiento
14.
Pediatr Blood Cancer ; 71(10): e31201, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39010649

RESUMEN

Pneumocystis jirovecii pneumonia (PJP) in hematopoietic cell transplant (HCT) recipients can be prevented by efficient prophylaxis. We surveyed HCT centers in North America to assess their PJP prophylaxis practices. Most institutions used intravenous (IV) pentamidine (29.6%) or inhaled pentamidine (14.8%); 37% institutions changed from trimethoprim/sulfamethoxazole (TMP-SMX) to another medication after conditioning; and 44% administered no PJP prophylaxis during the pre-engraftment period. Most institutions avoided using TMP-SMX during the pre-engraftment period, mainly because of concerns about myelotoxicity, despite this being the preferred PJP prophylaxis agent. There is a need to evaluate the effects of TMP-SMX on engraftment.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Pneumocystis carinii , Neumonía por Pneumocystis , Humanos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Neumonía por Pneumocystis/prevención & control , Niño , Combinación Trimetoprim y Sulfametoxazol/uso terapéutico , Combinación Trimetoprim y Sulfametoxazol/administración & dosificación , Pentamidina/uso terapéutico , Pentamidina/administración & dosificación , Masculino , Profilaxis Antibiótica/métodos , Femenino , Acondicionamiento Pretrasplante/métodos
15.
Childs Nerv Syst ; 40(5): 1507-1514, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38273143

RESUMEN

OBJECTIVE: The risk of hydrocephalus following hemispherectomy for drug resistant epilepsy (DRE) remains high. Patients with pre-existing hydrocephalus pose a postoperative challenge, as maintaining existing shunt patency is necessary but lacks a clearly defined strategy. This study examines the incidence and predictors of shunt failure in pediatric hemispherectomy patients with pre-existing ventricular shunts. METHODS: We performed a retrospective chart review at our center to identify pediatric patients diagnosed with DRE who were treated with ventricular shunt prior to their first hemispherectomy surgery. Demographic and perioperative data were obtained including shunt history, hydrocephalus etiology, epilepsy duration, surgical technique, and postoperative outcomes. Univariate analysis was performed using Fisher's exact test and Pearson correlation, with Bonferroni correction to a = 0.00625 and a = 0.01, respectively. RESULTS: Five of nineteen (26.3%) patients identified with ventriculoperitoneal shunting prior to hemispherectomy experienced postoperative shunt malfunction. All 5 of these patients underwent at least 1 shunt revision prior to hemispherectomy, with a significant association between pre- and post-hemispherectomy shunt revisions. There was no significant association between post-hemispherectomy shunt failure and valve type, intraoperative shunt alteration, postoperative external ventricular drain placement, hemispherectomy revision, lateralization of shunt relative to resection, postoperative complications, or postoperative aseptic meningitis. There was no significant correlation between number of post-hemispherectomy shunt revisions and age at shunt placement, age at hemispherectomy, epilepsy duration, or shunt duration prior to hemispherectomy. CONCLUSIONS: Earlier shunt revision surgery may portend a subsequent need for shunt revision following hemispherectomy. These findings may guide neurosurgeons in counseling patients with pre-existing ventricular shunts prior to hemispherectomy surgery.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Hemisferectomía , Hidrocefalia , Niño , Humanos , Hemisferectomía/efectos adversos , Estudios Retrospectivos , Hidrocefalia/cirugía , Derivación Ventriculoperitoneal/efectos adversos , Epilepsia/cirugía , Epilepsia Refractaria/cirugía , Reoperación , Complicaciones Posoperatorias/etiología
16.
J Biol Chem ; 298(12): 102681, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36356899

RESUMEN

Stromal Interaction Molecule1 (STIM1) is an endoplasmic reticulum membrane-localized calcium (Ca2+) sensor that plays a critical role in the store-operated Ca2+ entry (SOCE) pathway. STIM1 regulates a variety of physiological processes and contributes to a plethora of pathophysiological conditions. Several disease states and enhanced biological phenomena are associated with increased STIM1 levels and activity. However, molecular mechanisms driving STIM1 expression remain largely unappreciated. We recently reported that STIM1 expression augments during pigmentation. Nonetheless, the molecular choreography regulating STIM1 expression in melanocytes is completely unexplored. Here, we characterized the molecular events that regulate STIM1 expression during pigmentation. We demonstrate that physiological melanogenic stimuli α-melanocyte stimulating hormone (αMSH) increases STIM1 mRNA and protein levels. Further, αMSH stimulates STIM1 promoter-driven luciferase activity, thereby suggesting transcriptional upregulation of STIM1. We show that downstream of αMSH, microphthalmia-associated transcription factor (MITF) drives STIM1 expression. By performing knockdown and overexpression studies, we corroborated that MITF regulates STIM1 expression and SOCE. Next, we conducted extensive bioinformatics analysis and identified MITF-binding sites on the STIM1 promoter. We validated significance of the MITF-binding sites in controlling STIM1 expression by performing ChIP and luciferase assays with truncated STIM1 promoters. Moreover, we confirmed MITF's role in regulating STIM1 expression and SOCE in primary human melanocytes. Importantly, analysis of publicly available datasets substantiates a positive correlation between STIM1 and MITF expression in sun-exposed tanned human skin, thereby highlighting physiological relevance of this regulation. Taken together, we have identified a novel physiologically relevant molecular pathway that transcriptionally enhances STIM1 expression.


Asunto(s)
Señalización del Calcio , Calcio , Humanos , Calcio/metabolismo , Señalización del Calcio/fisiología , Factor de Transcripción Asociado a Microftalmía/genética , Canales de Calcio/metabolismo , Melanocitos/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo , Proteína ORAI1/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
17.
Blood ; 137(4): 556-568, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33104215

RESUMEN

Social determinants of health, including poverty, contribute significantly to health outcomes in the United States; however, their impact on pediatric hematopoietic cell transplantation (HCT) outcomes is poorly understood. We aimed to identify the association between neighborhood poverty and HCT outcomes for pediatric allogeneic HCT recipients in the Center for International Blood and Marrow Transplant Research database. We assembled 2 pediatric cohorts undergoing first allogeneic HCT from 2006 to 2015 at age ≤18 years, including 2053 children with malignant disease and 1696 children with nonmalignant disease. Neighborhood poverty exposure was defined a priori per the US Census definition as living in a high-poverty ZIP code (≥20% of persons below 100% federal poverty level) and used as the primary predictor in all analyses. Our primary outcome was overall survival (OS), defined as the time from HCT until death resulting from any cause. Secondary outcomes included relapse and transplantation-related mortality (TRM) in malignant disease, acute and chronic graft-versus-host disease, and infection in the first 100 days post-HCT. Among children undergoing transplantation for nonmalignant disease, neighborhood poverty was not associated with any HCT outcome. Among children undergoing transplantation for malignant disease, neighborhood poverty conferred an increased risk of TRM but was not associated with inferior OS or any other transplantation outcome. Among children with malignant disease, a key secondary finding was that children with Medicaid insurance experienced inferior OS and increased TRM compared with those with private insurance. These data suggest opportunities for future investigation of the effects of household-level poverty exposure on HCT outcomes in pediatric malignant disease to inform care delivery interventions.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Pobreza , Determinantes Sociales de la Salud , Adolescente , Causas de Muerte , Niño , Preescolar , Enfermedad Crónica/mortalidad , Enfermedad Crónica/terapia , Bases de Datos Factuales , Femenino , Estudios de Seguimiento , Enfermedad Injerto contra Huésped/epidemiología , Enfermedad Injerto contra Huésped/etiología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante de Células Madre Hematopoyéticas/economía , Trasplante de Células Madre Hematopoyéticas/mortalidad , Trasplante de Células Madre Hematopoyéticas/estadística & datos numéricos , Humanos , Lactante , Infecciones/epidemiología , Cobertura del Seguro/estadística & datos numéricos , Masculino , Medicaid , Neoplasias/mortalidad , Neoplasias/terapia , Recurrencia , Análisis de Supervivencia , Trasplante Homólogo , Resultado del Tratamiento , Estados Unidos
18.
Cytotherapy ; 25(3): 261-269, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36123234

RESUMEN

Genome editing of hematopoietic stem and progenitor cells is being developed for the treatment of several inherited disorders of the hematopoietic system. The adaptation of CRISPR-Cas9-based technologies to make precise changes to the genome, and developments in altering the specificity and efficiency, and improving the delivery of nucleases to target cells have led to several breakthroughs. Many clinical trials are ongoing, and several pre-clinical models have been reported that would allow these genetic therapies to one day offer a potential cure to patients with diseases where limited options currently exist. However, there remain several challenges with respect to establishing safety, expanding accessibility and improving the manufacturing processes of these therapeutic products. This review focuses on some of the recent advances in the field of genome editing of hematopoietic stem and progenitor cells and illustrates the ongoing challenges.


Asunto(s)
Sistemas CRISPR-Cas , Células Madre Hematopoyéticas , Humanos , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Terapia Genética/métodos
19.
Cytotherapy ; 25(5): 463-471, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36710227

RESUMEN

Hematopoietic stem cell transplantation (HSCT) is curative for many non-malignant disorders. As HSCT and supportive care technologies improve, this life-saving treatment may be offered to more and more patients. With the development of new preparative regimens, expanded alternative donor availability, and graft manipulation techniques, there are many options when choosing the best regimen for patients. Herein the authors review transplant considerations, transplant goals, conditioning regimens, donor choice, and graft manipulation strategies for patients with non-malignant disorders undergoing HSCT.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Humanos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Donantes de Tejidos , Trasplante Homólogo , Acondicionamiento Pretrasplante , Enfermedad Injerto contra Huésped/etiología
20.
Cytotherapy ; 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38054912

RESUMEN

Allogeneic hemopoietic cell transplantation remains the goal of therapy for high-risk acute myeloid leukemia (AML). However, treatment failure in the form of leukemia relapse or severe graft-versus-host disease remains a critical area of unmet need. Recently, significant progress has been made in the cell therapy-based interventions both before and after transplant. In this review, the Stem Cell Engineering Committee of the International Society for Cell and Gene Therapy summarizes the literature regarding the identification of high risk in AML, treatment approaches before transplant, optimal transplant platforms and measures that may be taken after transplant to ideally prevent, or, if need be, treat AML relapse. Although some strategies remain in the early phases of clinical investigation, they are built on progress in pre-clinical research and cellular engineering techniques that are already improving outcomes for children and adults with high-risk malignancies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA