Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Arch Virol ; 169(3): 51, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38374459

RESUMEN

In this study, we investigated and confirmed natural lumpy skin disease virus (LSDV) infection in Himalayan yaks (Bos grunniens) in Himachal Pradesh, India, based on clinical manifestations and results of genome detection, antibody detection, virus isolation, and nucleotide sequencing. Subsequent phylogenetic analysis based on complete GPCR, RPO30, and EEV gene sequences revealed that the LSDV isolates from these yaks and local cattle belonged to LSDV subcluster 1.2.1 rather than the dominant subcluster 1.2.2, which is currently circulating in India, suggesting a separate recent introduction. This is the first report of natural LSDV infection in yaks in India, expanding the known host range of LSDV. Further investigations are needed to assess the impact of LSDV infection in yaks.


Asunto(s)
Virus de la Dermatosis Nodular Contagiosa , Animales , Bovinos , Filogenia , Secuencia de Bases , India/epidemiología , Brotes de Enfermedades/veterinaria
2.
Int J Mol Sci ; 25(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38892264

RESUMEN

Epilepsy is one of the most prevalent and serious brain disorders and affects over 70 million people globally. Antiseizure medications (ASMs) relieve symptoms and prevent the occurrence of future seizures in epileptic patients but have a limited effect on epileptogenesis. Addressing the multifaceted nature of epileptogenesis and its association with the Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-mediated neuroinflammation requires a comprehensive understanding of the underlying mechanisms of these medications for the development of targeted therapeutic strategies beyond conventional antiseizure treatments. Several types of NLRP3 inhibitors have been developed and their effect has been validated both in in vitro and in vivo models of epileptogenesis. In this review, we discuss the advances in understanding the regulatory mechanisms of NLRP3 activation as well as progress made, and challenges faced in the development of NLRP3 inhibitors for the treatment of epilepsy.


Asunto(s)
Anticonvulsivantes , Descubrimiento de Drogas , Epilepsia , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Humanos , Animales , Descubrimiento de Drogas/métodos , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Epilepsia/tratamiento farmacológico , Inflamasomas/metabolismo , Inflamasomas/antagonistas & inhibidores , Desarrollo de Medicamentos
3.
FASEB J ; 36(10): e22559, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36125047

RESUMEN

Increased fluid-flow shear stress (FFSS) contributes to hyperfiltration-induced podocyte and glomerular injury resulting in progression of chronic kidney disease (CKD). We reported that increased FFSS in vitro and in vivo upregulates PGE2 receptor EP2 (but not EP4 expression), COX2-PGE2 -EP2 axis, and EP2-linked Akt-GSK3ß-ß-catenin signaling pathway in podocytes. To understand and use the disparities between PGE2 receptors, specific agonists, and antagonists of EP2 and EP4 were used to assess phosphorylation of Akt, GSK3ß and ß-catenin in podocytes using Western blotting, glomerular filtration barrier function using in vitro albumin permeability (Palb ) assay, and mitigation of hyperfiltration-induced injury in unilaterally nephrectomized (UNX) mice at 1 and 6 months. Results show an increase in Palb by PGE2 , EP2 agonist (EP2AGO ) and EP4 antagonist (EP4ANT ), but not by EP2 antagonist (EP2ANT ) or EP4 agonist (EP4AGO ). Pretreatment with EP2ANT blocked the effect of PGE2 or EP2AGO on Palb . Modulation of EP2 and EP4 also induced opposite effects on phosphorylation of Akt and ß-Catenin. Individual agonists or antagonists of EP2 or EP4 did not induce significant improvement in albuminuria in UNX mice. However, treatment with a combination EP2ANT + EP4AGO for 1 or 6 months caused a robust decrease in albuminuria. EP2ANT + EP4AGO combination did not impact adaptive hypertrophy or increased serum creatinine. Observed differences between expression of EP2 and EP4 on the glomerular barrier highlight these receptors as potential targets for intervention. Safe and effective mitigating effect of EP2ANT + EP4AGO presents a novel opportunity to delay the progression of hyperfiltration-associated CKD as seen in transplant donors.


Asunto(s)
Subtipo EP2 de Receptores de Prostaglandina E , Insuficiencia Renal Crónica , Albúminas , Albuminuria , Animales , Creatinina , Ciclooxigenasa 2 , Dinoprostona/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Hormonas Esteroides Gonadales , Ratones , Proteínas Proto-Oncogénicas c-akt , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E , beta Catenina
4.
J Enzyme Inhib Med Chem ; 38(1): 2276665, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37919954

RESUMEN

Structural tailoring of the flavone framework (position 7) via organopalladium-catalyzed C-C bond formation was attempted in this study. The impact of substituents with varied electronic effects (phenyl ring, position 2 of the benzopyran scaffold) on the antitumor properties was also assessed. Resultantly, the efforts yielded a furyl arm bearing benzopyran possessing a 4-fluoro phenyl ring (position 2) (14) that manifested a magnificent antitumor profile against the Ishikawa cell lines mediated through dual inhibition of PARP and tubulin [(IC50 (PARP1) = 74 nM, IC50 (PARP2) = 109 nM) and tubulin (IC50 = 1.4 µM)]. Further investigations confirmed the ability of 14 to induce apoptosis as well as autophagy and cause cell cycle arrest at the G2/M phase. Overall, the outcome of the study culminated in a tractable dual PARP-tubulin inhibitor endowed with an impressive activity profile against endometrial cancer.


Asunto(s)
Antineoplásicos , Neoplasias Endometriales , Flavonas , Humanos , Femenino , Moduladores de Tubulina/farmacología , Moduladores de Tubulina/química , Tubulina (Proteína)/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/patología , Flavonas/farmacología , Benzopiranos , Proliferación Celular
5.
J Biomed Sci ; 29(1): 65, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36064696

RESUMEN

Unprecedented efforts of the researchers have been witnessed in the recent past towards the development of vaccine platforms for the control of the COVID-19 pandemic. Albeit, vaccination stands as a practical strategy to prevent SARS-CoV-2 infection, supplementing the anti-COVID19 arsenal with therapeutic options such as small molecules/peptides and antibodies is being conceived as a prudent strategy to tackle the emerging SARS-CoV-2 variants. Noteworthy to mention that collective efforts from numerous teams have led to the generation of a voluminous library composed of chemically and mechanistically diverse small molecules as anti-COVID19 scaffolds. This review article presents an overview of medicinal chemistry campaigns and drug repurposing programs that culminated in the identification of a plethora of small molecule-based anti-COVID19 drugs mediating their antiviral effects through inhibition of proteases, S protein, RdRp, ACE2, TMPRSS2, cathepsin and other targets. In light of the evidence ascertaining the potential of small molecule drugs to approach conserved proteins required for the viral replication of all coronaviruses, accelerated FDA approvals are anticipated for small molecules for the treatment of COVID19 shortly. Though the recent attempts invested in this direction in pursuit of enrichment of the anti-COVID-19 armoury (chemical tools) are praiseworthy, some strategies need to be implemented to extract conclusive benefits of the recently reported small molecule viz. (i) detailed preclinical investigation of the generated anti-COVID19 scaffolds (ii) in-vitro profiling of the inhibitors against the emerging SARS-CoV-2 variants (iii) development of assays enabling rapid screening of the libraries of anti-COVID19 scaffold (iv) leveraging the applications of machine learning based predictive models to expedite the anti-COVID19 drug discovery campaign (v) design of antibody-drug conjugates.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Vacunas , COVID-19/prevención & control , Humanos , Pandemias , Péptidos , SARS-CoV-2
6.
Genomics ; 113(1 Pt 1): 305-316, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33321202

RESUMEN

Tea quality is a polygenic trait that exhibits tremendous genetic variability due to accumulation of array of secondary metabolites. To elucidate global molecular insights controlling quality attributes, metabolite profiling and transcriptome sequencing of twelve diverse tea cultivars was performed in tea shoots harvested during quality season. RP-HPLC-DAD analysis of quality parameters revealed significant difference in catechins, theanine and caffeine contents. Transcriptome sequencing resulted into 50,107 non-redundant transcripts with functional annotations of 81.6% (40,847) of the transcripts. Interestingly, 2872 differentially expressed transcripts exhibited significant enrichment in 38 pathways (FDR ≤ 0.05) including secondary metabolism, amino acid and carbon metabolism. Thirty-eight key candidates reportedly involved in biosynthesis of fatty acid derived volatiles, volatile terpenes, glycoside hydrolysis and key quality related pathways (flavonoid, caffeine and theanine-biosynthesis) were highly expressed in catechins-rich tea cultivars. Furthermore, enrichment of candidates involved in flavonoid biosynthesis, transcriptional regulation, volatile terpene and biosynthesis of fatty acid derived volatile in Protein-Protein Interactome network revealed well-coordinated regulation of quality characteristics in tea. Additionally, ascertainment of 23,649 non-synonymous SNPs and validation of candidate SNPs present in quality related genes suggests their potential utility in genome-wide mapping and marker development for expediting breeding of elite compound-rich tea cultivars.


Asunto(s)
Camellia sinensis/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable , Transcriptoma , Cafeína/genética , Cafeína/metabolismo , Camellia sinensis/metabolismo , Catequina/genética , Catequina/metabolismo , Genotipo , Glutamatos/genética , Glutamatos/metabolismo , Aceites Volátiles/metabolismo , Proteínas de Plantas/metabolismo , Mapas de Interacción de Proteínas
7.
J Mol Struct ; 12472022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34776532

RESUMEN

Donepezil (DNPZ) is one of the few FDA-approved widely used medication in the clinical care of Alzheimer's disease (AD) patients. To investigate the effect of geometry and to find the significance of an enol form if any in DNPZ on acetylcholinesterase (AChE) inhibition, we changed the tetrahedral geometry of DNPZ to planar trigonal pyramidal geometry by replacing the α-carbon atom next to ketone functionality with a nitrogen atom. To mimic 1-indanone in DNPZ, we selected 1-isoindolinone framework to synthesize 25 new DNPZ derivatives and characterized using 1H NMR, 13C NMR and ESI-MS spectroscopy methods. Drug likeliness profile for each compound was predicted using Molinspiration online software following Lipinski's rule. Commercially available assay kits were used to measure AChE and butyrylcholinesterase (BuChE) inhibitory effects. NIH/3T3 mouse embryonic fibroblast cell line was used to measure cytotoxic and proliferation effects using LDH and MTT assay, respectively. Compound #20 was selected for comparative computational docking, modelling and physicochemical studies. Our results show that DNPZ with tetrahedral geometry has 3-fold higher AChE inhibition as compared to compound #20 with planar trigonal pyramidal geometry. Our approach may be useful as a novel indirect method to study the significance of the enol form in DNPZ (or similar compounds), since constant interconversion between the keto and enol forms does not permit a direct determination of the effect of the enol form of DNPZ in vivo. Overall, we conclude that the tetrahedral is a better fit and any change in geometry significantly drives down the cholinesterase inhibitory effect of DNPZ.

8.
ScientificWorldJournal ; 2022: 5129423, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237114

RESUMEN

This study was conducted in Tanahun district of Gandaki Province, Nepal, to analyze the land cover change over two decades, the migration effect in land cover, and the impact caused in crop production by Rhesus macaque. Landsat TM/ETM+ for land use of 2000 and 2010 extracted by ICIMOD and Landsat 8 OLI/TIRS satellite images for land cover 2019 were downloaded from the USGS website. A purposive sample for household survey was carried out based on crops damaged by the monkey. Two hundred and fifty households were taken as samples. The Landsat images were analyzed by ArcGIS, and the social data were analyzed using SPSS and MS Excel. Land cover change data revealed increment of forest cover from 36.57% to 40.91% and drastic decrease in agriculture crops from 57.52% to 43.78% in the period of 20 years. The accuracy of the data showed overall classification accuracy of 86.11%, 81.08%, and 75% with overall kappa statistics 0.83, 0.77, and 0.74, respectively. The migration effect in the land cover was related to remittance and migrated members and found a significant positive relationship. Analyzing the trend of production with an increase in the forest cover, 21% decrease in paddy, 5% decrease in maize, and 26% decrease in millet were found as compared to the production in 2000. The econometric model concluded that the quantity of crop damage was negatively significant in relation to distance from forest and distance from water body while positively significant to distance from settlements and distance from owner's home. The quantity of crop damage was estimated 113.89 kg per household, and the cost was 78.82 USD. This study recommends active forest management; regular thinning, and weeding. Remittance generated should be invested in the agriculture field by the households. Damage relief should be made available for the damage cost by Rhesus macaque.


Asunto(s)
Producción de Cultivos , Producción de Cultivos/métodos , Producción de Cultivos/estadística & datos numéricos , Ambiente , Bosques , Pradera , Mijos/crecimiento & desarrollo , Modelos Estadísticos , Nepal , Oryza/crecimiento & desarrollo , Imágenes Satelitales , Zea mays/crecimiento & desarrollo
9.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36232367

RESUMEN

Angelica glauca Edgew, which is an endangered medicinal and aromatic herb, is a rich source of numerous industrially important bioactive metabolites, including terpenoids, phenolics, and phthalides. Nevertheless, genomic interventions for the sustainable utilization and restoration of its genetic resources are greatly offset due to the scarcity of the genomic resources and key regulators of the underlying specialized metabolism. To unravel the global atlas of the specialized metabolism, the first spatial transcriptome sequencing of the leaf, stem, and root generated 109 million high-quality paired-end reads, assembled de novo into 81,162 unigenes, which exhibit a 61.53% significant homology with the six public protein databases. The organ-specific clustering grouped 1136 differentially expressed unigenes into four subclusters differentially enriched in the leaf, stem, and root tissues. The prediction of the transcriptional-interactome network by integrating enriched gene ontology (GO) and the KEGG metabolic pathways identified the key regulatory unigenes that correspond to terpenoid, flavonoid, and carotenoid biosynthesis in the leaf tissue, followed by the stem and root tissues. Furthermore, the stem and root-specific significant enrichments of phenylalanine ammonia lyase (PAL), cinnamate-4-hydroxylase (C4H), and caffeic acid 3-O-methyltransferase (COMT) indicate that phenylalanine mediated the ferulic acid biosynthesis in the stem and root. However, the root-specific expressions of NADPH-dependent alkenal/one oxidoreductase (NADPH-AOR), S-adenosyl-L-methionine-dependent methyltransferases (SDMs), polyketide cyclase (PKC), and CYP72A15 suggest the "root" as the primary site of phthalide biosynthesis. Additionally, the GC-MS and UPLC analyses corresponded to the organ-specific gene expressions, with higher contents of limonene and phthalide compounds in the roots, while there was a higher accumulation of ferulic acid in the stem, followed by in the root and leaf tissues. The first comprehensive genomic resource with an array of candidate genes of the key metabolic pathways can be potentially utilized for the targeted upscaling of aromatic and pharmaceutically important bioactive metabolites. This will also expedite genomic-assisted conservation and breeding strategies for the revival of the endangered A. glauca.


Asunto(s)
Angelica , Policétidos , Angelica/genética , Carotenoides/metabolismo , Cinamatos/metabolismo , Ácidos Cumáricos , Flavonoides/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genómica , Limoneno , Metiltransferasas/metabolismo , Oxigenasas de Función Mixta/genética , Anotación de Secuencia Molecular , NADP/metabolismo , Oxidorreductasas/metabolismo , Fenilalanina/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Fitomejoramiento , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Policétidos/metabolismo , S-Adenosilmetionina/metabolismo , Transcriptoma
10.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36232516

RESUMEN

Inula racemosa Hook. f. (Pushkarmula), a perennial Himalayan herb known for its aromatic and phytopharmaceutical attributes, is not yet explored at genomic/transcriptomic scale. In this study, efforts were made to unveil the global transcriptional atlas underlying organ-specific specialized metabolite biosynthesis by integrating RNA-Seq analysis of 433 million sequenced reads with the phytochemical analysis of leaf, stem, and root tissues. Overall, 7242 of 83,772 assembled nonredundant unigenes were identified exhibiting spatial expression in leaf (3761), root (2748), and stem (733). Subsequently, integration of the predicted transcriptional interactome network of 2541 unigenes (71,841 edges) with gene ontology and KEGG pathway enrichment analysis revealed isoprenoid, terpenoid, diterpenoid, and gibberellin biosynthesis with antimicrobial activities in root tissue. Interestingly, the root-specific expression of germacrene-mediated alantolactone biosynthesis (GAS, GAO, G8H, IPP, DMAP, and KAO) and antimicrobial activities (BZR1, DEFL, LTP) well-supported with both quantitative expression profiling and phytochemical accumulation of alantolactones (726.08 µg/10 mg) and isoalantolactones (988.59 µg/10 mg), which suggests "roots" as the site of alantolactone biosynthesis. A significant interaction of leaf-specific carbohydrate metabolism with root-specific inulin biosynthesis indicates source (leaf) to sink (root) regulation of inulin. Our findings comprehensively demonstrate the source-sink transcriptional regulation of alantolactone and inulin biosynthesis, which can be further extended for upscaling the targeted specialized metabolites. Nevertheless, the genomic resource created in this study can also be utilized for development of genome-wide functionally relevant molecular markers to expedite the breeding strategies for genetic improvement of I. racemosa.


Asunto(s)
Antiinfecciosos , Diterpenos , Inula , Antiinfecciosos/metabolismo , Metabolismo de los Hidratos de Carbono , Diterpenos/química , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Giberelinas/metabolismo , Inula/química , Inulina/metabolismo , Lactonas , Fitoquímicos/análisis , Fitomejoramiento , Raíces de Plantas/metabolismo , Sesquiterpenos de Eudesmano , Terpenos/metabolismo , Transcriptoma
11.
Bioorg Chem ; 108: 104681, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33571811

RESUMEN

Chalcone [(E)-1,3-diphenyl-2-propene-1-one], a small molecule with α, ß unsaturated carbonyl group is a precursor or component of many natural flavonoids and isoflavonoids. It is one of the privileged structures in medicinal chemistry. It possesses a wide range of biological activities encouraging many medicinal chemists to study this scaffold for its usefulness to oncology, infectious diseases, virology and neurodegenerative diseases including Alzheimer's disease (AD). Small molecular size, convenient and cost-effective synthesis, and flexibility for modifications to modulate lipophilicity suitable for blood brain barrier (BBB) permeability make chalcones a preferred candidate for their therapeutic and diagnostic potential in AD. This review summarizes and highlights the importance of chalcone and its analogs as single target small therapeutic agents, multi-target directed ligands (MTDLs) as well as molecular imaging agents for AD. The information summarized here will guide many medicinal chemist and researchers involved in drug discovery to consider chalcone as a potential scaffold for the development of anti-AD agents including theranostics.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/tratamiento farmacológico , Chalcona/química , Chalcona/uso terapéutico , Enfermedad de Alzheimer/metabolismo , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Chalcona/análogos & derivados , Humanos , Estructura Molecular
12.
Agric Syst ; 193: 103168, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36284566

RESUMEN

Context: The COVID-19 pandemic has been affecting health and economies across the world, although the nature of direct and indirect effects on Asian agrifood systems and food security has not yet been well understood. Objectives: This paper assesses the initial responses of major farming and food systems to COVID-19 in 25 Asian countries, and considers the implications for resilience, food and nutrition security and recovery policies by the governments. Methods: A conceptual systems model was specified including key pathways linking the direct and indirect effects of COVID-19 to the resilience and performance of the four principal Asian farming and food systems, viz, lowland rice based; irrigated wheat based; hill mixed; and dryland mixed systems. Based on this framework, a systematic survey of 2504 key informants (4% policy makers, 6% researchers or University staff, 6% extension workers, 65% farmers, and 19% others) in 20 Asian countries was conducted and the results assessed and analysed. Results and conclusion: The principal Asian farming and food systems were moderately resilient to COVID-19, reinforced by government policies in many countries that prioritized food availability and affordability. Rural livelihoods and food security were affected primarily because of disruptions to local labour markets (especially for off-farm work), farm produce markets (notably for perishable foods) and input supply chains (i.e., seeds and fertilisers). The overall effects on system performance were most severe in the irrigated wheat based system and least severe in the hill mixed system, associated in the latter case with greater resilience and diversification and less dependence on external inputs and long market chains. Farming and food systems' resilience and sustainability are critical considerations for recovery policies and programmes, especially in relation to economic performance that initially recovered more slowly than productivity, natural resources status and social capital. Overall, the resilience of Asian farming and food systems was strong because of inherent systems characteristics reinforced by public policies that prioritized staple food production and distribution as well as complementary welfare programmes. With the substantial risks to plant- and animal-sourced food supplies from future zoonoses and the institutional vulnerabilities revealed by COVID-19, efforts to improve resilience should be central to recovery programmes. Significance: This study was the first Asia-wide systems assessment of the effects of COVID-19 on agriculture and food systems, differentiating the effects of the pandemic across the four principal regional farming and food systems in the region.

13.
Am J Physiol Renal Physiol ; 319(2): F312-F322, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32628542

RESUMEN

The ultrafiltrate flow over the major processes and cell body generates fluid flow shear stress (FFSS) on podocytes. Hyperfiltration-associated increase in FFSS can lead to podocyte injury and detachment. Previously, we showed that FFSS-induced upregulation of the cyclooxygenase 2 (COX2)-PGE2-prostaglandin E receptor 2 (EP2) axis in podocytes activates Akt-glycogen synthase kinase-3ß-ß-catenin and MAPK/ERK signaling in response to FFSS. Integrative MultiOmics Pathway Resolution (IMPRes) is a new bioinformatic tool that enables simultaneous time-series analysis of more than two groups to identify pathways and molecular connections. In the present study, we used previously characterized COX2 [prostaglandin-endoperoxide synthase 2 (Ptgs2)], EP2 (Ptger2), and ß1-catenin (Ctnnb1) as "seed genes" from an array data set of four groups analyzed over a time course. The 3 seed genes shared 7 pathways and 50 genes of 14 pathways and 89 genes identified by IMPRes. A composite of signaling pathways highlighted the temporal molecular connections during mechanotransduction signaling in FFSS-treated podocytes. We investigated the "proteoglycans in cancer" and "galactose metabolism" pathways predicted by IMPRes. A custom-designed PCR array validated 60.7% of the genes predicted by IMPRes analysis, including genes for the above-named pathways. Further validation using Western blot analysis showed increased expression of phosho-Erbb2, phospho-mammalian target of rapamycin (mTOR), CD44, and hexokinase II (Hk2); decreased total Erbb2, galactose mutarotase (Galm), and ß-1,4-galactosyltransferase 1 (B4galt1); and unchanged total mTOR and AKT3. These findings corroborate our previously reported results. This study demonstrates the potential of the IMPRes method to identify novel pathways. Identifying the "proteoglycans in cancer" and "galactose metabolism" pathways has generated a lead to study the significance of FFSS-induced glycocalyx remodeling and possible detachment of podocytes from the glomerular matrix.


Asunto(s)
Podocitos/metabolismo , Proteoglicanos/metabolismo , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Estrés Mecánico , Activación Transcripcional/fisiología , Ciclooxigenasa 2/metabolismo , Glomérulos Renales/metabolismo , Mecanotransducción Celular/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Regulación hacia Arriba
14.
Mol Genet Genomics ; 295(6): 1401-1414, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32661592

RESUMEN

Plants respond to the environmental perturbations by triggering the dynamic changes within the transcriptome. The assessment of these oscillations within the transcriptome would offer insights into the ecological adaptation of the plants. We evaluated how the transcriptome of Taxus contorta swings under natural conditions to elucidate its adaptive response. Thus, our study provides new insights into the performance of T. contorta under a changing environment during different seasons. The abundance estimation using the RNAseq approach revealed 6727 differentially expressed genes. Comprehensive reprogramming was observed in Taxol biosynthesis, maintenance of redox homeostasis, and generation of effective shield to UV-B, high light intensity, and temperature. Besides differential expression, the alternative splicing (AS) and single nucleotide variations (SNVs) also confer flexibility to the transcriptome of T. contorta. 1936 differentially expressing transcripts were also found to exhibit Differential Exon Usage (DEU) as well as differential SNVs. LC-MS-based untargeted metabolic analysis revealed 7774 ion features, among which around 334 putatively identified metabolites were differentially regulated. Our results showed that the swing and the oscillations of the transcriptome and metabolome of T. contorta ensure adaptability and better survival under changing environment. In addition, varying patterns of AS and SNVs compliment the adaptation provided by differential expression.


Asunto(s)
Adaptación Fisiológica/genética , Reprogramación Celular , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleótido Simple , Taxus/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Taxus/clasificación , Taxus/genética , Taxus/crecimiento & desarrollo
15.
Phys Rev Lett ; 125(5): 054501, 2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32794876

RESUMEN

We investigate the development of mobility inversion and fingering when a granular suspension is injected radially between horizontal parallel plates of a cell filled with a miscible fluid. While the suspension spreads uniformly when the suspension and the displaced fluid densities are exactly matched, even a small density difference is found to result in a dense granular front which develops fingers with angular spacing that increase with granular volume fraction and decrease with injection rate. We show that the timescale over which the instability develops is given by the volume fraction dependent settling timescale of the grains in the cell. We then show that the mobility inversion and the nonequilibrium Korteweg surface tension due to granular volume fraction gradients determine the number of fingers at the onset of the instability in these miscible suspensions.

16.
Prostaglandins Other Lipid Mediat ; 146: 106403, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31838197

RESUMEN

INTRODUCTION: Hyperfiltration is a major contributor to progression of chronic kidney disease (CKD) in diabetes, obesity and in individuals with solitary functioning kidney (SFK). We have proposed hyperfiltration-induced injury as a continuum of overlapping glomerular changes caused by increased biomechanical forces namely, fluid flow shear stress (FFSS) and tensile stress. We have shown that FFSS is elevated in animals with SFK and, it upregulates prostaglandin E2 (PGE2), cyclooxygenase-2 and PGE2 receptor EP2 in cultured podocytes and in uninephrectomized mice. We conceptualized urinary PGE2 as a biomarker of early effects of hyperfiltration-induced injury preceding microalbuminuria in individuals with SFK. We studied children with SFK to validate our hypothesis. METHODS: Urine samples from children with SFK and controls were analyzed for PGE2, albumin (glomerular injury biomarker) and epidermal growth factor (EGF, tubular injury biomarker). Age, gender, and Z-scores for height, weight, BMI, and blood pressure were obtained. RESULTS: Children with SFK were comparable to controls except for lower BMI Z-scores. The median values were elevated in SFK compared to control for urine PGE2 [9.1 (n = 57) vs. 5.7 (n = 72), p = 0.009] ng/mgCr and albumin [7.6 (n = 40) vs. 7.0 (n = 41), p = 0.085] µg/mgCr, but not for EGF [20098 (n = 44) vs. 18637 (n = 44), p = 0.746] pg/mgCr. Significant increase in urinary PGE2 (p = 0.024) and albumin (p = 0.019) but not EGF (p = 0.412) was observed using additional regression modeling. These three urinary analytes were independent of each other. CONCLUSION: Increased urinary PGE2 from elevated SNGFR and consequently increased FFSS during early stage of CKD precedes overt microalbuminuria and is a biomarker for early hyperfiltration-induced injury in individuals with SFK.


Asunto(s)
Dinoprostona/orina , Tasa de Filtración Glomerular , Glomérulos Renales/metabolismo , Insuficiencia Renal Crónica/orina , Adolescente , Biomarcadores/orina , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Adulto Joven
17.
Phytother Res ; 34(5): 924-1007, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31840355

RESUMEN

Morinda is a largest genus of Rubiaceae family, and its 11 species are found in India. In India, plant species are known by several common names as great morinda, Indian mulberry, noni, beach mulberry and cheese fruit. Various Morinda products (capsules, tablets, skin products and fruit juices) are available in the market, used by people for treatment of several health complaints. A diversity of phytochemicals including iridoids, flavonoids, flavonoid glycosides, anthraquinones, coumarins, lignanas, noniosides, phenolics and triterpenoids have been reported from Morinda species. Morinda species are used in the treatment of inflammation, cancer, diabetes, psyquiatric disorders, and bacterial and viral infections. The noni fruit juice (Morinda citrifolia) and its products are used clinically in the treatment of cancer, hypertension and cervical spondylosis affecting patients. M. citrifolia fuit juice, with different doses, is used in the maintaining blood pressure and reducing of superoxides, HDL and LDL levels. Similarly, oligosaccharide capsules and tablets of root extract of M. officinalis are recommended as medicine for the treatment of kidney problems and sexual dysfunctions of patients. The toxicological studies revealed that higher doses of fruit juice (4,000 or 5,000 mg/kg) of M. citrifolia for 2 or more months cause toxic effects on liver and kidneys. M. officinalis root extracts (ethanolic and aqueous) are found fully safe during treatment of diseases. A large number of reviews are available on M. citrifolia but very few studies are conducted on other Indian Morinda species. This review reports the comprehensive knowledge on state-wise distribution, botany, ethnomedicinal uses, phytochemistry, pharmacological activities, clinical applications and toxicological evaluations of 11 species of Morinda found in India.


Asunto(s)
Frutas/química , Extractos Vegetales/química , Humanos , India , Morinda , Extractos Vegetales/uso terapéutico
18.
Physiol Mol Biol Plants ; 26(11): 2255-2266, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33268927

RESUMEN

Horsegram is an important drought resistant pulse crop from Fabaceae and can be easily grown in dry lands with no irrigation facilities. However, it remained neglected since long and has been considered as orphan legume which requires immediate attention for its improvement and for the development of new promising varieties in future. In the present study, 7352 simple sequence repeat (SSR) markers were developed from the transcriptome data and 150 SSR were randomly synthesized for validation and diversity analysis in a panel of 58 horsegram genotypes. The synthesized primers included all types of repeats spanning direpeats to hexarepeats. Of the validated SSR markers, 33 markers were polymorphic and produced 40 loci which were used to analyze the genetic diversity and structure of horsegram. In total, 130 alleles were produced in a range of 2-9 alleles with maximum alleles produced by primer HTSSR 155. Expected heterozygosity (He) ranged from 0.03 to 1.00 and observed heterozygosity (Ho) ranged from 0.13 to 0.81. Polymorphism information content value ranged from 0.065 to 0.78. Dendrogram based on UPGMA and principal component analysis showed four groups of the 58 genotypes of horsegram. Structure analysis showed three genetic stocks for the analyzed germplasm. Thus, the developed SSRs can be useful in future population genetics analysis, molecular breeding studies and mapping works in horsegram germplasm as well as in related legume species.

19.
J Indian Assoc Pediatr Surg ; 25(3): 155-162, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32581443

RESUMEN

AIMS: We are reporting single-institution's experience regarding the role of conservative management in 38 cases of minor and major anastomotic leaks [AL] occurring after primary surgery of esophageal atresia [EA] with tracheo-esophageal fistula [TEF] during last 17 years between 2000 and 2017. In this retrospective review, we are sharing our experience and protocol of management of AL with more emphasis to evaluate: (a) role of conservative treatment in major AL (b) role of extra-pleural approach in enhancing the success rate in conservative treatment in major AL (c) to define the criteria for major & minor leaks and (d) to evaluate the role of ventilation in primary EA surgery to control AL. METHODS: All these cases were operated through extra-pleural approach and out of total 203 cases, 38[18.7%] developed anastomotic leaks. In 29 of the 38 cases [14.3%], leak was minor and in 9 cases [4.4%] the leak was a major one. All these cases of leaks were managed conservatively. RESULTS: All cases of major and minor leaks showed spontaneous healing except one case of minor leak that died before healing due to major cardiac anomaly. For minor leaks, average healing time was 9.5 days while for major leaks it was 17.4 days. Overall mortality was 14.8% and there was no mortality directly attributable to major or minor leak. During follow up, the incidence of stricture was 40% in cases having anastomotic leaks, while in cases without a leak, the incidence of stricture was 23.3%. These all cases of stricture responded to regular dilatations. CONCLUSION: We believe in cases of major AL, where primary repair is done by EP approach, a conservative treatment should be the treatment of choice. With this conservative approach of management of major AL, we not only save the native esophagus, the best conduit, but there is also less morbidity and mortality.

20.
Theor Appl Genet ; 132(2): 323-346, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30392081

RESUMEN

KEY MESSAGE: SNP alleles on chromosomes 4BL and 6AL are associated with sensitivity to salt tolerance in wheat and upon validation can be exploited in the development of salt-tolerant wheat varieties. The dissection of the genetic and molecular components of salt stress response offers strong opportunities toward understanding and improving salt tolerance in crops. In this study, GWAS was employed to identify a total of 106 SNP loci (R2 = 0.12-63.44%) linked to salt stress response in wheat using leaf chlorophyll fluorescence, grain quality and shoot ionic (Na+ and K+ ions) attributes. Among them, 14 SNP loci individually conferred pleiotropic effects on multiple independent salinity tolerance traits including loci at 99.04 cM (R2 ≥ 14.7%) and 68.45 cM (R2 ≥ 4.10%) on chromosomes 6AL and 4BL, respectively, that influenced shoot Na+-uptake, shoot K+/Na+ ratio, and specific energy fluxes for absorption (ABS/RC) and dissipation (DIo/RC). Analysis of the open reading frame (ORF) containing the SNP markers revealed that they are orthologous to genes involved in photosynthesis and plant stress (salt) response. Further transcript abundance and qRT-PCR analyses indicated that the genes are mostly up-regulated in salt-tolerant and down-regulated in salt-sensitive wheat genotypes including NRAMP-2 and OPAQUE1 genes on 4BL and 6AL, respectively. Both genes showed highest differential expression between contrasting genotypes when expressions of all the genes within their genetic intervals were analyzed. Possible cis-acting regulatory elements and coding sequence variation that may be involved in salt stress response were also identified in both genes. This study identified genetic and molecular components of salt stress response that are associated with Na+-uptake, shoot Na+/K+ ratio, ABS/RC, DIo/RC, and grain quality traits and upon functional validation would facilitate the development of gene-specific markers that could be deployed to improve salinity tolerance in wheat.


Asunto(s)
Proteínas de Transporte de Catión/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Estrés Salino/genética , Triticum/genética , Genotipo , Sistemas de Lectura Abierta , Fenotipo , Potasio/análisis , Tolerancia a la Sal/genética , Sodio/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA