Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Allergy ; 79(4): 1001-1017, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37855043

RESUMEN

BACKGROUND: IgE cross-sensitization to major birch pollen allergen Bet v 1 and pathogenesis-related (PR10) plant food allergens is responsible for the pollen-food allergy syndrome. METHODS: We designed a recombinant protein, AB-PreS, consisting of non-allergenic peptides derived from the IgE-binding sites of Bet v 1 and the cross-reactive apple allergen, Mal d 1, fused to the PreS domain of HBV surface protein as immunological carrier. AB-PreS was expressed in E. coli and purified by chromatography. The allergenic and inflammatory activity of AB-PreS was tested using basophils and PBMCs from birch pollen allergic patients. The ability of antibodies induced by immunization of rabbits with AB-PreS and birch pollen extract-based vaccines to inhibit allergic patients IgE binding to Bet v 1 and Mal d 1 was assessed by ELISA. RESULTS: IgE-binding experiments and basophil activation test revealed the hypoallergenic nature of AB-PreS. AB-PreS induced lower T-cell activation and inflammatory cytokine production in cultured PBMCs from allergic patients. IgG antibodies induced by five injections with AB-PreS inhibited allergic patients' IgE binding to Bet v 1 and Mal d 1 better than did IgG induced by up to 30 injections of six licensed birch pollen allergen extract-based vaccines. Additionally, immunization with AB-PreS induced HBV-specific antibodies potentially protecting from infection with HBV. CONCLUSION: The recombinant AB-PreS-based vaccine is hypoallergenic and superior over currently registered allergen extract-based vaccines regarding the induction of blocking antibodies to Bet v 1 and Mal d 1 in animals.


Asunto(s)
Hipersensibilidad a los Alimentos , Malus , Animales , Humanos , Conejos , Betula , Proteínas Recombinantes de Fusión , Polen , Escherichia coli , Antígenos de Plantas , Inmunoglobulina E , Alérgenos , Hipersensibilidad a los Alimentos/prevención & control , Vacunas Sintéticas , Inmunoglobulina G , Proteínas de Plantas
2.
Biochemistry (Mosc) ; 89(1): 173-183, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38467553

RESUMEN

Natural polyphenols are promising compounds for the pharmacological control of oxidative stress in various diseases. However, low bioavailability and rapid metabolism of polyphenols in a form of glycosides or aglycones have stimulated the search for the vehicles that would provide their efficient delivery to the systemic circulation. Conjugation of polyphenols with cationic amphiphilic peptides yields compounds with a strong antioxidant activity and ability to pass through biological barriers. Due to a broad range of biological activities characteristic of polyphenols and peptides, their conjugates can be used in the antioxidant therapy, including the treatment of viral, oncological, and neurodegenerative diseases. In this work, we synthesized linear and dendrimeric cationic amphiphilic peptides that were then conjugated with gallic acid (GA). GA is a non-toxic natural phenolic acid and an important functional element of many flavonoids with a high antioxidant activity. The obtained GA-peptide conjugates showed the antioxidant (antiradical) activity that exceeded 2-3 times the antioxidant activity of ascorbic acid. GA attachment had no effect on the toxicity and hemolytic activity of the peptides. GA-modified peptides stimulated the transmembrane transfer of the pGL3 plasmid encoding luciferase reporter gene, although GA attachment at the N-terminus of peptides reduced their transfection activity. Several synthesized conjugates demonstrated the antibacterial activity in the model of Escherichia coli Dh5α growth inhibition.


Asunto(s)
Antioxidantes , Polifenoles , Antioxidantes/farmacología , Antioxidantes/química , Polifenoles/farmacología , Polifenoles/química , Péptidos/farmacología , Péptidos/química , Ácido Gálico/farmacología , Ácido Gálico/química , Antibacterianos/química
3.
Allergy ; 78(12): 3136-3153, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37701941

RESUMEN

BACKGROUND: The nature of epitopes on Bet v 1 recognized by natural IgG antibodies of birch pollen allergic patients and birch pollen-exposed but non-sensitized subjects has not been studied in detail. OBJECTIVE: To investigate IgE and IgG recognition of Bet v 1 and to study the effects of natural Bet v 1-specific IgG antibodies on IgE recognition of Bet v 1 and Bet v 1-induced basophil activation. METHODS: Sera from birch pollen allergic patients (BPA, n = 76), allergic patients without birch pollen allergy (NBPA, n = 40) and non-allergic individuals (NA, n = 48) were tested for IgE, IgG as well as IgG1 and IgG4 reactivity to folded recombinant Bet v 1, two unfolded recombinant Bet v 1 fragments comprising the N-terminal (F1) and C-terminal half of Bet v 1 (F2) and unfolded peptides spanning the corresponding sequences of Bet v 1 and the apple allergen Mal d 1 by ELISA or micro-array analysis. The ability of Bet v 1-specific serum antibodies from non-allergic subjects to inhibit allergic patients IgE or IgG binding to rBet v 1 or to unfolded Bet v 1-derivatives was assessed by competition ELISAs. Furthermore, the ability of serum antibodies from allergic and non-allergic subjects to modulate Bet v 1-induced basophil activation was investigated using rat basophilic leukaemia cells expressing the human FcεRI which had been loaded with IgE from BPA patients. RESULTS: IgE antibodies from BPA patients react almost exclusively with conformational epitopes whereas IgG, IgG1 and IgG4 antibodies from BPA, NBPA and NA subjects recognize mainly unfolded and sequential epitopes. IgG competition studies show that IgG specific for unfolded/sequential Bet v 1 epitopes is not inhibited by folded Bet v 1 and hence the latter seem to represent cryptic epitopes. IgG reactivity to Bet v 1 peptides did not correlate with IgG reactivity to the corresponding Mal d 1 peptides and therefore does not seem to be a result of primary sensitization to PR10 allergen-containing food. Natural Bet v 1-specific IgG antibodies inhibited IgE binding to Bet v 1 only poorly and could even enhance Bet v 1-specific basophil activation. CONCLUSION: IgE and IgG antibodies from BPA patients and birch pollen-exposed non-sensitized subjects recognize different epitopes. These findings explain why natural allergen-specific IgG do not protect against allergic symptoms and suggest that allergen-specific IgE and IgG have different clonal origin.


Asunto(s)
Hipersensibilidad a los Alimentos , Polen , Ratas , Animales , Humanos , Epítopos , Antígenos de Plantas , Alérgenos , Inmunoglobulina G , Inmunoglobulina E , Péptidos , Proteínas de Plantas , Proteínas Recombinantes
4.
Allergy ; 78(6): 1639-1653, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36721963

RESUMEN

BACKGROUND: Severe acute respiratory syndrome corona virus (SARS-CoV-2) infection frequently causes severe and prolonged disease but only few specific treatments are available. We aimed to investigate safety and efficacy of a SARS-CoV-2-specific siRNA-peptide dendrimer formulation MIR 19® (siR-7-EM/KK-46) targeting a conserved sequence in known SARS-CoV-2 variants for treatment of COVID-19. METHODS: We conducted an open-label, randomized, controlled multicenter phase II trial (NCT05184127) evaluating safety and efficacy of inhaled siR-7-EM/KK-46 (3.7 mg and 11.1 mg/day: low and high dose, respectively) in comparison with standard etiotropic drug treatment (control group) in patients hospitalized with moderate COVID-19 (N = 52 for each group). The primary endpoint was the time to clinical improvement according to predefined criteria within 14 days of randomization. RESULTS: Patients from the low-dose group achieved the primary endpoint defined by simultaneous achievement of relief of fever, normalization of respiratory rate, reduction of coughing, and oxygen saturation of >95% for 48 h significantly earlier (median 6 days; 95% confidence interval [CI]: 5-7, HR 1.75, p = .0005) than patients from the control group (8 days; 95% CI: 7-10). No significant clinical efficacy was observed for the high-dose group. Adverse events were reported in 26 (50.00%), 25 (48.08%), and 28 (53.85%) patients from the low-, high-dose and control group, respectively. None of them were associated with siR-7-EM/KK-46. CONCLUSIONS: siR-7-EM/KK-46, a SARS-CoV-2-specific siRNA-peptide dendrimer formulation is safe, well tolerated and significantly reduces time to clinical improvement in patients hospitalized with moderate COVID-19 compared to standard therapy in a randomized controlled trial.


Asunto(s)
COVID-19 , Dendrímeros , Humanos , SARS-CoV-2 , ARN Interferente Pequeño , Resultado del Tratamiento , Péptidos/uso terapéutico
5.
Allergy ; 76(9): 2840-2854, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33837568

RESUMEN

BACKGROUND: First vaccines for prevention of Coronavirus disease 2019 (COVID-19) are becoming available but there is a huge and unmet need for specific forms of treatment. In this study we aimed to evaluate the anti-SARS-CoV-2 effect of siRNA both in vitro and in vivo. METHODS: To identify the most effective molecule out of a panel of 15 in silico designed siRNAs, an in vitro screening system based on vectors expressing SARS-CoV-2 genes fused with the firefly luciferase reporter gene and SARS-CoV-2-infected cells was used. The most potent siRNA, siR-7, was modified by Locked nucleic acids (LNAs) to obtain siR-7-EM with increased stability and was formulated with the peptide dendrimer KK-46 for enhancing cellular uptake to allow topical application by inhalation of the final formulation - siR-7-EM/KK-46. Using the Syrian Hamster model for SARS-CoV-2 infection the antiviral capacity of siR-7-EM/KK-46 complex was evaluated. RESULTS: We identified the siRNA, siR-7, targeting SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) as the most efficient siRNA inhibiting viral replication in vitro. Moreover, we showed that LNA-modification and complexation with the designed peptide dendrimer enhanced the antiviral capacity of siR-7 in vitro. We demonstrated significant reduction of virus titer and lung inflammation in animals exposed to inhalation of siR-7-EM/KK-46 in vivo. CONCLUSIONS: Thus, we developed a therapeutic strategy for COVID-19 based on inhalation of a modified siRNA-peptide dendrimer formulation. The developed medication is intended for inhalation treatment of COVID-19 patients.


Asunto(s)
COVID-19 , Dendrímeros , Animales , Antivirales , Humanos , Péptidos/genética , ARN Interferente Pequeño/genética , ARN Viral , SARS-CoV-2
6.
Org Biomol Chem ; 16(43): 8181-8190, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30357248

RESUMEN

One of the urgent problems of gene therapy is the search for effective transfection methods. Synthetic cationic peptides (CPs) are considered to be one of the most promising approaches for intracellular transport of oligonucleotides. Almost unlimited possibilities of the architectural design of CPs (linear and cyclic structures with a variation of chirality as well as dendrimers) make CPs an effective tunable carrier in this field. Cationic peptide dendrimers (PDs), as a relatively new direction, have significant advantages as gene delivery vehicles by virtue of non-natural ε-amide bonds that significantly increase their resistance to proteolysis. Moreover they also possess much lower cytotoxicity than linear peptides, which is crucial for the potential clinical application of CPs. In a further development of oligonucleotide delivery systems, we have synthesized a collection of 14 CPs, including linear peptides, lipopeptides and PDs. Their activity was evaluated by transfection of 293T cells with plasmids containing reporter genes encoding luciferase or a green fluorescent protein. The obtained results demonstrated that the greatest activity was exhibited by PDs, particularly LTP, an arginine-rich peptide dendrimer, which possesses low cytotoxic and hemolytic activity. The peptide exhibited high cell-penetrating activity, confirmed by fast dissipation of the membrane potential of cells probed by dis-C3-(5). The quantitative analysis of labelled LTP in tissue samples of mice revealed that the Cy5-LTP/siRNA complexes have a reasonable tropism to lung tissues.


Asunto(s)
ADN/química , ADN/genética , Dendrímeros/química , Portadores de Fármacos/química , Péptidos/química , Transfección , Secuencia de Aminoácidos , Animales , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Femenino , Células HEK293 , Hemólisis/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos BALB C , Péptidos/farmacocinética , Péptidos/farmacología , Plásmidos/genética , Distribución Tisular
8.
J Mater Chem B ; 8(13): 2607-2617, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32124885

RESUMEN

Respiratory syncytial virus (RSV) is one of the most common viral pathogens. It is especially dangerous for newborns and young children. In some cases it could lead to severe bronchiolitis, pneumonia with hospitalization or even a lethal outcome. Despite decades of investigation of RSV biology, effective and safe therapeutics are still under development. Certain natural peptides have been found to exhibit antiviral activity against respiratory viruses, but their implementation is limited by low stability in biological media. One of the current approaches to enhance the peptide therapeutic opportunities is chemical synthesis of peptide dendrimers with hyperbranched structures. Taking into account the recent data of bioactive cationic and helical regions of natural peptides and the structure features of nucleolin identified as an RSV cellular receptor, the main goal of this study was to design relatively short linear and dendrimeric cationic peptides and to test their antiviral activity against RSV. As a result 3 linear cationic peptides and 4 peptide dendrimers were synthesized and compared with known LL-37 (cathelicidin family) and anti-F0 monoclonal antibodies in terms of cytotoxicity and antiviral activity. Their affinity to the supposed molecular target - nucleolin (C23) - was estimated in silico by molecular docking analysis. Four synthesized peptides demonstrated a cytotoxic effect, two of them were even more cytotoxic than LL-37, which could be explained by a combination of a high amount of positive charge and amphipathicity. Contrariwise, non-hydrophobic dendrimer peptides did not exhibit cytotoxicity in mammalian cells in the studied concentration range. Two of the seven synthesized peptides, LTP (dendrimer) and SA-35 (linear), used in this study had a stronger antiviral effect than natural peptide LL-37, and three others showed slightly lower activity than anti-F0 monoclonal antibodies. The data obtained in this study suggest that evenly distributed positive charge, and low or medium amphipathicity play a key role in the antiviral activity of the studied peptides. Moreover, the calculated free energy values of the peptide/nucleolin complex for the most active peptides supported the idea that the peptide ability of nucleolin interaction promotes the anti-RSV properties of the molecules.


Asunto(s)
Antivirales/farmacología , Dendrímeros/farmacología , Diseño de Fármacos , Péptidos/farmacología , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Animales , Antivirales/síntesis química , Antivirales/química , Cationes/síntesis química , Cationes/química , Cationes/farmacología , Supervivencia Celular/efectos de los fármacos , Dendrímeros/química , Macaca mulatta , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Tamaño de la Partícula , Péptidos/síntesis química , Péptidos/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA