Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Methods ; 21(6): 1094-1102, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38840033

RESUMEN

Voltage imaging with cellular specificity has been made possible by advances in genetically encoded voltage indicators. However, the kilohertz rates required for voltage imaging lead to weak signals. Moreover, out-of-focus fluorescence and tissue scattering produce background that both undermines the signal-to-noise ratio and induces crosstalk between cells, making reliable in vivo imaging in densely labeled tissue highly challenging. We describe a microscope that combines the distinct advantages of targeted illumination and confocal gating while also maximizing signal detection efficiency. The resulting benefits in signal-to-noise ratio and crosstalk reduction are quantified experimentally and theoretically. Our microscope provides a versatile solution for enabling high-fidelity in vivo voltage imaging at large scales and penetration depths, which we demonstrate across a wide range of imaging conditions and different genetically encoded voltage indicator classes.


Asunto(s)
Microscopía Confocal , Microscopía Confocal/métodos , Animales , Ratones , Relación Señal-Ruido
2.
Development ; 150(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37213080

RESUMEN

Unlike mammals, adult zebrafish undergo spontaneous recovery after major spinal cord injury. Whereas reactive gliosis presents a roadblock for mammalian spinal cord repair, glial cells in zebrafish elicit pro-regenerative bridging functions after injury. Here, we perform genetic lineage tracing, assessment of regulatory sequences and inducible cell ablation to define mechanisms that direct the molecular and cellular responses of glial cells after spinal cord injury in adult zebrafish. Using a newly generated CreERT2 transgenic line, we show that the cells directing expression of the bridging glial marker ctgfa give rise to regenerating glia after injury, with negligible contribution to either neuronal or oligodendrocyte lineages. A 1 kb sequence upstream of the ctgfa gene was sufficient to direct expression in early bridging glia after injury. Finally, ablation of ctgfa-expressing cells using a transgenic nitroreductase strategy impaired glial bridging and recovery of swim behavior after injury. This study identifies key regulatory features, cellular progeny, and requirements of glial cells during innate spinal cord regeneration.


Asunto(s)
Traumatismos de la Médula Espinal , Regeneración de la Medula Espinal , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Neuroglía/metabolismo , Animales Modificados Genéticamente , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/metabolismo , Médula Espinal/metabolismo , Regeneración Nerviosa/genética , Mamíferos/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(20): e2208673120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155900

RESUMEN

The immune deficiency (IMD) pathway directs host defense in arthropods upon bacterial infection. In Pancrustacea, peptidoglycan recognition proteins sense microbial moieties and initiate nuclear factor-κB-driven immune responses. Proteins that elicit the IMD pathway in non-insect arthropods remain elusive. Here, we show that an Ixodes scapularis homolog of croquemort (Crq), a CD36-like protein, promotes activation of the tick IMD pathway. Crq exhibits plasma membrane localization and binds the lipid agonist 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol. Crq regulates the IMD and jun N-terminal kinase signaling cascades and limits the acquisition of the Lyme disease spirochete B. burgdorferi. Additionally, nymphs silenced for crq display impaired feeding and delayed molting to adulthood due to a deficiency in ecdysteroid synthesis. Collectively, we establish a distinct mechanism for arthropod immunity outside of insects and crustaceans.


Asunto(s)
Artrópodos , Infecciones Bacterianas , Borrelia burgdorferi , Ixodes , Enfermedad de Lyme , Animales , Ixodes/microbiología , Borrelia burgdorferi/genética , FN-kappa B , Enfermedad de Lyme/microbiología
4.
Brain ; 147(7): 2496-2506, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38325327

RESUMEN

We evaluated whether spike ripples, the combination of epileptiform spikes and ripples, provide a reliable and improved biomarker for the epileptogenic zone compared with other leading interictal biomarkers in a multicentre, international study. We first validated an automated spike ripple detector on intracranial EEG recordings. We then applied this detector to subjects from four centres who subsequently underwent surgical resection with known 1-year outcomes. We evaluated the spike ripple rate in subjects cured after resection [International League Against Epilepsy Class 1 outcome (ILAE 1)] and those with persistent seizures (ILAE 2-6) across sites and recording types. We also evaluated available interictal biomarkers: spike, spike-gamma, wideband high frequency oscillation (HFO, 80-500 Hz), ripple (80-250 Hz) and fast ripple (250-500 Hz) rates using previously validated automated detectors. The proportion of resected events was computed and compared across subject outcomes and biomarkers. Overall, 109 subjects were included. Most spike ripples were removed in subjects with ILAE 1 outcome (P < 0.001), and this was qualitatively observed across all sites and for depth and subdural electrodes (P < 0.001 and P < 0.001, respectively). Among ILAE 1 subjects, the mean spike ripple rate was higher in the resected volume (0.66/min) than in the non-removed tissue (0.08/min, P < 0.001). A higher proportion of spike ripples were removed in subjects with ILAE 1 outcomes compared with ILAE 2-6 outcomes (P = 0.06). Among ILAE 1 subjects, the proportion of spike ripples removed was higher than the proportion of spikes (P < 0.001), spike-gamma (P < 0.001), wideband HFOs (P < 0.001), ripples (P = 0.009) and fast ripples (P = 0.009) removed. At the individual level, more subjects with ILAE 1 outcomes had the majority of spike ripples removed (79%, 38/48) than spikes (69%, P = 0.12), spike-gamma (69%, P = 0.12), wideband HFOs (63%, P = 0.03), ripples (45%, P = 0.01) or fast ripples (36%, P < 0.001) removed. Thus, in this large, multicentre cohort, when surgical resection was successful, the majority of spike ripples were removed. Furthermore, automatically detected spike ripples localize the epileptogenic tissue better than spikes, spike-gamma, wideband HFOs, ripples and fast ripples.


Asunto(s)
Electrocorticografía , Humanos , Masculino , Femenino , Adulto , Electrocorticografía/métodos , Adulto Joven , Adolescente , Electroencefalografía/métodos , Persona de Mediana Edad , Epilepsia/fisiopatología , Epilepsia/cirugía , Niño , Ondas Encefálicas/fisiología , Encéfalo/fisiopatología
5.
Infect Immun ; 92(3): e0056022, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38363133

RESUMEN

The Gram-negative bacterium Coxiella burnetii is the causative agent of query fever in humans and coxiellosis in livestock. C. burnetii infects a variety of cell types, tissues, and animal species including mammals and arthropods, but there is much left to be understood about the molecular mechanisms at play during infection in distinct species. Human stimulator of interferon genes (STING) induces an innate immune response through the induction of type I interferons (IFNs), and IFN promotes or suppresses C. burnetii replication, depending on tissue type. Drosophila melanogaster contains a functional STING ortholog (Sting) which activates NF-κB signaling and autophagy. Here, we sought to address the role of D. melanogaster Sting during C. burnetii infection to uncover how Sting regulates C. burnetii infection in flies. We show that Sting-null flies exhibit higher mortality and reduced induction of antimicrobial peptides following C. burnetii infection compared to control flies. Additionally, Sting-null flies induce lower levels of oxidative stress genes during infection, but the provision of N-acetyl-cysteine (NAC) in food rescues Sting-null host survival. Lastly, we find that reactive oxygen species levels during C. burnetii infection are higher in Drosophila S2 cells knocked down for Sting compared to control cells. Our results show that at the host level, NAC provides protection against C. burnetii infection in the absence of Sting, thus establishing a role for Sting in protection against oxidative stress during C. burnetii infection.


Asunto(s)
Coxiella burnetii , Fiebre Q , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , FN-kappa B/metabolismo , Fiebre Q/microbiología , Especies Reactivas de Oxígeno/metabolismo
6.
Genome Res ; 31(6): 981-994, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34006569

RESUMEN

Chromatin architecture mapping in 3D formats has increased our understanding of how regulatory sequences and gene expression are connected and regulated in a genome. The 3D chromatin genome shows extensive remodeling during embryonic development, and although the cleavage-stage embryos of most species lack structure before zygotic genome activation (pre-ZGA), zebrafish has been reported to have structure. Here, we aimed to determine the chromosomal architecture in paternal/sperm zebrafish gamete cells to discern whether it either resembles or informs early pre-ZGA zebrafish embryo chromatin architecture. First, we assessed the higher-order architecture through advanced low-cell in situ Hi-C. The structure of zebrafish sperm, packaged by histones, lacks topological associated domains and instead displays "hinge-like" domains of ∼150 kb that repeat every 1-2 Mbs, suggesting a condensed repeating structure resembling mitotic chromosomes. The pre-ZGA embryos lacked chromosomal structure, in contrast to prior work, and only developed structure post-ZGA. During post-ZGA, we find chromatin architecture beginning to form at small contact domains of a median length of ∼90 kb. These small contact domains are established at enhancers, including super-enhancers, and chemical inhibition of Ep300a (p300) and Crebbpa (CBP) activity, lowering histone H3K27ac, but not transcription inhibition, diminishes these contacts. Together, this study reveals hinge-like domains in histone-packaged zebrafish sperm chromatin and determines that the initial formation of high-order chromatin architecture in zebrafish embryos occurs after ZGA primarily at enhancers bearing high H3K27ac.


Asunto(s)
Cromatina , Pez Cebra , Animales , Cromatina/genética , Cromatina/metabolismo , Cromosomas/genética , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Masculino , Espermatozoides/metabolismo , Pez Cebra/genética , Cigoto
7.
PLoS Biol ; 19(4): e3001191, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33886552

RESUMEN

The Hedgehog (Hh) pathway is essential for organ development, homeostasis, and regeneration. Dysfunction of this cascade drives several cancers. To control expression of pathway target genes, the G protein-coupled receptor (GPCR) Smoothened (SMO) activates glioma-associated (GLI) transcription factors via an unknown mechanism. Here, we show that, rather than conforming to traditional GPCR signaling paradigms, SMO activates GLI by binding and sequestering protein kinase A (PKA) catalytic subunits at the membrane. This sequestration, triggered by GPCR kinase (GRK)-mediated phosphorylation of SMO intracellular domains, prevents PKA from phosphorylating soluble substrates, releasing GLI from PKA-mediated inhibition. Our work provides a mechanism directly linking Hh signal transduction at the membrane to GLI transcription in the nucleus. This process is more fundamentally similar between species than prevailing hypotheses suggest. The mechanism described here may apply broadly to other GPCR- and PKA-containing cascades in diverse areas of biology.


Asunto(s)
Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Hedgehog/metabolismo , Receptor Smoothened/fisiología , Animales , Animales Modificados Genéticamente , Dominio Catalítico/genética , Células Cultivadas , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/química , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , Embrión no Mamífero , Células HEK293 , Proteínas Hedgehog/genética , Humanos , Ratones , Dominios y Motivos de Interacción de Proteínas/genética , Transducción de Señal/genética , Receptor Smoothened/metabolismo , Pez Cebra
8.
Proc Natl Acad Sci U S A ; 116(1): 205-210, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30559180

RESUMEN

The E3 ubiquitin ligase X-linked inhibitor of apoptosis (XIAP) acts as a molecular rheostat for the immune deficiency (IMD) pathway of the tick Ixodes scapularis How XIAP activates the IMD pathway in response to microbial infection remains ill defined. Here, we identified the XIAP enzymatic substrate p47 as a positive regulator of the I. scapularis IMD network. XIAP polyubiquitylates p47 in a lysine 63-dependent manner and interacts with the p47 ubiquitin-like (UBX) module. p47 also binds to Kenny (IKKγ/NEMO), the regulatory subunit of the inhibitor of nuclear factor (NF)- κB kinase complex. Replacement of the amino acid lysine to arginine within the p47 linker region completely abrogated molecular interactions with Kenny. Furthermore, mitigation of p47 transcription levels through RNA interference in I. scapularis limited Kenny accumulation, reduced phosphorylation of IKKß (IRD5), and impaired cleavage of the NF-κB molecule Relish. Accordingly, disruption of p47 expression increased microbial colonization by the Lyme disease spirochete Borrelia burgdorferi and the rickettsial agent Anaplasma phagocytophilum Collectively, we highlight the importance of ticks for the elucidation of paradigms in arthropod immunology. Manipulating immune signaling cascades within I. scapularis may lead to innovative approaches to reducing the burden of tick-borne diseases.


Asunto(s)
Ixodes/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/fisiología , Anaplasma , Animales , Proteínas de Artrópodos/metabolismo , Proteínas de Artrópodos/fisiología , Borrelia burgdorferi , Drosophila , Técnicas de Inactivación de Genes , Ixodes/microbiología , Ixodes/fisiología , FN-kappa B/metabolismo , Dominios Proteicos , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/fisiología
9.
Int J Mol Sci ; 23(7)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35409307

RESUMEN

Anaplasma spp. are obligate intracellular, tick-borne, bacterial pathogens that cause bovine and human anaplasmosis. We lack tools to prevent these diseases in part due to major knowledge gaps in our fundamental understanding of the tick-pathogen interface, including the requirement for and molecules involved in iron transport during tick colonization. We determine that iron is required for the pathogen Anaplasma marginale, which causes bovine anaplasmosis, to replicate in Dermacentor andersoni tick cells. Using bioinformatics and protein modeling, we identified three orthologs of the Gram-negative siderophore-independent iron uptake system, FbpABC. Am069, the A. marginale ortholog of FbpA, lacks predicted iron-binding residues according to the NCBI conserved domain database. However, according to protein modeling, the best structural orthologs of Am069 are iron transport proteins from Cyanobacteria and Campylobacterjejuni. We then determined that all three A. marginale genes are modestly differentially expressed in response to altered host cell iron levels, despite the lack of a Ferric uptake regulator or operon structure. This work is foundational for building a mechanistic understanding of iron uptake, which could lead to interventions to prevent bovine and human anaplasmosis.


Asunto(s)
Anaplasma marginale , Anaplasmosis , Dermacentor , Anaplasma , Anaplasma marginale/genética , Anaplasmosis/microbiología , Animales , Bovinos , Dermacentor/genética , Dermacentor/microbiología , Humanos , Hierro
10.
Trends Immunol ; 39(11): 862-873, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30301592

RESUMEN

Recent scientific breakthroughs have significantly expanded our understanding of arthropod vector immunity. Insights in the laboratory have demonstrated how the immune system provides resistance to infection, and in what manner innate defenses protect against a microbial assault. Less understood, however, is the effect of biotic and abiotic factors on microbial-vector interactions and the impact of the immune system on arthropod populations in nature. Furthermore, the influence of genetic plasticity on the immune response against vector-borne pathogens remains mostly elusive. Herein, we discuss evolutionary forces that shape arthropod vector immunity. We focus on resistance, pathogenicity and tolerance to infection. We posit that novel scientific paradigms should emerge when molecular immunologists and evolutionary ecologists work together.


Asunto(s)
Vectores Artrópodos/inmunología , Artrópodos/inmunología , Mamíferos/inmunología , Animales , Evolución Biológica , Ecología , Humanos , Tolerancia Inmunológica , Inmunidad , Transducción de Señal
11.
PLoS Pathog ; 12(8): e1005803, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27482714

RESUMEN

Rickettsial agents are sensed by pattern recognition receptors but lack pathogen-associated molecular patterns commonly observed in facultative intracellular bacteria. Due to these molecular features, the order Rickettsiales can be used to uncover broader principles of bacterial immunity. Here, we used the bacterium Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis, to reveal a novel microbial surveillance system. Mechanistically, we discovered that upon A. phagocytophilum infection, cytosolic phospholipase A2 cleaves arachidonic acid from phospholipids, which is converted to the eicosanoid prostaglandin E2 (PGE2) via cyclooxygenase 2 (COX2) and the membrane associated prostaglandin E synthase-1 (mPGES-1). PGE2-EP3 receptor signaling leads to activation of the NLRC4 inflammasome and secretion of interleukin (IL)-1ß and IL-18. Importantly, the receptor-interacting serine/threonine-protein kinase 2 (RIPK2) was identified as a major regulator of the immune response against A. phagocytophilum. Accordingly, mice lacking COX2 were more susceptible to A. phagocytophilum, had a defect in IL-18 secretion and exhibited splenomegaly and damage to the splenic architecture. Remarkably, Salmonella-induced NLRC4 inflammasome activation was not affected by either chemical inhibition or genetic ablation of genes associated with PGE2 biosynthesis and signaling. This divergence in immune circuitry was due to reduced levels of the PGE2-EP3 receptor during Salmonella infection when compared to A. phagocytophilum. Collectively, we reveal the existence of a functionally distinct NLRC4 inflammasome illustrated by the rickettsial agent A. phagocytophilum.


Asunto(s)
Anaplasma phagocytophilum/inmunología , Proteínas Reguladoras de la Apoptosis/inmunología , Proteínas de Unión al Calcio/inmunología , Dinoprostona/inmunología , Ehrlichiosis/inmunología , Inflamasomas/inmunología , Subtipo EP3 de Receptores de Prostaglandina E/inmunología , Animales , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Immunoblotting , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa
12.
Infect Immun ; 84(6): 1796-1805, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27045038

RESUMEN

Tick saliva contains a number of effector molecules that inhibit host immunity and facilitate pathogen transmission. How tick proteins regulate immune signaling, however, is incompletely understood. Here, we describe that loop 2 of sialostatin L2, an anti-inflammatory tick protein, binds to annexin A2 and impairs the formation of the NLRC4 inflammasome during infection with the rickettsial agent Anaplasma phagocytophilum Macrophages deficient in annexin A2 secreted significantly smaller amounts of interleukin-1ß (IL-1ß) and IL-18 and had a defect in NLRC4 inflammasome oligomerization and caspase-1 activation. Accordingly, Annexin a2-deficient mice were more susceptible to A. phagocytophilum infection and showed splenomegaly, thrombocytopenia, and monocytopenia. Providing translational support to our findings, better binding of annexin A2 to sialostatin L2 in sera from 21 out of 23 infected patients than in sera from control individuals was also demonstrated. Overall, we establish a unique mode of inflammasome evasion by a pathogen, centered on a blood-feeding arthropod.


Asunto(s)
Anaplasma phagocytophilum/inmunología , Anexina A2/inmunología , Proteínas Reguladoras de la Apoptosis/inmunología , Proteínas de Unión al Calcio/inmunología , Cistatinas/inmunología , Ehrlichiosis/microbiología , Evasión Inmune , Secuencia de Aminoácidos , Anaplasma phagocytophilum/genética , Animales , Anexina A2/química , Anexina A2/genética , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/genética , Vectores Arácnidos/química , Vectores Arácnidos/genética , Vectores Arácnidos/inmunología , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/genética , Caspasa 1/genética , Caspasa 1/inmunología , Caspasas/genética , Caspasas/inmunología , Caspasas Iniciadoras , Cistatinas/química , Cistatinas/genética , Ehrlichiosis/inmunología , Ehrlichiosis/patología , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación de la Expresión Génica , Humanos , Inflamasomas/genética , Inflamasomas/inmunología , Interleucina-18/genética , Interleucina-18/inmunología , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Ixodes/química , Ixodes/genética , Ixodes/inmunología , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Modelos Moleculares , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/inmunología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Transducción de Señal
13.
Infect Immun ; 83(9): 3693-703, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26150534

RESUMEN

Borrelia burgdorferi, the etiologic agent of Lyme disease, produces a variety of proteins that promote survival and colonization in both the Ixodes species vector and various mammalian hosts. We initially identified BB0744 (also known as p83/100) by screening for B. burgdorferi strain B31 proteins that bind to α1ß1 integrin and hypothesized that, given the presence of a signal peptide, BB0744 may be a surface-exposed protein. In contrast to this expectation, localization studies suggested that BB0744 resides in the periplasm. Despite its subsurface location, we were interested in testing whether BB0744 is required for borrelial pathogenesis. To this end, a bb0744 deletion was isolated in a B. burgdorferi strain B31 infectious background, complemented, and queried for the role of BB0744 following experimental infection. A combination of bioluminescent imaging, cultivation of infected tissues, and quantitative PCR (qPCR) demonstrated that Δbb0744 mutant B. burgdorferi bacteria were attenuated in the ability to colonize heart tissue, as well as skin locations distal to the site of infection. Furthermore, qPCR indicated a significantly reduced spirochetal load in distal skin and joint tissue infected with Δbb0744 mutant B. burgdorferi. Complementation with bb0744 restored infectivity, indicating that the defect seen in Δbb0744 mutant B. burgdorferi was due to the loss of BB0744. Taken together, these results suggest that BB0744 is necessary for tissue tropism, particularly in heart tissue, alters the ability of B. burgdorferi to disseminate efficiently, or both. Additional studies are warranted to address the mechanism employed by BB0744 that alters the pathogenic potential of B. burgdorferi.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Borrelia burgdorferi/patogenicidad , Enfermedad de Lyme/microbiología , Animales , Borrelia burgdorferi/metabolismo , Modelos Animales de Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Immunoblotting , Mediciones Luminiscentes , Enfermedad de Lyme/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa
14.
bioRxiv ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38915507

RESUMEN

Immune cells elicit a continuum of transcriptional and functional states after spinal cord injury (SCI). In mammals, inefficient debris clearance and chronic inflammation impede recovery and overshadow pro-regenerative immune functions. We found that, unlike mammals, zebrafish SCI elicits transient immune activation and efficient debris clearance, without causing chronic inflammation. Single-cell transcriptomics and inducible genetic ablation showed zebrafish macrophages are highly phagocytic and required for regeneration. Cross-species comparisons between zebrafish and mammalian macrophages identified transcription and immune response regulator ( tcim ) as a macrophage-enriched zebrafish gene. Genetic deletion of zebrafish tcim impairs phagocytosis and regeneration, causes aberrant and chronic immune activation, and can be rescued by transplanting wild-type immune precursors into tcim mutants. Conversely, genetic expression of human TCIM accelerates debris clearance and regeneration by reprogramming myeloid precursors into activated phagocytes. This study establishes a central requirement for elevated phagocytic capacity to achieve innate spinal cord repair.

15.
Parasit Vectors ; 17(1): 57, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336752

RESUMEN

BACKGROUND: The blacklegged tick, Ixodes scapularis, transmits most vector-borne diseases in the US. It vectors seven pathogens of public health relevance, including the emerging human pathogen Anaplasma phagocytophilum. Nevertheless, it remains critically understudied compared to other arthropod vectors. Ixodes scapularis releases a variety of molecules that assist in the modulation of host responses. Recently, it was found that extracellular vesicles (EVs) carry several of these molecules and may impact microbial transmission to the mammalian host. EV biogenesis has been studied in mammalian systems and is relatively well understood, but the molecular players important for the formation and secretion of EVs in arthropods of public health relevance remain elusive. RabGTPases are among the major molecular players in mammalian EV biogenesis. They influence membrane identity and vesicle budding, uncoating, and motility. METHODS: Using BLAST, an in silico pathway for EV biogenesis in ticks was re-constructed. We identified Rab27 for further study. EVs were collected from ISE6 tick cells after knocking down rab27 to examine its role in tick EV biogenesis. Ixodes scapularis nymphs were injected with small interfering RNAs to knock down rab27 and then fed on naïve and A. phagocytophilum-infected mice to explore the importance of rab27 in tick feeding and bacterial acquisition. RESULTS: Our BLAST analysis identified several of the proteins involved in EV biogenesis in ticks, including Rab27. We show that silencing rab27 in I. scapularis impacts tick fitness. Additionally, ticks acquire less A. phagocytophilum after rab27 silencing. Experiments in the tick ISE6 cell line show that silencing of rab27 causes a distinct range profile of tick EVs, indicating that Rab27 is needed to regulate EV biogenesis. CONCLUSIONS: Rab27 is needed for successful tick feeding and may be important for acquiring A. phagocytophilum during a blood meal. Additionally, silencing rab27 in tick cells results in a shift of extracellular vesicle size. Overall, we have observed that Rab27 plays a key role in tick EV biogenesis and the tripartite interactions among the vector, the mammalian host, and a microbe it encounters.


Asunto(s)
Anaplasma phagocytophilum , Proteínas de Artrópodos , Vesículas Extracelulares , Ixodes , Proteínas rab27 de Unión a GTP , Animales , Humanos , Ratones , Anaplasma phagocytophilum/fisiología , Ixodes/citología , Ixodes/metabolismo , Ixodes/microbiología , Mamíferos , Vesículas Extracelulares/metabolismo , Proteínas rab27 de Unión a GTP/metabolismo , Proteínas de Artrópodos/metabolismo
16.
bioRxiv ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38496541

RESUMEN

Objective: Interictal epileptiform spikes, high-frequency ripple oscillations, and their co-occurrence (spike ripples) in human scalp or intracranial voltage recordings are well-established epileptic biomarkers. While clinically significant, the neural mechanisms generating these electrographic biomarkers remain unclear. To reduce this knowledge gap, we introduce a novel photothrombotic stroke model in mice that reproduces focal interictal electrographic biomarkers observed in human epilepsy. Methods: We induced a stroke in the motor cortex of C57BL/6 mice unilaterally (N=7) using a photothrombotic procedure previously established in rats. We then implanted intracranial electrodes (2 ipsilateral and 2 contralateral) and obtained intermittent local field potential (LFP) recordings over several weeks in awake, behaving mice. We evaluated the LFP for focal slowing and epileptic biomarkers - spikes, ripples, and spike ripples - using both automated and semi-automated procedures. Results: Delta power (1-4 Hz) was higher in the stroke hemisphere than the non-stroke hemisphere in all mice ( p <0.001). Automated detection procedures indicated that compared to the non-stroke hemisphere, the stroke hemisphere had an increased spike ripple ( p =0.006) and spike rates ( p =0.039), but no change in ripple rate ( p =0.98). Expert validation confirmed the observation of elevated spike ripple rates ( p =0.008) and a trend of elevated spike rate ( p =0.055) in the stroke hemisphere. Interestingly, the validated ripple rate in the stroke hemisphere was higher than the non-stroke hemisphere ( p =0.031), highlighting the difficulty of automatically detecting ripples. Finally, using optimal performance thresholds, automatically detected spike ripples classified the stroke hemisphere with the best accuracy (sensitivity 0.94, specificity 0.94). Significance: Cortical photothrombosis-induced stroke in commonly used C57BL/6 mice produces electrographic biomarkers as observed in human epilepsy. This model represents a new translational cortical epilepsy model with a defined irritative zone, which can be broadly applied in transgenic mice for cell type specific analysis of the cellular and circuit mechanisms of pathologic interictal activity. Key Points: Cortical photothrombosis in mice produces stroke with characteristic intermittent focal delta slowing.Cortical photothrombosis stroke in mice produces the epileptic biomarkers spikes, ripples, and spike ripples.All biomarkers share morphological features with the corresponding human correlate.Spike ripples better lateralize to the lesional cortex than spikes or ripples.This cortical model can be applied in transgenic mice for mechanistic studies.

17.
Mol Microbiol ; 83(2): 319-34, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22151008

RESUMEN

The etiological agent of Lyme disease, Borrelia burgdorferi, is transmitted by ticks of the Ixodes genus and, if untreated, can cause significant morbidity in affected individuals. Recent reports have shown that polyunsaturated fatty acids in the B. burgdorferi cell envelope are potential targets for oxidative damage, which can be lethal. How B. burgdorferi responds to this assault is not known. Herein we report evidence that bb0646 codes for a lipase that is located within the bosR operon and that has specificity for both saturated and polyunsaturated fatty acids. Specifically, strains harbouring mutated copies of the lipase, either in the form of an insertionally inactivated construct or site-directed mutations within the active site, demonstrated attenuated lipolytic and haemolytic phenotypes when compared with the isogenic parent and trans-complements. In vivo analysis showed that while the bb0646 mutant remains infectious, the spirochaetal load is significantly lower than both the isogenic parent and the complemented mutant strains. Taken together, these data demonstrate that BB0646 is a broad substrate specific lipase that contributes to lipolytic and haemolytic activity in vitro and is required for optimal B. burgdorferi infection.


Asunto(s)
Borrelia burgdorferi/enzimología , Proteínas Hemolisinas/metabolismo , Lipasa/metabolismo , Estructuras Animales/microbiología , Animales , Carga Bacteriana , Borrelia burgdorferi/genética , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Proteínas Hemolisinas/genética , Lipasa/genética , Enfermedad de Lyme/microbiología , Enfermedad de Lyme/patología , Ratones , Mutagénesis Insercional , Mutagénesis Sitio-Dirigida , Mutación Missense , Operón
18.
bioRxiv ; 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36798287

RESUMEN

Pathogens must adapt to disparate environments in permissive host species, a feat that is especially pronounced for vector-borne microbes, which transition between vertebrate hosts and arthropod vectors to complete their lifecycles. Most knowledge about arthropod-vectored bacterial pathogens centers on their life in the mammalian host, where disease occurs. However, disease outbreaks are driven by the arthropod vectors. Adapting to the arthropod is critical for obligate intracellular rickettsial pathogens, as they depend on eukaryotic cells for survival. To manipulate the intracellular environment, these bacteria use Type IV Secretion Systems (T4SS) to deliver effectors into the host cell. To date, few rickettsial T4SS translocated effectors have been identified and have only been examined in the context of mammalian infection. We identified an effector from the tick-borne rickettsial pathogen Anaplasma phagocytophilum , HGE1_02492, as critical for survival in tick cells and acquisition by ticks in vivo . Conversely, HGE1_02492 was dispensable during mammalian cell culture and murine infection. We show HGE1_02492 is translocatable in a T4SS-dependent manner to the host cell cytosol. In eukaryotic cells, the HGE1_02492 localized with cortical actin filaments, which is dependent on multiple sub-domains of the protein. HGE1_02492 is the first arthropod-vector specific T4SS translocated effector identified from a rickettsial pathogen. Moreover, the subcellular target of HGE1_02492 suggests that A. phagocytophilum is manipulating actin to enable arthropod colonization. Based on these findings, we propose the name AteA for Anaplasma ( phagocytophilum ) tick effector A. Altogether, we show that A. phagocytophilum uses distinct strategies to cycle between mammals and arthropods. Importance: Ticks are the number one vector of pathogens for livestock worldwide and for humans in the US. The biology of tick transmission is an understudied area. Understanding this critical interaction could provide opportunities to affect the course of disease spread. In this study we examined the zoonotic tick-borne agent Anaplasma phagocytophilum and identified a secreted protein, AteA, that is expressed in a tick-specific manner. These secreted proteins, termed effectors, are the first proteins to interact with the host environment. AteA is essential for survival in ticks and appears to interact with cortical actin. Most effector proteins are studied in the context of the mammalian host; however, understanding how this unique set of proteins affect tick transmission is critical to developing interventions.

19.
bioRxiv ; 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37398437

RESUMEN

A crucial phase in the lifecycle of tick-borne pathogens is the time spent colonizing and persisting within the arthropod. Tick immunity is emerging as a key force shaping how transmissible pathogens interact with the vector. How pathogens remain in the tick despite immunological pressure remains unknown. In persistently infected Ixodes scapularis , we found that Borrelia burgdorferi (Lyme disease) and Anaplasma phagocytophilum (granulocytic anaplasmosis) activate a cellular stress pathway mediated by the endoplasmic reticulum receptor PERK and the central regulatory molecule, eIF2α. Disabling the PERK pathway through pharmacological inhibition and RNAi significantly decreased microbial numbers. In vivo RNA interference of the PERK pathway not only reduced the number of A. phagocytophilum and B. burgdorferi colonizing larvae after a bloodmeal, but also significantly reduced the number of bacteria that survive the molt. An investigation into PERK pathway-regulated targets revealed that A. phagocytophilum and B. burgdorferi induce activity of the antioxidant response regulator, Nrf2. Tick cells deficient for nrf2 expression or PERK signaling showed accumulation of reactive oxygen and nitrogen species in addition to reduced microbial survival. Supplementation with antioxidants rescued the microbicidal phenotype caused by blocking the PERK pathway. Altogether, our study demonstrates that the Ixodes PERK pathway is activated by transmissible microbes and facilitates persistence in the arthropod by potentiating an Nrf2-regulated antioxidant environment.

20.
bioRxiv ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37961338

RESUMEN

Background: The blacklegged tick, Ixodes scapularis, transmits most vector-borne diseases in the United States. It vectors seven pathogens of public health relevance, including the emerging human pathogen Anaplasma phagocytophilum. Nevertheless, it remains critically understudied when compared to other arthropod vectors. I. scapularis releases a variety of molecules that assist in the modulation of host responses. Recently, it was found that extracellular vesicles (EVs) carry several of these molecules and may impact microbial transmission to the mammalian host. EV biogenesis has been studied in mammalian systems and is relatively well understood, but the molecular players important for the formation and secretion of EVs in arthropods of public health relevance remain elusive. RabGTPases are among the major molecular players in mammalian EV biogenesis. They influence membrane identity and vesicle budding, uncoating, and motility. Methods: Using BLAST, an in-silico pathway for EV biogenesis in ticks was re-constructed. We identified Rab27 for further study. EVs were collected from ISE6 tick cells after knocking down rab27 to examine its role in tick EV biogenesis. I. scapularis nymphs were injected with small interfering RNAs to knock down rab27 then fed on naïve and A. phagocytophilum infected mice to explore the importance of rab27 in tick feeding and bacterial acquisition. Results: Our BLAST analysis identified several of the proteins involved in EV biogenesis in ticks, including Rab27. We show that silencing rab27 in I. scapularis impacts tick fitness. Additionally, ticks acquire less A. phagocytophilum after rab27 silencing. Experiments in the tick ISE6 cell line show that silencing of rab27 causes a distinct range profile of tick EVs, indicating that Rab27 is needed to regulate EV biogenesis. Conclusions: Rab27 is needed for successful tick feeding and may be important for acquiring A. phagocytophilum during a blood meal. Additionally, silencing rab27 in tick cells results in a shift of extracellular vesicle size. Overall, we have observed that Rab27 plays a key role in tick EV biogenesis and the tripartite interactions among the vector, the mammalian host, and a microbe it encounters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA