RESUMEN
BACKGROUND: SARS-CoV-2 vaccination is recommended in patients with inborn errors of immunity (IEIs); however, little is known about immunogenicity and safety in these patients. OBJECTIVE: We sought to evaluate the impact of genetic diagnosis, age, and treatment on antibody response to COVID-19 vaccine and related adverse events in a cohort of patients with IEIs. METHODS: Plasma was collected from 22 health care worker controls, 81 patients with IEIs, and 2 patients with thymoma; the plasma was collected before immunization, 1 to 6 days before the second dose of mRNA vaccine, and at a median of 30 days after completion of the immunization schedule with either mRNA vaccine or a single dose of Johnson & Johnson's Janssen vaccine. Anti-spike (anti-S) and anti-nucleocapsid antibody titers were measured by using a luciferase immunoprecipitation systems method. Information on T- and B-cell counts and use of immunosuppressive drugs was extracted from medical records, and information on vaccine-associated adverse events was collected after each dose. RESULTS: Anti-S antibodies were detected in 27 of 46 patients (58.7%) after 1 dose of mRNA vaccine and in 63 of 74 fully immunized patients (85.1%). A lower rate of seroconversion (7 of 11 [63.6%]) was observed in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. Previous use of rituximab and baseline counts of less than 1000 CD3+ T cells/mL and less than 100 CD19+ B cells/mL were associated with lower anti-S IgG levels. No significant adverse events were reported. CONCLUSION: Vaccinating patients with IEIs is safe, but immunogenicity is affected by certain therapies and gene defects. These data may guide the counseling of patients with IEIs regarding prevention of SARS-CoV-2 infection and the need for subsequent boosts.
Asunto(s)
Factores de Edad , Linfocitos B/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Poliendocrinopatías Autoinmunes/inmunología , SARS-CoV-2/fisiología , Linfocitos T/inmunología , Adolescente , Adulto , Anciano , Anticuerpos Antivirales/sangre , Formación de Anticuerpos , COVID-19/genética , Estudios de Cohortes , Proteínas de la Nucleocápside de Coronavirus/inmunología , Femenino , Humanos , Inmunización Secundaria , Inmunogenicidad Vacunal , Inmunoglobulina G/sangre , Inmunosupresores/uso terapéutico , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Fosfoproteínas/inmunología , Poliendocrinopatías Autoinmunes/tratamiento farmacológico , Poliendocrinopatías Autoinmunes/genética , Rituximab/uso terapéutico , Seroconversión , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto Joven , Tratamiento Farmacológico de COVID-19RESUMEN
The mechanism for the deamination of guanine with H(2)O, OH(-), H(2)O/OH(-) and for GuaH(+) with H(2)O has been investigated using ab initio calculations. Optimized geometries of the reactants, transition states, intermediates, and products were determined at RHF/6-31G(d), MP2/6-31G(d), B3LYP/6-31G(d), and B3LYP/6-31+G(d) levels of theory. Energies were also determined at G3MP2, G3MP2B3, G4MP2, and CBS-QB3 levels of theory. Intrinsic reaction coordinate (IRC) calculations were performed to characterize the transition states on the potential energy surface. Thermodynamic properties (ΔE, ΔH, and ΔG), activation energies, enthalpies, and Gibbs free energies of activation were also calculated for each reaction investigated. All pathways yield an initial tetrahedral intermediate and an intermediate in the last step that dissociates to products via a 1,3-proton shift. At the G3MP2 level of theory, deamination with OH(-) was found to have an activation energy barrier of 155 kJ mol(-1) compared to 187 kJ mol(-1) for the reaction with H(2)O and 243 kJ mol(-1) for GuaH(+) with H(2)O. The lowest overall activation energy, 144 kJ mol(-1) at the G3MP2 level, was obtained for the deamination of guanine with H(2)O/OH(-). Due to a lack of experimental results for guanine deamination, a comparison is made with those of cytosine, whose deamination reaction parallels that of guanine.
Asunto(s)
Guanina/química , Teoría Cuántica , Desaminación , Hidróxidos/química , Modelos Moleculares , Conformación Molecular , Protones , Termodinámica , Agua/químicaRESUMEN
The detailing of the intermolecular interactions in dense solid oxygen is essential for an understanding of the rich polymorphism and remarkable properties of this element at high pressure. Synchrotron inelastic x-ray scattering measurements of oxygen K-edge excitations to 38 GPa reveal changes in electronic structure and bonding on compression of the molecular solid. The measurements show that O(2) molecules interact predominantly through the half-filled 1pi(g)* orbital <10 GPa. Enhanced intermolecular interactions develop because of increasing overlap of the 1pi(g)* orbital in the low-pressure phases, leading to electron delocalization and ultimately intermolecular bonding between O(2) molecules at the transition to the epsilon-phase. The epsilon-phase, which consists of (O(2))(4) clusters, displays the bonding characteristics of a closed-shell system. Increasing interactions between (O(2))(4) clusters develop upon compression of the epsilon-phase, and provide a potential mechanism for intercluster bonding in still higher-pressure phases.
RESUMEN
Idiopathic CD4+ lymphopenia (ICL) predisposes to opportunistic infections (OIs) but can often remain asymptomatic and does not have a strong association with monogenic mutations. Likewise, cryptococcal meningoencephalitis, the most common OI in ICL, is not strongly associated with monogenic mutations. In this study, we describe 2 patients with ICL plus an additional immune defect: one from an E57K genetic mutation in the nuclear factor-κß essential modulator, and the other with acquired autoantibodies to granulocyte-macrophage colony-stimulating factor. Thus, these cases may exemplify a "multi-hit model" in patients with ICL who acquire OIs.
RESUMEN
Oxygen K-edge x-ray absorption spectra of high-density amorphous (HDA) ice, low-density amorphous ice Ic, ice Ih, normal and deuterated liquid water were measured with the synchrotron x-ray Raman scattering method under almost identical experimental conditions by in situ heating of an HDA ice sample. The distinct preedge structure previously reported in water was observed in all the spectra. The results show that core-hole excitations are localized and not strongly affected by the local environment. Therefore, the existence of the preedge feature is not a concise indicator of the magnitude of local disorder within the hydrogen bonded network. The intensity of the near-edge absorption shifts into the postedge region when the hydrogen bond network becomes more ordered. This observation is interpreted as an enhancement of Wannier over Frenkel excitations in an ordered crystal.