Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nature ; 483(7388): 169-75, 2012 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-22398555

RESUMEN

Gorillas are humans' closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human-chimpanzee and human-chimpanzee-gorilla speciation events at approximately 6 and 10 million years ago. In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution.


Asunto(s)
Evolución Molecular , Especiación Genética , Genoma/genética , Gorilla gorilla/genética , Animales , Femenino , Regulación de la Expresión Génica , Variación Genética/genética , Genómica , Humanos , Macaca mulatta/genética , Datos de Secuencia Molecular , Pan troglodytes/genética , Filogenia , Pongo/genética , Proteínas/genética , Alineación de Secuencia , Especificidad de la Especie , Transcripción Genética
2.
Am J Hum Genet ; 91(6): 1022-32, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23217326

RESUMEN

We have assessed the numbers of potentially deleterious variants in the genomes of apparently healthy humans by using (1) low-coverage whole-genome sequence data from 179 individuals in the 1000 Genomes Pilot Project and (2) current predictions and databases of deleterious variants. Each individual carried 281-515 missense substitutions, 40-85 of which were homozygous, predicted to be highly damaging. They also carried 40-110 variants classified by the Human Gene Mutation Database (HGMD) as disease-causing mutations (DMs), 3-24 variants in the homozygous state, and many polymorphisms putatively associated with disease. Whereas many of these DMs are likely to represent disease-allele-annotation errors, between 0 and 8 DMs (0-1 homozygous) per individual are predicted to be highly damaging, and some of them provide information of medical relevance. These analyses emphasize the need for improved annotation of disease alleles both in mutation databases and in the primary literature; some HGMD mutation data have been recategorized on the basis of the present findings, an iterative process that is both necessary and ongoing. Our estimates of deleterious-allele numbers are likely to be subject to both overcounting and undercounting. However, our current best mean estimates of ~400 damaging variants and ~2 bona fide disease mutations per individual are likely to increase rather than decrease as sequencing studies ascertain rare variants more effectively and as additional disease alleles are discovered.


Asunto(s)
Alelos , Tasa de Mutación , Bases de Datos de Ácidos Nucleicos , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Mutación Missense , Prevalencia
3.
Hum Genet ; 133(1): 1-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24077912

RESUMEN

The Human Gene Mutation Database (HGMD®) is a comprehensive collection of germline mutations in nuclear genes that underlie, or are associated with, human inherited disease. By June 2013, the database contained over 141,000 different lesions detected in over 5,700 different genes, with new mutation entries currently accumulating at a rate exceeding 10,000 per annum. HGMD was originally established in 1996 for the scientific study of mutational mechanisms in human genes. However, it has since acquired a much broader utility as a central unified disease-oriented mutation repository utilized by human molecular geneticists, genome scientists, molecular biologists, clinicians and genetic counsellors as well as by those specializing in biopharmaceuticals, bioinformatics and personalized genomics. The public version of HGMD (http://www.hgmd.org) is freely available to registered users from academic institutions/non-profit organizations whilst the subscription version (HGMD Professional) is available to academic, clinical and commercial users under license via BIOBASE GmbH.


Asunto(s)
Bases de Datos Genéticas , Genoma Humano , Mutación de Línea Germinal , Núcleo Celular/genética , Biología Computacional , Variaciones en el Número de Copia de ADN , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Genómica , Humanos , Polimorfismo Genético , Medicina de Precisión
4.
Int J Mycobacteriol ; 12(2): 144-150, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37338475

RESUMEN

Background: Despite recent advances in the development of more sensitive technologies for the diagnosis of tuberculosis (TB), in resource-limited settings, the diagnosis continues to rely on sputum smear microscopy. This is because smear microscopy is simple, cost-efficient and the most accessible tool for the diagnosis of TB. Our study evaluated the performance of light-emitting diode fluorescence microscopy (LED-FM) using auramine/rhodamine (auramine) and the fluorescein di-acetate (FDA) vital stain in the diagnostic of pulmonary TB in Bamako, Mali. Methods: Sputum smear microscopy was conducted using the FDA and auramine/rhodamine staining procedures on fresh samples using LED-FM to evaluate the Mycobacterium TB (MTB) metabolic activity and to predict contagiousness. Mycobacterial culture assay was utilized as a gold standard method. Results: Out of 1401 TB suspected patients, 1354 (96.65%) were retrieved from database, which were MTB complex culture positive, and 47 (3.40%) were culture negative (no mycobacterial growth observed). Out of the 1354 included patients, 1343 (95.86%), were acid-fast bacillus (AFB) positive after direct FDA staining, 1352 (96.50%) AFB positive after direct Auramine, and 1354 (96.65%) AFB positive with indirect auramine after digestion and centrifugation. Overall, the FDA staining method has a sensitivity of 98.82%, while the sensitivity of Auramine with direct observation was 99.48%, and 99.56% with the indirect examination. Conclusion: This study showed that, using fresh sputum both auramine/rhodamine and FDA are highly sensitive methods in diagnosing pulmonary TB and could be easily used in countries with limited resource settings.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Pulmonar , Tuberculosis , Humanos , Benzofenoneido , Esputo/microbiología , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/microbiología , Microscopía Fluorescente/métodos , Tuberculosis/diagnóstico , Fluoresceína , Rodaminas , Sensibilidad y Especificidad
5.
IJID Reg ; 6: 24-28, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36448028

RESUMEN

Background: The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants may have contributed to prolonging the pandemic, and increasing morbidity and mortality related to coronavirus disease 2019 (COVID-19). This article describes the dynamics of circulating SARS-CoV-2 variants identified during the different COVID-19 waves in Mali between April and October 2021. Methods: The respiratory SARS-CoV-2 complete spike (S) gene from positive samples was sequenced. Generated sequences were aligned by Variant Reporter v3.0 using the Wuhan-1 strain as the reference. Mutations were noted using the GISAID and Nextclade platforms. Results: Of 16,797 nasopharyngeal swab samples tested, 6.0% (1008/16,797) tested positive for SARS-CoV-2 on quantitative reverse transcription polymerase chain reaction. Of these, 16.07% (162/1008) had a cycle threshold value ≤28 and were amplified and sequenced. The complete S gene sequence was recovered from 80 of 162 (49.8%) samples. Seven distinct variants were identified: Delta (62.5%), Alpha (1.2%), Beta (1.2%), Eta (30.0%), 20B (2.5%), 19B (1.2%) and 20A (1.2%). Conclusions and perspectives: Several SARS-CoV-2 variants were present during the COVID-19 waves in Mali between April and October 2021. The continued emergence of new variants highlights the need to strengthen local real-time sequencing capacity and genomic surveillance for better and coordinated national responses to SARS-CoV-2.

6.
Curr Protoc Bioinformatics ; Chapter 1: 1.13.1-1.13.20, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22948725

RESUMEN

The Human Gene Mutation Database (HGMD) constitutes a comprehensive core collection of data on germ-line mutations in nuclear genes underlying or associated with human inherited disease (http://www.hgmd.org). Data cataloged include single-base-pair substitutions in coding, regulatory, and splicing-relevant regions, micro-deletions and micro-insertions, indels, and triplet repeat expansions, as well as gross gene deletions, insertions, duplications, and complex rearrangements. Each mutation is entered into HGMD only once, in order to avoid confusion between recurrent and identical-by-descent lesions. By March 2012, the database contained in excess of 123,600 different lesions (HGMD Professional release 2012.1) detected in 4,514 different nuclear genes, with new entries currently accumulating at a rate in excess of 10,000 per annum. ∼6,000 of these entries constitute disease-associated and functional polymorphisms. HGMD also includes cDNA reference sequences for more than 98% of the listed genes.


Asunto(s)
Evolución Molecular , Genómica/métodos , Mutación , Bases de Datos Factuales , Genoma Humano , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA