Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 20(4): e1011228, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38598567

RESUMEN

The laboratory mouse has served as the premier animal model system for both basic and preclinical investigations for over a century. However, laboratory mice capture only a subset of the genetic variation found in wild mouse populations, ultimately limiting the potential of classical inbred strains to uncover phenotype-associated variants and pathways. Wild mouse populations are reservoirs of genetic diversity that could facilitate the discovery of new functional and disease-associated alleles, but the scarcity of commercially available, well-characterized wild mouse strains limits their broader adoption in biomedical research. To overcome this barrier, we have recently developed, sequenced, and phenotyped a set of 11 inbred strains derived from wild-caught Mus musculus domesticus. Each of these "Nachman strains" immortalizes a unique wild haplotype sampled from one of five environmentally distinct locations across North and South America. Whole genome sequence analysis reveals that each strain carries between 4.73-6.54 million single nucleotide differences relative to the GRCm39 mouse reference, with 42.5% of variants in the Nachman strain genomes absent from current classical inbred mouse strain panels. We phenotyped the Nachman strains on a customized pipeline to assess the scope of disease-relevant neurobehavioral, biochemical, physiological, metabolic, and morphological trait variation. The Nachman strains exhibit significant inter-strain variation in >90% of 1119 surveyed traits and expand the range of phenotypic diversity captured in classical inbred strain panels. These novel wild-derived inbred mouse strain resources are set to empower new discoveries in both basic and preclinical research.


Asunto(s)
Variación Genética , Ratones Endogámicos , Fenotipo , Animales , Ratones , Ratones Endogámicos/genética , Genómica/métodos , Animales Salvajes/genética , Genoma/genética , Polimorfismo de Nucleótido Simple , Haplotipos , Secuenciación Completa del Genoma
2.
BMC Biol ; 22(1): 35, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355587

RESUMEN

BACKGROUND: Social behavior and social organization have major influences on individual health and fitness. Yet, biomedical research focuses on studying a few genotypes under impoverished social conditions. Understanding how lab conditions have modified social organizations of model organisms, such as lab mice, relative to natural populations is a missing link between socioecology and biomedical science. RESULTS: Using a common garden design, we describe the formation of social structure in the well-studied laboratory mouse strain, C57BL/6J, in replicated mixed-sex populations over 10-day trials compared to control trials with wild-derived outbred house mice in outdoor field enclosures. We focus on three key features of mouse social systems: (i) territory establishment in males, (ii) female social relationships, and (iii) the social networks formed by the populations. Male territorial behaviors were similar but muted in C57 compared to wild-derived mice. Female C57 sharply differed from wild-derived females, showing little social bias toward cage mates and exploring substantially more of the enclosures compared to all other groups. Female behavior consistently generated denser social networks in C57 than in wild-derived mice. CONCLUSIONS: C57 and wild-derived mice individually vary in their social and spatial behaviors which scale to shape overall social organization. The repeatable societies formed under field conditions highlights opportunities to experimentally study the interplay between society and individual biology using model organisms.


Asunto(s)
Conducta Animal , Conducta Social , Ratones , Masculino , Animales , Femenino , Ratones Endogámicos C57BL , Territorialidad , Estructura Social
3.
Proc Biol Sci ; 291(2019): 20240099, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38503332

RESUMEN

In many species, establishing and maintaining a territory is critical to survival and reproduction, and an animal's ability to do so is strongly influenced by the presence and density of competitors. Here we manipulate social conditions to study the alternative reproductive tactics displayed by genetically identical, age-matched laboratory mice competing for territories under ecologically realistic social environmental conditions. We introduced adult males and females of the laboratory mouse strain C57BL/6J into a large, outdoor field enclosure containing defendable resource zones under one of two social conditions. We first created a low-density social environment, such that the number of available territories exceeded the number of males. After males established stable territories, we introduced a pulse of intruder males and observed the resulting defensive and invasive tactics employed. In response to this change in social environment, males with large territories invested more in patrolling but were less effective at excluding intruder males as compared with males with small territories. Intruding males failed to establish territories and displayed an alternative tactic featuring greater exploration as compared with genetically identical territorial males. Alternative tactics did not lead to equal reproductive success-males that acquired territories experienced greater survival and had greater access to females.


Asunto(s)
Conducta Sexual Animal , Condiciones Sociales , Masculino , Femenino , Ratones , Animales , Conducta Sexual Animal/fisiología , Ratones Endogámicos C57BL , Territorialidad , Reproducción/fisiología
4.
PLoS Genet ; 17(9): e1009474, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34478434

RESUMEN

Social interactions have large effects on individual physiology and fitness. In the immediate sense, social stimuli are often highly salient and engaging. Over longer time scales, competitive interactions often lead to distinct social ranks and differences in physiology and behavior. Understanding how initial responses lead to longer-term effects of social interactions requires examining the changes in responses over time. Here we examined the effects of social interactions on transcriptomic signatures at two times, at the end of a 45-minute interaction and 4 hours later, in female Polistes fuscatus paper wasp foundresses. Female P. fuscatus have variable facial patterns that are used for visual individual recognition, so we separately examined the transcriptional dynamics in the optic lobe and the non-visual brain. Results demonstrate much stronger transcriptional responses to social interactions in the non-visual brain compared to the optic lobe. Differentially regulated genes in response to social interactions are enriched for memory-related transcripts. Comparisons between winners and losers of the encounters revealed similar overall transcriptional profiles at the end of an interaction, which significantly diverged over the course of 4 hours, with losers showing changes in expression levels of genes associated with aggression and reproduction in paper wasps. On nests, subordinate foundresses are less aggressive, do more foraging and lay fewer eggs compared to dominant foundresses and we find losers shift expression of many genes in the non-visual brain, including vitellogenin, related to aggression, worker behavior, and reproduction within hours of losing an encounter. These results highlight the early neurogenomic changes that likely contribute to behavioral and physiological effects of social status changes in a social insect.


Asunto(s)
Conducta Animal , Genoma de los Insectos , Conducta Social , Avispas/fisiología , Agresión , Animales , Encéfalo/fisiología , Femenino , Regulación de la Expresión Génica , Avispas/genética
5.
Proc Biol Sci ; 290(1993): 20222489, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36787797

RESUMEN

Signals mediate competitive interactions by allowing rival assessment, yet are often energetically expensive to produce. One of the key mechanisms maintaining signal reliability is social costs. While the social costs of over-signalling are well known, the social costs of under-signalling are underexplored, particularly for dynamic signals. In this study, we investigate a dynamic and olfactory-mediated signalling system that is ubiquitous among mammals: scent marking. Male house mice territorially scent mark their environment with metabolically costly urine marks. Competitive male mice are thought to deposit abundant scent marks in the environment. However, we recently identified a cohort of low-marking males that win fights. We hypothesized that there may be social costs imposed on individuals who under-invest in signalling. Here we find that scent mark investment predicts fight dynamics. Winning males that produce fewer scent marks prior to a fight engage in more intense fights that take longer to resolve. This effect appears to be driven by an unwillingness among losers to acquiesce to weakly signalling winners. We, therefore, find evidence for rival assessment of scent marks as well as social costs to under-signalling. This supports existing hypotheses for the importance of social punishment in maintaining optimal signalling equilibria. Our results further highlight the possibility of diverse signalling strategies in house mice.


Asunto(s)
Comunicación Animal , Odorantes , Masculino , Animales , Ratones , Reproducibilidad de los Resultados , Feromonas , Mamíferos
6.
Mol Ecol ; 32(16): 4546-4556, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37350360

RESUMEN

Deleterious variants are selected against but can linger in populations at low frequencies for long periods of time, decreasing fitness and contributing to disease burden in humans and other species. Deleterious variants occur at low frequency but distinguishing deleterious variants from low-frequency neutral variation is challenging based on population genomics data alone. As a result, we have little sense of the number and identity of deleterious variants in wild populations. For haplodiploid species, it has been hypothesised that deleterious alleles will be directly exposed to selection in haploid males, but selection can be masked in diploid females when deleterious variants are recessive, resulting in more efficient purging of deleterious mutations in males. Therefore, comparisons of the differences between haploid and diploid genomes from the same population may be a useful method for inferring rare deleterious variants. This study provides the first formal test of this hypothesis. Using wild populations of Northern paper wasps (Polistes fuscatus), we find that males have fewer missense and nonsense variants per generation than females from the same population. Allele frequency differences are especially pronounced for rare missense and nonsense variants and these differences lead to a lower mutational load in males than females. Based on these data we infer that many highly deleterious mutations are segregating in the paper wasp population. Stronger selection against deleterious alleles in haploid males may have implications for adaptation in other haplodiploid insects and provides evidence that wild populations harbour abundant deleterious variants.


Asunto(s)
Caracteres Sexuales , Avispas , Animales , Humanos , Femenino , Masculino , Frecuencia de los Genes/genética , Diploidia , Haploidia , Avispas/genética , Selección Genética
7.
Anim Cogn ; 26(2): 589-598, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36245014

RESUMEN

Visual individual recognition requires animals to distinguish among conspecifics based on appearance. Though visual individual recognition has been reported in a range of taxa including primates, birds, and insects, the features that animals require to discriminate between individuals are not well understood. Northern paper wasp females, Polistes fuscatus, possess individually distinctive color patterns on their faces, which mediate individual recognition. However, it is currently unclear what role color plays in the facial recognition system of this species. Thus, we sought to test two possible roles of color in wasp facial recognition. On one hand, color may be important simply because it creates a pattern. If this is the case, then wasps should perform similarly when discriminating color or grayscale images of the same faces. Alternatively, color itself may be important for recognition of an image as a "face", which would predict poorer performance on grayscale discrimination relative to color images. We found wasps performed significantly better when discriminating between color faces compared to grayscale versions of the same faces. In fact, wasps trained on grayscale faces did not perform better than chance, indicating that color is necessary for the recognition of an image as a face by the wasp visual system.


Asunto(s)
Reconocimiento Facial , Avispas , Femenino , Animales , Reconocimiento en Psicología
8.
Proc Natl Acad Sci U S A ; 117(6): 3045-3052, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31980529

RESUMEN

Cognitive abilities can vary dramatically among species. The relative importance of social and ecological challenges in shaping cognitive evolution has been the subject of a long-running and recently renewed debate, but little work has sought to understand the selective dynamics underlying the evolution of cognitive abilities. Here, we investigate recent selection related to cognition in the paper wasp Polistes fuscatus-a wasp that has uniquely evolved visual individual recognition abilities. We generate high quality de novo genome assemblies and population genomic resources for multiple species of paper wasps and use a population genomic framework to interrogate the probable mode and tempo of cognitive evolution. Recent, strong, hard selective sweeps in P. fuscatus contain loci annotated with functions in long-term memory formation, mushroom body development, and visual processing, traits which have recently evolved in association with individual recognition. The homologous pathways are not under selection in closely related wasps that lack individual recognition. Indeed, the prevalence of candidate cognition loci within the strongest selective sweeps suggests that the evolution of cognitive abilities has been among the strongest selection pressures in P. fuscatus' recent evolutionary history. Detailed analyses of selective sweeps containing candidate cognition loci reveal multiple cases of hard selective sweeps within the last few thousand years on de novo mutations, mainly in noncoding regions. These data provide unprecedented insight into some of the processes by which cognition evolves.


Asunto(s)
Evolución Biológica , Cognición/fisiología , Selección Genética/genética , Avispas/genética , Avispas/fisiología , Animales , Genoma de los Insectos/genética , Reconocimiento en Psicología/fisiología
9.
Mol Biol Evol ; 38(9): 3832-3846, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34151983

RESUMEN

Independent origins of sociality in bees and ants are associated with independent expansions of particular odorant receptor (OR) gene subfamilies. In ants, one clade within the OR gene family, the 9-exon subfamily, has dramatically expanded. These receptors detect cuticular hydrocarbons (CHCs), key social signaling molecules in insects. It is unclear to what extent 9-exon OR subfamily expansion is associated with the independent evolution of sociality across Hymenoptera, warranting studies of taxa with independently derived social behavior. Here, we describe OR gene family evolution in the northern paper wasp, Polistes fuscatus, and compare it to four additional paper wasp species spanning ∼40 million years of evolutionary divergence. We find 200 putatively functional OR genes in P. fuscatus, matching predictions from neuroanatomy, and more than half of these are in the 9-exon subfamily. Most OR gene expansions are tandemly arrayed at orthologous loci in Polistes genomes, and microsynteny analysis shows species-specific gain and loss of 9-exon ORs within tandem arrays. There is evidence of episodic positive diversifying selection shaping ORs in expanded subfamilies. Values of omega (dN/dS) are higher among 9-exon ORs compared to other OR subfamilies. Within the Polistes OR gene tree, branches in the 9-exon OR clade experience relaxed negative (relaxed purifying) selection relative to other branches in the tree. Patterns of OR evolution within Polistes are consistent with 9-exon OR function in CHC perception by combinatorial coding, with both natural selection and neutral drift contributing to interspecies differences in gene copy number and sequence.


Asunto(s)
Receptores Odorantes , Avispas , Animales , Exones , Receptores Odorantes/genética , Avispas/genética
10.
Allergy ; 76(12): 3723-3732, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33864689

RESUMEN

BACKGROUND: Mouse allergy is an important cause of indoor asthma and allergic rhinoconjunctivitis. The major mouse allergen, Mus m 1, is a complex of homologous pheromone-binding lipocalins called major urinary proteins (MUPs). METHODS: We analyzed the proteome of MUPs in mouse urine, commercial mouse epithelial extracts, and environmental samples using several approaches. These include as follows: two-dimensional electrophoresis and immunoblotting; liquid chromatography-high-resolution mass spectrometry (LC/HRMS); multiple reaction monitoring (MRM) mass spectrometry; and LC/HRMS analysis of glycans at the N-66 residue of MUP3. RESULTS: Albumin is predominant in the extracts, while MUPs are predominant in urine. LC/HRMS of 4 mouse allergen extracts revealed surprising heterogeneity. Of 22 known mouse MUPs, only 6 (MUP3, MUP4, MUP5, MUP13, MUP20, and MUP21) could be identified with MRM using unique peptides. Assessment of MUP content in urine, extracts, and dust samples showed good correlation between MRM and other methods working with different detection principles. All 6 identifiable MUPs were found in electrophoretically separated urine bands, but only MUP3 and MUP20 were above LOQ in unseparated mouse urine, and only MUP3, MUP4, and MUP20 were found in mouse epithelial extracts. Glycan heterogeneity was noted among 4 individual inbred mice: of 13 glycan structures detected, 8 were unique to one mouse, and only 2 glycan modifications were present in all 4 mice. CONCLUSIONS: Using mass spectrometry and MRM, mouse allergen extracts and urine samples are shown to be complex and heterogeneous. The efficacy and safety of commercial mouse allergen extracts will be improved with better controls of allergen content.


Asunto(s)
Alérgenos , Asma , Alérgenos/química , Animales , Asma/etiología , Polvo , Ratones , Proteoma , Orina
11.
Biol Lett ; 17(4): 20210073, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33849349

RESUMEN

Developmental studies of brain volumes can reveal which portions of neural circuits are sensitive to environmental inputs. In social insects, differences in relative investment across brain regions emerge as behavioural repertoires change during ontogeny or as a result of experience. Here, we test the effects of maturation and social experience on morphological brain development in Polistes fuscatus paper wasps, focusing on brain regions involved in visual and olfactory processing. We find that mature wasps regardless of social experience have relatively larger brains than newly emerged wasps and this difference is driven by changes to mushroom body calyx and visual regions but not olfactory processing neuropils. Notably, social wasps invest more in the anterior optic tubercle (AOT), a visual glomerulus involved in colour and object processing in other taxa, relative to other visual integration centres the mushroom body calyces compared with aged socially naive wasps. Differences in developmental plasticity between visual and olfactory neuropil volumes are discussed in light of behavioural maturation in paper wasps, especially as it relates to social recognition. Previous research has shown that P. fuscatus need social experience to develop specialized visual processing of faces, which is used to individually recognize conspecifics. The present study suggests that the AOT is a candidate brain region that could mediate facial processing in this species.


Asunto(s)
Avispas , Animales , Encéfalo , Cognición , Reconocimiento en Psicología
12.
PLoS Genet ; 14(9): e1007672, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30248095

RESUMEN

House mice (Mus musculus) arrived in the Americas only recently in association with European colonization (~400-600 generations), but have spread rapidly and show evidence of local adaptation. Here, we take advantage of this genetic model system to investigate the genomic basis of environmental adaptation in house mice. First, we documented clinal patterns of phenotypic variation in 50 wild-caught mice from a latitudinal transect in Eastern North America. Next, we found that progeny of mice from different latitudes, raised in a common laboratory environment, displayed differences in a number of complex traits related to fitness. Consistent with Bergmann's rule, mice from higher latitudes were larger and fatter than mice from lower latitudes. They also built bigger nests and differed in aspects of blood chemistry related to metabolism. Then, combining exomic, genomic, and transcriptomic data, we identified specific candidate genes underlying adaptive variation. In particular, we defined a short list of genes with cis-eQTL that were identified as candidates in exomic and genomic analyses, all of which have known ties to phenotypes that vary among the studied populations. Thus, wild mice and the newly developed strains represent a valuable resource for future study of the links between genetic variation, phenotypic variation, and climate.


Asunto(s)
Adaptación Fisiológica/genética , Variación Genética , Ratones Endogámicos/genética , Ratones/fisiología , Sitios de Carácter Cuantitativo/genética , Animales , Clima , Femenino , Masculino , Modelos Genéticos , Fenotipo
13.
BMC Evol Biol ; 20(1): 99, 2020 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-32770934

RESUMEN

BACKGROUND: Many animals rely heavily on olfaction to navigate their environment. Among rodents, olfaction is crucial for a wide range of social behaviors. The vomeronasal olfactory system in particular plays an important role in mediating social communication, including the detection of pheromones and recognition signals. In this study we examine patterns of vomeronasal type-1 receptor (V1R) evolution in the house mouse and related species within the genus Mus. We report the extent of gene repertoire turnover and conservation among species and clades, as well as the prevalence of positive selection on gene sequences across the V1R tree. By exploring the evolution of these receptors, we provide insight into the functional roles of receptor subtypes as well as the dynamics of gene family evolution. RESULTS: We generated transcriptomes from the vomeronasal organs of 5 Mus species, and produced high quality V1R repertoires for each species. We find that V1R clades in the house mouse and relatives exhibit distinct evolutionary trajectories. We identify putative species-specific gene expansions, including a large clade D expansion in the house mouse. While gene gains are abundant, we detect very few gene losses. We describe a novel V1R clade and highlight candidate receptors for future study. We find evidence for distinct evolutionary processes across different clades, from largescale turnover to highly conserved repertoires. Patterns of positive selection are similarly variable, as some clades exhibit abundant positive selection while others display high gene sequence conservation. Based on clade-level evolutionary patterns, we identify receptor families that are strong candidates for detecting social signals and predator cues. Our results reveal clades with receptors detecting female reproductive status are among the most conserved across species, suggesting an important role in V1R chemosensation. CONCLUSION: Analysis of clade-level evolution is critical for understanding species' chemosensory adaptations. This study provides clear evidence that V1R clades are characterized by distinct evolutionary trajectories. As receptor evolution is shaped by ligand identity, these results provide a framework for examining the functional roles of receptors.


Asunto(s)
Evolución Molecular , Ratones/clasificación , Receptores de Feromonas/genética , Animales , Femenino , Filogenia , Selección Genética , Especificidad de la Especie , Transcriptoma , Órgano Vomeronasal
14.
Proc Biol Sci ; 287(1920): 20192513, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-32075532

RESUMEN

In many species, individuals gather information about their environment both through direct experience and through information obtained from others. Social learning, or the acquisition of information from others, can occur both within and between species and may facilitate the rapid spread of antipredator behaviour. Within birds, acoustic signals are frequently used to alert others to the presence of predators, and individuals can quickly learn to associate novel acoustic cues with predation risk. However, few studies have addressed whether such learning occurs only though direct experience or whether it has a social component, nor whether such learning can occur between species. We investigate these questions in two sympatric species of Parids: blue tits (Cyanistes caeruleus) and great tits (Parus major). Using playbacks of unfamiliar bird vocalizations paired with a predator model in a controlled aviary setting, we find that blue tits can learn to associate a novel sound with predation risk via direct experience, and that antipredator response to the sound can be socially transmitted to heterospecific observers, despite lack of first-hand experience. Our results suggest that social learning of acoustic cues can occur between species. Such interspecific social information transmission may help to mediate the formation of mixed-species aggregations.


Asunto(s)
Passeriformes/fisiología , Vocalización Animal/fisiología , Acústica , Animales , Señales (Psicología) , Aprendizaje , Aprendizaje Social
15.
Horm Behav ; 124: 104774, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32422196

RESUMEN

Identifying the genetic basis of behavior has remained a challenge for biologists. A major obstacle to this goal is the difficulty of examining gene function in an ecologically relevant context. New tools such as CRISPR/Cas9, which alter the germline of an organism, have taken center stage in functional genomics in non-model organisms. However, germline modifications of this nature cannot be ethically implemented in the wild as a part of field experiments. This impediment is more than technical. Gene function is intimately tied to the environment in which the gene is expressed, especially for behavior. Most lab-based studies fail to recapitulate an organism's ecological niche, thus most published functional genomics studies of gene-behavior relationships may provide an incomplete or even inaccurate assessment of gene function. In this review, we highlight RNA interference as an especially effective experimental method to deepen our understanding of the interplay between genes, behavior, and the environment. We highlight the utility of RNAi for researchers investigating behavioral genetics, noting unique attributes of RNAi including transience of effect and the feasibility of releasing treated animals into the wild, that make it especially useful for studying the function of behavior-related genes. Furthermore, we provide guidelines for planning and executing an RNAi experiment to study behavior, including challenges to consider. We urge behavioral ecologists and functional genomicists to adopt a more fully integrated approach which we call "ethological genomics". We advocate this approach, utilizing tools such as RNAi, to study gene-behavior relationships in their natural context, arguing that such studies can provide a deeper understanding of how genes can influence behavior, as well as ecological aspects beyond the organism that houses them.


Asunto(s)
Conducta Animal/fisiología , Interacción Gen-Ambiente , Estudios de Asociación Genética , Genómica/métodos , Interferencia de ARN/fisiología , Animales , Investigación Conductal/métodos , Investigación Conductal/tendencias , Evolución Biológica , Ecosistema , Estudios de Asociación Genética/métodos , Estudios de Asociación Genética/tendencias , Estudios de Asociación Genética/veterinaria , Genómica/tendencias , Fenotipo , Especificidad de la Especie
17.
Mol Ecol ; 28(15): 3587-3601, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31232499

RESUMEN

Scent marks are important mediators of territorial behaviour and sexual selection, especially among mammals. The evolution of compounds used in scent marks has the potential to inform our understanding of signal evolution in relation to social and sexual selection. A major challenge in studies of chemical communication is that the link between semiochemical compounds and genetic changes is often unclear. The major urinary proteins (MUPs) of house mice provide information on sex, status and individual identity. Importantly, MUPs are a direct protein product of genes, providing a clear link between genotype and phenotype. Here, we examine the evolution of urinary protein signals among house mice and relatives by examining the sequences and patterns of mRNA expression of Mup genes related to urinary scent marks. MUP patterns have evolved among mouse species both by gene duplication and variation in expression. Notably, protein scent signals that are male specific in well-studied inbred laboratory strains vary in sex-specificity among species. Our data reveal that individual identity signals in MUPs evolved prior to 0.35 million years ago and have rapidly diversified through recombining a modest number of amino acid variants. Amino acid variants are much more common on the exterior of the protein where they could interact with vomeronasal receptors, suggesting that chemosensory perception may have played a major role in shaping MUP diversity. These data highlight diverse processes and pressures shaping scent signals, and suggest new avenues for using wild mice to probe the evolution of signals and signal processing.


Asunto(s)
Evolución Molecular , Odorantes , Proteínas/genética , Animales , Secuencia de Bases , Femenino , Regulación de la Expresión Génica , Genoma , Hígado/metabolismo , Masculino , Ratones , Filogenia , Especificidad de la Especie
18.
Mol Ecol ; 28(13): 3197-3207, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31141224

RESUMEN

Identifying a common set of genes that mediate host-microbial interactions across populations and species of mammals has broad relevance for human health and animal biology. However, the genetic basis of the gut microbial composition in natural populations remains largely unknown outside of humans. Here, we used wild house mouse populations as a model system to ask three major questions: (a) Does host genetic relatedness explain interindividual variation in gut microbial composition? (b) Do population differences in the microbiota persist in a common environment? (c) What are the host genes associated with microbial richness and the relative abundance of bacterial genera? We found that host genetic distance is a strong predictor of the gut microbial composition as characterized by 16S amplicon sequencing. Using a common garden approach, we then identified differences in microbial composition between populations that persisted in a shared laboratory environment. Finally, we used exome sequencing to associate host genetic variants with microbial diversity and relative abundance of microbial taxa in wild mice. We identified 20 genes that were associated with microbial diversity or abundance including a macrophage-derived cytokine (IL12a) that contained three nonsynonymous mutations. Surprisingly, we found a significant overrepresentation of candidate genes that were previously associated with microbial measurements in humans. The homologous genes that overlapped between wild mice and humans included genes that have been associated with traits related to host immunity and obesity in humans. Gene-bacteria associations identified in both humans and wild mice suggest some commonality to the host genetic determinants of gut microbial composition across mammals.


Asunto(s)
Bacterias/clasificación , Microbioma Gastrointestinal , Interacciones Microbiota-Huesped/genética , Ratones/microbiología , Animales , Animales Salvajes/microbiología , Biodiversidad , Exoma , Genética de Población , Estudio de Asociación del Genoma Completo , Humanos , Modelos Lineales , Modelos Genéticos , Análisis Multivariante , América del Norte , Polimorfismo de Nucleótido Simple , ARN Ribosómico 16S/genética
19.
PLoS Genet ; 12(3): e1005891, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26938775

RESUMEN

Recognition of individuals by scent is widespread across animal taxa. Though animals can often discriminate chemical blends based on many compounds, recent work shows that specific protein pheromones are necessary and sufficient for individual recognition via scent marks in mice. The genetic nature of individuality in scent marks (e.g. coding versus regulatory variation) and the evolutionary processes that maintain diversity are poorly understood. The individual signatures in scent marks of house mice are the protein products of a group of highly similar paralogs in the major urinary protein (Mup) gene family. Using the offspring of wild-caught mice, we examine individuality in the major urinary protein (MUP) scent marks at the DNA, RNA and protein levels. We show that individuality arises through a combination of variation at amino acid coding sites and differential transcription of central Mup genes across individuals, and we identify eSNPs in promoters. There is no evidence of post-transcriptional processes influencing phenotypic diversity as transcripts accurately predict the relative abundance of proteins in urine samples. The match between transcripts and urine samples taken six months earlier also emphasizes that the proportional relationships across central MUP isoforms in urine is stable. Balancing selection maintains coding variants at moderate frequencies, though pheromone diversity appears limited by interactions with vomeronasal receptors. We find that differential transcription of the central Mup paralogs within and between individuals significantly increases the individuality of pheromone blends. Balancing selection on gene regulation allows for increased individuality via combinatorial diversity in a limited number of pheromones.


Asunto(s)
Sistemas de Lectura Abierta/genética , Feromonas/genética , Proteínas/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Variación Genética , Individualidad , Ratones , Polimorfismo de Nucleótido Simple/genética , Orina
20.
Am Nat ; 191(5): 595-603, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29693440

RESUMEN

Research on individual recognition often focuses on species-typical recognition abilities rather than assessing intraspecific variation in recognition. As individual recognition is cognitively costly, the capacity for recognition may vary within species. We test how individual face recognition differs between nest-founding queens (foundresses) and workers in Polistes fuscatus paper wasps. Individual recognition mediates dominance interactions among foundresses. Three previously published experiments have shown that foundresses (1) benefit by advertising their identity with distinctive facial patterns that facilitate recognition, (2) have robust memories of individuals, and (3) rapidly learn to distinguish between face images. Like foundresses, workers have variable facial patterns and are capable of individual recognition. However, worker dominance interactions are muted. Therefore, individual recognition may be less important for workers than for foundresses. We find that (1) workers with unique faces receive amounts of aggression similar to those of workers with common faces, indicating that wasps do not benefit from advertising their individual identity with a unique appearance; (2) workers lack robust memories for individuals, as they cannot remember unique conspecifics after a 6-day separation; and (3) workers learn to distinguish between facial images more slowly than foundresses during training. The recognition differences between foundresses and workers are notable because Polistes lack discrete castes; foundresses and workers are morphologically similar, and workers can take over as queens. Overall, social benefits and receiver capacity for individual recognition are surprisingly plastic.


Asunto(s)
Reconocimiento en Psicología , Conducta Social , Avispas , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA