Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Curr Osteoporos Rep ; 21(2): 105-116, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36808071

RESUMEN

PURPOSE OF THE REVIEW: Bone adapts structure and material properties in response to its mechanical environment, a process called mechanoadpatation. For the past 50 years, finite element modeling has been used to investigate the relationships between bone geometry, material properties, and mechanical loading conditions. This review examines how we use finite element modeling in the context of bone mechanoadpatation. RECENT FINDINGS: Finite element models estimate complex mechanical stimuli at the tissue and cellular levels, help explain experimental results, and inform the design of loading protocols and prosthetics. FE modeling is a powerful tool to study bone adaptation as it complements experimental approaches. Before using FE models, researchers should determine whether simulation results will provide complementary information to experimental or clinical observations and should establish the level of complexity required. As imaging technics and computational capacity continue increasing, we expect FE models to help in designing treatments of bone pathologies that take advantage of mechanoadaptation of bone.


Asunto(s)
Adaptación Fisiológica , Huesos , Humanos , Análisis de Elementos Finitos , Simulación por Computador , Prótesis e Implantes , Estrés Mecánico
2.
Proc Biol Sci ; 289(1975): 20220621, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35582804

RESUMEN

Movement-induced forces are critical to correct joint formation, but it is unclear how cells sense and respond to these mechanical cues. To study the role of mechanical stimuli in the shaping of the joint, we combined experiments on regenerating axolotl (Ambystoma mexicanum) forelimbs with a poroelastic model of bone rudiment growth. Animals either regrew forelimbs normally (control) or were injected with a transient receptor potential vanilloid 4 (TRPV4) agonist during joint morphogenesis. We quantified growth and shape in regrown humeri from whole-mount light sheet fluorescence images of the regenerated limbs. Results revealed significant differences in morphology and cell proliferation between groups, indicating that TRPV4 desensitization has an effect on joint shape. To link TRPV4 desensitization with impaired mechanosensitivity, we developed a finite element model of a regenerating humerus. Local tissue growth was the sum of a biological contribution proportional to chondrocyte density, which was constant, and a mechanical contribution proportional to fluid pressure. Computational predictions of growth agreed with experimental outcomes of joint shape, suggesting that interstitial pressure driven from cyclic mechanical stimuli promotes local tissue growth. Predictive computational models informed by experimental findings allow us to explore potential physical mechanisms involved in tissue growth to advance our understanding of the mechanobiology of joint morphogenesis.


Asunto(s)
Ambystoma mexicanum , Urodelos , Animales , Miembro Anterior/anatomía & histología , Morfogénesis , Canales Catiónicos TRPV
3.
Connect Tissue Res ; 63(2): 97-111, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-31868022

RESUMEN

Introduction: With age, the number of adipocytes and osteoclasts increases, the number of osteoblasts decreases, and mechano-adaptation is impaired.Objectives: Using marrow aspiration, which has a known osteogenic effect in young mice, we sought to recruit osteoblast progenitors to mediate the mechano-adaptive response to in vivo tibial loading.Methods: First, we assessed bone formation and marrow adiposity in the tibiae of old mice (>20 months) sacrificed 1, 2, and 4 weeks after unilateral marrow aspiration. Then, we examined the effects of marrow aspiration on mechano-adaptation in aged mice using tibial loading.Results: Two weeks after aspiration, aspirated tibiae had more bone than contralateral tibiae due to the formation of bone in the medullary canal. Two weeks and four weeks after marrow aspiration, the volume of marrow adipose tissue was higher in the aspirated tibiae, compared to contralateral tibiae. Histomorphometry indicated that aspiration increased non-periosteal (endosteal, intracortical, intramedullary) bone formation, compared to the contralateral tibia.  Mice with marrow aspiration had reduced periosteal bone formation in the contralateral tibia, compared to mice that had loading alone. Loading-induced periosteal bone formation was higher in mice that had loading alone, compared to mice that had aspiration + loading, indicating that aspiration further reduced the mechano-adaptive response.Conclusion: These data demonstrate that, in old mice, bone forms in the medullary canal following aspiration. Adiposity is increased following marrow aspiration, and periosteal mechano-adaptation is reduced.


Asunto(s)
Médula Ósea , Osteogénesis , Tejido Adiposo , Animales , Ratones , Ratones Endogámicos C57BL , Osteogénesis/fisiología , Tibia
4.
Development ; 144(4): 601-611, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28087637

RESUMEN

Salamanders are capable of regenerating amputated limbs by generating a mass of lineage-restricted cells called a blastema. Blastemas only generate structures distal to their origin unless treated with retinoic acid (RA), which results in proximodistal (PD) limb duplications. Little is known about the transcriptional network that regulates PD duplication. In this study, we target specific retinoic acid receptors (RARs) to either PD duplicate (RA treatment or RARγ agonist) or truncate (RARß antagonist) regenerating limbs. RARE-EGFP reporter axolotls showed divergent reporter activity in limbs undergoing PD duplication versus truncation, suggesting differences in patterning and skeletal regeneration. Transcriptomics identified expression patterns that explain PD duplication, including upregulation of proximal homeobox gene expression and silencing of distal-associated genes, whereas limb truncation was associated with disrupted skeletal differentiation. RARß antagonism in uninjured limbs induced a loss of skeletal integrity leading to long bone regression and loss of skeletal turnover. Overall, mechanisms were identified that regulate the multifaceted roles of RARs in the salamander limb including regulation of skeletal patterning during epimorphic regeneration, skeletal tissue differentiation during regeneration, and homeostatic regeneration of intact limbs.


Asunto(s)
Ambystoma mexicanum/fisiología , Tipificación del Cuerpo , Receptores de Ácido Retinoico/metabolismo , Regeneración/fisiología , Animales , Huesos/metabolismo , Diferenciación Celular , Extremidades/fisiología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Homeostasis , Transcriptoma , Tretinoina/metabolismo , Microtomografía por Rayos X , Receptor de Ácido Retinoico gamma
5.
Connect Tissue Res ; 61(1): 48-62, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31411079

RESUMEN

Purpose of the Study: The incidence of tendon injuries increases dramatically with age, which presents a major clinical burden. While previous studies have sought to identify age-related changes in extracellular matrix structure and function, few have been able to explain fully why aged tissues are more prone to degeneration and injury. In addition, recent studies have also demonstrated that age-related processes in humans may be sex-dependent, which could be responsible for muddled conclusions in changes with age. In this study, we investigate short-term responses through an ex vivo explant culture model of stress deprivation that specifically questions how age and sex differentially affect the ability of tendons to respond to altered mechanical stimulus.Materials and Methods: We subjected murine flexor explants from young (4 months of age) and aged (22-24 months of age) male and female mice to stress-deprived culture conditions for up to 1 week and investigated changes in viability, cell metabolism and proliferation, matrix biosynthesis and composition, gene expression, and inflammatory responses throughout the culture period.Results and Conclusions: We found that aging did have a significant influence on the response to stress deprivation, demonstrating that aged explants have a less robust response overall with reduced metabolic activity, viability, proliferation, and biosynthesis. However, age-related changes appeared to be sex-dependent. Together, this work demonstrates that the aging process and the subsequent effect of age on the ability of tendons to respond to stress-deprivation are inherently different based on sex, where male explants favor increased activity, apoptosis, and matrix remodeling while female explants favor reduced activity and tissue preservation.


Asunto(s)
Envejecimiento/metabolismo , Proliferación Celular , Regulación de la Expresión Génica , Caracteres Sexuales , Estrés Fisiológico , Tendones/metabolismo , Animales , Femenino , Humanos , Masculino , Ratones , Técnicas de Cultivo de Tejidos
6.
Sensors (Basel) ; 20(17)2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32887517

RESUMEN

The use of wireless sensors to measure motion in non-laboratory settings continues to grow in popularity. Thus far, most validated systems have been applied to measurements in controlled settings and/or for prescribed motions. The aim of this study was to characterize adolescent hip joint motion of elite-level athletes (soccer players) during practice and recreationally active peers (controls) in after-school activities using a magneto-inertial measurement unit (MIMU) system. Opal wireless sensors (APDM Inc., Portland OR, USA) were placed at the sacrum and laterally on each thigh (three sensors total). Hip joint motion was characterized by hip acceleration and hip orientation for one hour of activity on a sports field. Our methods and analysis techniques can be applied to other joints and activities. We also provide recommendations in order to guide future work using MIMUs to pervasively assess joint motions of clinical relevance.


Asunto(s)
Aceleración , Articulación de la Cadera , Adolescente , Fenómenos Biomecánicos , Humanos , Movimiento (Física) , Rango del Movimiento Articular , Deportes , Dispositivos Electrónicos Vestibles
7.
Calcif Tissue Int ; 105(3): 316-330, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31243483

RESUMEN

The mechano-adaptive response of bone to loading in the murine uniaxial tibial loading model is impaired in aged animals. Previous studies have shown that in aged mice, the amount of bone formed in response to loading is augmented when loads are applied following sciatic neurectomy. The synergistic effect of neurectomy and loading remains to be elucidated. We hypothesize that sciatic neurectomy increases cellular presence, thereby augmenting the response to load in aged mice. We examined bone adaptation in four groups of female C57BL/6J mice, 20-22 months old: (1) sham surgery + 9N loading; (2) sciatic neurectomy, sacrificed after 5 days; (3) sciatic neurectomy, sacrificed after 19 days; (4) sciatic neurectomy + 9N loading. We examined changes in bone cross sectional properties with micro-CT images, and static and dynamic histomorphometry with histological sections taken at the midpoint between tibiofibular junctions. The response to loading at 9N was not detectable with quantitative micro-CT data, but surface-specific histomorphometry captured an increase in bone formation in specific regions. 5 days following sciatic neurectomy, the amount of bone in the neurectomized leg was the same as the contralateral leg, but 19 days following sciatic neurectomy, there was significant bone loss in the neurectomized leg, and both osteoclasts and osteoblasts were recruited to the endosteal surfaces. When sciatic neurectomy and loading at 9N were combined, 3 out of 4 bone quadrants had increased bone formation, on the endosteal and periosteal surfaces (increased osteoid surface and mineralizing surface respectively). These data demonstrate that sciatic neurectomy increases cellular presence on the endosteal surface. With long-term sciatic-neurectomy, both osteoclasts and osteoblasts were recruited to the endosteal surface, which resulted in increased bone formation when combined with a sufficient mechanical stimulus. Controlled and localized recruitment of both osteoblasts and osteoclasts combined with appropriate mechanical loading could inform therapies for mechanically-directed bone formation.


Asunto(s)
Adaptación Fisiológica/fisiología , Envejecimiento/fisiología , Proliferación Celular/fisiología , Fenómenos Mecánicos , Osteogénesis/fisiología , Nervio Ciático/lesiones , Nervio Ciático/patología , Animales , Desnervación , Femenino , Ratones , Ratones Endogámicos C57BL , Tibia , Soporte de Peso/fisiología , Microtomografía por Rayos X
8.
J Theor Biol ; 454: 345-356, 2018 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-29653160

RESUMEN

Joints connect the skeletal components and enable movement. The appearance and development of articulations is due to different genetic, biochemical, and mechanical factors. In the embryonic stage, controlled biochemical processes are critical for organized growth. We developed a computational model, which predicts the appearance, location, and development of joints in the embryonic stage. Biochemical events are modeled with reaction diffusion equations with generic molecules representing molecules that 1) determine the site where the articulation will appear, 2) promote proliferation, and matrix synthesis, and 3) define articular cartilage. Our model accounts for cell differentiation from mesenchymal cells to pre-cartilaginous cells, then cartilaginous cells, and lastly articular cartilage. These reaction-diffusion equations were solved using the finite elements method. From a mesenchymal 'bud' of a phalanx, the model predicts growth, joint cleavage, joint morphology, and articular cartilage formation. Our prediction of the gene expression during development agrees with molecular expression profiles of joint development reported in literature. Our computational model suggests that initial rudiment dimensions affect diffusion profiles result in Turing patterns that dictate sites of cleavage thereby determining the number of joints in a rudiment.


Asunto(s)
Desarrollo Óseo/fisiología , Cartílago Articular/embriología , Simulación por Computador , Articulaciones/embriología , Animales , Biomarcadores/metabolismo , Huesos/embriología , Huesos/metabolismo , Cartílago Articular/crecimiento & desarrollo , Cartílago Articular/fisiología , Comunicación Celular/fisiología , Diferenciación Celular , Proliferación Celular , Condrogénesis/fisiología , Biología Computacional , Falanges de los Dedos de la Mano/embriología , Falanges de los Dedos de la Mano/crecimiento & desarrollo , Falanges de los Dedos de la Mano/metabolismo , Factor 5 de Diferenciación de Crecimiento/administración & dosificación , Factor 5 de Diferenciación de Crecimiento/farmacocinética , Humanos , Articulaciones/citología , Articulaciones/crecimiento & desarrollo , Articulaciones/metabolismo , Modelos Teóricos , Morfogénesis/fisiología
9.
Curr Osteoporos Rep ; 16(4): 404-410, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29869752

RESUMEN

PURPOSE OF REVIEW: Osteoporosis could lead to the bone mechanical failure. To examine the bone health, mechanical properties are often estimated from the images of the bone density. Here, we review the relationships that have been experimentally determined between mineral density and the elastic modulus and factors that affect these relationships. RECENT FINDINGS: Studies, which have investigated the relation between the elastic modulus and bone mineral at the bulk scale, have shown that approximately 70% of variations in the elastic modulus can be explained based on the amount of mineral in bone. At the tissue level, however, higher resolution techniques are used to characterize the density and modulus more locally, and this leads to the correlation of mineral with modulus to be not as strong as that of the bulk level and often times, insignificant. This observation indicates the importance of structural hierarchy and mineral crystal organization in determining the local stiffness of the bone tissue. At the bulk level in bone (cm scale), modulus (E) is related to density (ρ) through a power law relationship (E ∝ ρα). At the tissue level (µm-mm scale), the relationship between the modulus and density is weak, likely due to the effect of microstructural features at small length scales.


Asunto(s)
Densidad Ósea , Huesos/fisiopatología , Módulo de Elasticidad , Osteoporosis/fisiopatología , Animales , Huesos/diagnóstico por imagen , Humanos , Osteoporosis/diagnóstico por imagen
10.
J Neuroeng Rehabil ; 15(1): 25, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29558970

RESUMEN

Although all functional movement arises from the interplay between the neurological, skeletal, and muscular systems, it is the skeletal system that forms the basic framework for functional movement. Central to understanding human neuromuscular development, along with the genesis of musculoskeletal pathologies, is quantifying how the human skeletal system adapts and mal-adapts to its mechanical environment. Advancing this understanding is hampered by an inability to directly and non-invasively measure in vivo strains, stresses, and forces on bone. Thus, we traditionally have turned to animal models to garner such information. These models enable direct in vivo measures that are not available for human subjects, providing information in regards to both skeletal adaptation and the interplay between the skeletal and muscular systems. Recently, there has been an explosion of new imaging and modeling techniques providing non-invasive, in vivo measures and estimates of skeletal form and function that have long been missing. Combining multiple modalities and techniques has proven to be one of our most valuable resources in enhancing our understanding of the form-function relationship of the human skeletal, muscular, and neurological systems. Thus, to continue advancing our knowledge of the structural-functional relationship, validation of current tools is needed, while development is required to limit the deficiencies in these tools and develop new ones.


Asunto(s)
Fenómenos Fisiológicos Musculoesqueléticos , Animales , Humanos
11.
J Orthop Res ; 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644357

RESUMEN

Altered shape of the proximal femur (cam morphology) or acetabulum (pincer morphology) is indicative of femoroacetabular impingement, which can result in hip pain and osteoarthritis of the hip. As mechanical load during growth affects the resulting bone shape, there is strong evidence in males that cam morphology develops during skeletal growth while physes are open, rather than as an adaptation after growth plates are closed (skeletal maturity). This adaptation is particularly evident in athletes who participate at elite levels prior to skeletal maturity. The research providing this evidence, however, has primarily focused on male athletes. Despite the lack of inclusion in the research, females consistently comprise two thirds of the clinical and surgical populations with structural hip pain or pathology. Knowledge gained from male-dominated cohorts may not appropriately transfer to female athletes, especially at the hip. This perspectives article briefly reviews differences between females and males in femoral and acetabular structure, hormones, timing of puberty/maturation, hypermobility, activity level and movement control-factors which affect hip structure development and loading. Without female-focused research, the application of research findings from male athletes to female athletes may lead to ineffective or even inappropriate recommendations and treatments. Thus, there is a critical need for investment in research to promote life-long hip health for females.

12.
J Mech Behav Biomed Mater ; 150: 106341, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38160643

RESUMEN

BACKGROUND: The extracellular mechanical environment plays an important role in the skeletal development process. Characterization of the material properties of regenerating tissues that recapitulate development, provides insights into the mechanical environment experienced by the cells and the maturation of the matrix. In this study, we estimated the viscoelastic material properties of regenerating forelimbs in the axolotl (Ambystoma mexicanum) at three different regeneration stages: 27 days post-amputation (mid-late bud) and 41 days post-amputation (palette stage), and fully-grown time points. A stress-relaxation indentation test followed by two-term Prony series viscoelastic inverse finite element analysis was used to obtain material parameters. Glycosaminoglycan (GAG) content was estimated using a 1,9- dimethyl methylene blue assay. RESULTS: The instantaneous and equilibrium shear moduli significantly increased with regeneration while the short-term stress relaxation time significantly decreased with limb regeneration. The long-term stress relaxation time in the fully-grown time point was significantly lower than 27 and 41 DPA groups. The GAG content was not significantly different between 27 and 41 DPA but the GAG content of cartilage in the fully-grown group was significantly greater than in 27 and 41 DPA. CONCLUSIONS: The mechanical environment of the proliferating cells changes drastically during limb regeneration. Understanding how the tissue's mechanical properties change during limb regeneration is critical for linking molecular-level matrix production of the cells to tissue-level behavior and mechanical signals.


Asunto(s)
Ambystoma mexicanum , Regeneración , Animales , Análisis de Elementos Finitos
13.
J Biomech ; 162: 111879, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043496

RESUMEN

Numerous studies have shown the detrimental health effects of tobacco smoking on bone volume and strength in human and animal models. Little is known regarding the impacts of e-cigarettes, a form of smoke-less nicotine intake, despite their growing population of users. This study uses murine models to evaluate the effects of exposure to e-cigarette aerosols (JUUL) on bone structure and strength through micro-CT imaging and mechanical testing. JUUL mice had more trabecular bone in thickness and volume, yet lower ultimate stress and modulus values in the cortical bone than the control mice. These outcomes suggest that, although vaping can result in a higher bone volume, this bone is weaker than average. E-cigarettes should be examined more closely regarding adolescence and long-term consequences on skeletal health.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Vapeo , Humanos , Adolescente , Ratones , Animales , Modelos Animales de Enfermedad , Nicotina , Aerosoles , Vapeo/epidemiología , Vapeo/psicología
14.
Appl Ergon ; 116: 104183, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38071785

RESUMEN

This study aimed to determine gravitational and dynamic torques and muscle activity of the neck across a series of design parameters of head mounted displays (mass, center of mass, and counterweights) associated with virtual and augmented reality (VR/AR). Twenty young adult participants completed five movement types (Slow and Fast Flexion/Extension and Rotation, and Search) while wearing a custom-designed prototype headset that varied the three design parameters: display mass (0, 200, 500, and 750 g), distance of the display's center of mass in front of the eyes (approximately 1, 3, and 5 cm anteriorly), and counterweights of 0, 166, 332, and 500 g to balance the display mass of 500 g at 7 cm. Inverse dynamics of a link segment model of the head and headset provided estimates of the torques about the joint between the skull and the occiput-first cervical vertebrae (OC1) and joint between the C7 and T1 vertebrae (C7). Surface electromyography (EMG) measured bilateral muscle activity of the splenius and upper trapezius muscles. Adding 750 g of display mass nearly doubled root mean square joint torques across all movement types. Increasing the distance of the display mass in front of the eyes by 4 cm increased torques about OC1 for the Slow and Fast Rotation and Search movements by approximately 20%. Adding a counterweight decreased torques about OC1 during the rotation and search tasks but did not decrease the torques experienced in the lower cervical spine (C7). For the flexion/extension axis, the magnitude of the dynamic torque component was 20% or less of the total torque experienced whereas for the rotation axis the magnitude of the dynamic torque component was greater than 50% of the total torque. Surface EMG root mean square values significantly varied across movement types with the fast rotation having the largest values; however, they did not vary significantly across the headset configurations.


Asunto(s)
Realidad Aumentada , Humanos , Torque , Articulaciones/fisiología , Movimiento/fisiología , Vértebras Cervicales , Fenómenos Biomecánicos
15.
Anat Rec (Hoboken) ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850161

RESUMEN

We compare the effects of burrowing behavior on appendicular bone structure in two Peromyscus (deer mouse) species. P. polionotus creates complex burrows in their territories, while P. eremicus is a non-burrowing nesting mouse. We examined museum specimens' bones of wild-caught mice of the two species and lab-reared P. polionotus not given the opportunity to burrow. Bones were scanned using micro-computed tomography, and cortical and trabecular bone structural properties were quantified. Wild P. polionotus mice had a larger moment of area in the ulnar and tibial cortical bone compared with their lab-reared counterparts, suggesting developmental adaptation to bending resistance. Wild P. polionotus had a larger normalized second moment of area and cross-sectional area in the tibia compared with P. eremicus. Tibial trabecular analysis showed lower trabecular thickness and spacing in wild P. polionotus than in P. eremicus and femoral analysis showed wild P. polionotus had lower thickness than P. eremicus and lower spacing than lab-reared P. polionotus, suggesting adaptation to high loads from digging. Results lay the groundwork for future exploration of the ontogenetic and evolutionary basis of mechanoadaptation in Peromyscus.

16.
Blood ; 117(3): 1053-60, 2011 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-21088133

RESUMEN

Osteogenesis imperfecta (OI or brittle bone disease) is a disorder of connective tissues caused by mutations in the collagen genes. We previously showed that intrauterine transplantation of human blood fetal stem/stromal cells in OI mice (oim) resulted in a significant reduction of bone fracture. This work examines the cellular mechanisms and mechanical bone modifications underlying these therapeutic effects, particularly examining the direct effects of donor collagen expression on bone material properties. In this study, we found an 84% reduction in femoral fractures in transplanted oim mice. Fetal blood stem/stromal cells engrafted in bones, differentiated into mature osteoblasts, expressed osteocalcin, and produced COL1a2 protein, which is absent in oim mice. The presence of normal collagen decreased hydroxyproline content in bones, altered the apatite crystal structure, increased the bone matrix stiffness, and reduced bone brittleness. In conclusion, expression of normal collagen from mature osteoblast of donor origin significantly decreased bone brittleness by improving the mechanical integrity of the bone at the molecular, tissue, and whole bone levels.


Asunto(s)
Trasplante de Células Madre de Sangre del Cordón Umbilical/métodos , Células Madre Fetales/trasplante , Fracturas Óseas/prevención & control , Osteogénesis Imperfecta/cirugía , Animales , Fenómenos Biomecánicos , Western Blotting , Diferenciación Celular , Colágeno/metabolismo , Colágeno Tipo I , Modelos Animales de Enfermedad , Femenino , Fracturas del Fémur/prevención & control , Fémur/metabolismo , Fémur/fisiopatología , Células Madre Fetales/citología , Células Madre Fetales/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Osteoblastos/citología , Osteoblastos/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Osteogénesis Imperfecta/genética , Embarazo , Análisis de Componente Principal , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría Raman , Trasplante Heterólogo
17.
J Biomech ; 157: 111707, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37441913

RESUMEN

Cam deformity of the proximal femur is a risk factor for early osteoarthritis. While cam morphology is related to mechanical force at a formative time in skeletal growth, the specific problematic forces contributing to the development of cam morphology remain unknown. Individuals with femoroacetabular impingement syndrome exhibit an increased anterior pelvic tilt during walking, which alters their hip joint forces. This study aims to investigate the influence of altered joint force caused by anterior pelvic tilt on proximal femur epiphyseal growth and the potential association between increased anterior pelvic tilt and the development of cam morphology. A computational model is utilized to simulate the endochondral ossification in the proximal femur and predict cam formation. Cartilage growth and ossification patterns for a gait cycle with and without anterior pelvic tilt were modeled. The simulated growth results indicated an increased alpha angle (53° for typically developing to 68° for anterior pelvic tilt) and aspherical femoral head in the model with anterior pelvic tilt. We conclude that anterior pelvic tilt may be sufficient to cause the formation of the cam morphology. Identifying the critical mechanical conditions that increase the risk of cam deformity could help prevent this condition by adjusting the physical activities before skeletal maturity.


Asunto(s)
Pinzamiento Femoroacetabular , Articulación de la Cadera , Humanos , Articulación de la Cadera/anatomía & histología , Fémur , Cabeza Femoral , Extremidad Inferior
18.
Matrix Biol ; 116: 85-101, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36592737

RESUMEN

Lamellar bone that forms in moderate and severe osteogenesis imperfecta (OI) is composed of structurally irregular lamellae compared to those in control bone. OI and control cortical bone fragments were prepared for light microscopy in standardized fashion: decalcified, embedded in plastic, sectioned and stained with toluidine blue. Polarization light microscopy (PLM) was used to demonstrate and quantify bright and dark lamellar thicknesses in cortical bone fragments from 5 patients with moderate to severe OI in whom type I collagen structural/molecular defects were detected and in control bone from 5 patients. Rigid selection criteria identified lamellar regions for quantification. Thicknesses of bright and dark lamellae were measured manually at 20X magnification using a histomorphometric image analysis system. A method of automated thickness averaging was developed to determine lamellar thicknesses from PLM images to make measurement faster. Our study demonstrates, for the first time, that in OI bone from patients with type I collagen structural/molecular defects mean lamellar thickness measurements (along with the bright and dark lamellar thicknesses) were less than those in control bone by statistically highly significant differences. The mean value for bright lamellae was less than that for dark lamellae in both control and OI bone. The ratio of mean values for bright/dark lamellar thicknesses was the same in control and OI bone. The automated method obtained similar results to the manual method. Lamellar bone in moderate and severe OI with type I collagen defects is composed of thinner and less structurally regular lamellae than those in control bone. This finding indicates that lamellar thickness measurements can be helpful in assessing the effect of specific collagen and collagen-related mutations on OI bone synthesis and warrant inclusion in research and clinical histomorphometric assessments.


Asunto(s)
Osteogénesis Imperfecta , Humanos , Osteogénesis Imperfecta/genética , Colágeno Tipo I , Osteogénesis , Huesos , Colágeno
19.
MethodsX ; 11: 102428, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37954966

RESUMEN

Lamellar bone formed in individuals with moderate and severe osteogenesis imperfecta (OI) is often composed of lamellae that are structurally abnormal. Measuring the thickness of these lamellae can be helpful in assessing the effect of specific collagen and collagen-related mutations on OI bone synthesis. Manual measurement of lamellar thicknesses in large quantities is very time consuming. The method for automated measurement described in this article utilizes an image processing script to identify the average thickness of multiple lamellae automatically from histologic images of bone. This allows for faster measurements that are less prone to human error and can account for variability in the thickness of a lamella along its length.•OI and control bone samples are prepared per the glycol methacrylate resin (JB-4 plastic) technique and viewed using polarized light microscopy.•Ideal bone regions for measurement are identified using specific qualitative criteria designed to ensure uniform and accurate thickness measurements.•The method was validated with dataset containing 211 lamellae from control bone and 212 lamellae from OI bone.

20.
Phys Ther Sport ; 64: 133-139, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37890340

RESUMEN

INTRODUCTION: Hamstring injuries are the most prevalent non-contact soft tissue injury in sports, with a larger portion of injuries being recurrent. The sagittal plane running kinematics correlated to hamstring injury history has been well documented. However, analysis of frontal plane kinematics allows for observation of stability and symmetry. This study aimed to examine the frontal plane running kinematics of elite collegiate level sprinters, with and without previous hamstring injury, compared to healthy counterparts. METHODS: Thirty-nine participants performed three 50-m sprints, with three inertial measurement unit sensors placed on the pelvis: one on each iliac crest and one on the sacrum. Participants were classified based on sex, competitive status, and injury history. To investigate differences based on group classification, the data were used to analyze mediolateral motion (relative magnitude of mediolateral acceleration) and asymmetry (difference in acceleration between right and left iliac crests) during each stance phase throughout the run. RESULTS: Injured sprinters displayed significantly greater mediolateral motion and asymmetry during stances than healthy counterparts. CONCLUSIONS: This study demonstrates that frontal plane running stance dynamics are different in athletes with previous hamstring injury than healthy athletes. These athletes may benefit from rehabilitation strategies targeting postural control and stability during dynamic tasks.


Asunto(s)
Traumatismos de la Pierna , Carrera , Traumatismos de los Tejidos Blandos , Humanos , Fenómenos Biomecánicos , Pelvis/lesiones , Carrera/lesiones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA