Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Cell ; 33(3): 566-580, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33955496

RESUMEN

The external application of nitrogen (N) fertilizers is an important practice for increasing crop production. However, the excessive use of fertilizers significantly increases production costs and causes environmental problems, making the improvement of crop N-use efficiency (NUE) crucial for sustainable agriculture in the future. Here we show that the rice (Oryza sativa) NUE quantitative trait locus DULL NITROGEN RESPONSE1 (qDNR1), which is involved in auxin homeostasis, reflects the differences in nitrate (NO3-) uptake, N assimilation, and yield enhancement between indica and japonica rice varieties. Rice plants carrying the DNR1indica allele exhibit reduced N-responsive transcription and protein abundance of DNR1. This, in turn, promotes auxin biosynthesis, thereby inducing AUXIN RESPONSE FACTOR-mediated activation of NO3- transporter and N-metabolism genes, resulting in improved NUE and grain yield. We also show that a loss-of-function mutation at the DNR1 locus is associated with increased N uptake and assimilation, resulting in improved rice yield under moderate levels of N fertilizer input. Therefore, modulating the DNR1-mediated auxin response represents a promising strategy for achieving environmentally sustainable improvements in rice yield.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Mutación con Pérdida de Función/genética , Nitrógeno/metabolismo , Oryza/genética , Oryza/metabolismo , Alelos , Homeostasis/genética , Homeostasis/fisiología
2.
Nat Plants ; 9(11): 1902-1914, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37798338

RESUMEN

Plant nitrogen (N)-use efficiency (NUE) is largely determined by the ability of root to take up external N sources, whose availability and distribution in turn trigger the modification of root system architecture (RSA) for N foraging. Therefore, improving N-responsive reshaping of RSA for optimal N absorption is a major target for developing crops with high NUE. In this study, we identified RNR10 (REGULATOR OF N-RESPONSIVE RSA ON CHROMOSOME 10) as the causal gene that underlies the significantly different root developmental plasticity in response to changes in N level exhibited by the indica (Xian) and japonica (Geng) subspecies of rice. RNR10 encodes an F-box protein that interacts with a negative regulator of auxin biosynthesis, DNR1 (DULL NITROGEN RESPONSE1). Interestingly, RNR10 monoubiquitinates DNR1 and inhibits its degradation, thus antagonizing auxin accumulation, which results in reduced root responsivity to N and nitrate (NO3-) uptake. Therefore, modulating the RNR10-DNR1-auxin module provides a novel strategy for coordinating a desirable RSA and enhanced N acquisition for future sustainable agriculture.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Nitrógeno/metabolismo , Nitratos/metabolismo , Productos Agrícolas/metabolismo , Ácidos Indolacéticos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA