Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 180(2): 214-216, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31978339

RESUMEN

Lysosome (vacuole) and mitochondria decline interdependently during aging through an unclear mechanism. In this issue of Cell, Hughes et al. (2020) show that defective vacuole-mediated cysteine compartmentalization in aging yeast leads to iron limitation and mitochondrial dysfunction.


Asunto(s)
Cisteína , Hierro , Homeostasis , Mitocondrias
2.
Cell ; 171(4): 771-782.e11, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29056341

RESUMEN

CLYBL encodes a ubiquitously expressed mitochondrial enzyme, conserved across all vertebrates, whose cellular activity and pathway assignment are unknown. Its homozygous loss is tolerated in seemingly healthy individuals, with reduced circulating B12 levels being the only and consistent phenotype reported to date. Here, by combining enzymology, structural biology, and activity-based metabolomics, we report that CLYBL operates as a citramalyl-CoA lyase in mammalian cells. Cells lacking CLYBL accumulate citramalyl-CoA, an intermediate in the C5-dicarboxylate metabolic pathway that includes itaconate, a recently identified human anti-microbial metabolite and immunomodulator. We report that CLYBL loss leads to a cell-autonomous defect in the mitochondrial B12 metabolism and that itaconyl-CoA is a cofactor-inactivating, substrate-analog inhibitor of the mitochondrial B12-dependent methylmalonyl-CoA mutase (MUT). Our work de-orphans the function of human CLYBL and reveals that a consequence of exposure to the immunomodulatory metabolite itaconate is B12 inactivation.


Asunto(s)
Liasas de Carbono-Carbono/metabolismo , Succinatos/metabolismo , Vitamina B 12/metabolismo , Liasas de Carbono-Carbono/química , Liasas de Carbono-Carbono/genética , Técnicas de Inactivación de Genes , Humanos , Redes y Vías Metabólicas , Mitocondrias/metabolismo , Modelos Moleculares
3.
Mol Cell ; 84(4): 802-810.e6, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38157846

RESUMEN

Organelle transporters define metabolic compartmentalization, and how this metabolite transport process can be modulated is poorly explored. Here, we discovered that human SLC25A39, a mitochondrial transporter critical for mitochondrial glutathione uptake, is a short-lived protein under dual regulation at the protein level. Co-immunoprecipitation mass spectrometry and CRISPR knockout (KO) in mammalian cells identified that mitochondrial m-AAA protease AFG3L2 is responsible for degrading SLC25A39 through the matrix loop 1. SLC25A39 senses mitochondrial iron-sulfur cluster using four matrix cysteine residues and inhibits its degradation. SLC25A39 protein regulation is robust in developing and mature neurons. This dual transporter regulation, by protein quality control and metabolic sensing, allows modulating mitochondrial glutathione level in response to iron homeostasis, opening avenues for exploring regulation of metabolic compartmentalization. Neuronal SLC25A39 regulation connects mitochondrial protein quality control, glutathione, and iron homeostasis, which were previously unrelated biochemical features in neurodegeneration.


Asunto(s)
Hierro , Mitocondrias , Animales , Humanos , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteasas ATP-Dependientes/metabolismo , Hierro/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Homeostasis , Glutatión/metabolismo , Mamíferos/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo
4.
Mol Cell ; 82(15): 2735-2737, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35931038

RESUMEN

Rensvold, Shishkova, et al. (2022) apply an integrated systems biology approach spanning proteomics, lipidomics, and metabolomics to a collection of CRISPR knockout cells targeting 116 distinct human mitochondrial proteins, revealing new mitochondrial biology and guiding orphan disease diagnosis.


Asunto(s)
Proteoma , Proteómica , Humanos , Lipidómica , Metabolómica , Proteoma/genética , Proteoma/metabolismo , Biología de Sistemas
5.
J Clin Nurs ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951120

RESUMEN

AIM: We aimed to assess the level of knowledge, attitudes and practices regarding airway clearance among nurses and explore the factors affecting the knowledge, attitudes and practices. DESIGN: A questionnaire-based cross-sectional study. BACKGROUND: Airway clearance is an important method of eliminating excess secretions. In neuroscience nursing, nurses are important executors of airway management, and their knowledge, attitudes and practices can influence the effectiveness of airway clearance. METHODS: This study was conducted from July to September 2023 in four hospitals in Jiangsu Province, China. A structured questionnaire about airway clearance was designed and used to collect the data. The nurses used this questionnaire to self-rate. The STROBE checklist for cross-sectional studies was followed. RESULTS: The age, work experience, highest educational attainment and technical title of the nurses can significantly influence their knowledge. The age, highest educational attainment and technical title of the nurses can significantly impact their attitudes. Practice scores were significantly influenced by age, work experience, technical title, whether the nurses had received any training on airway clearance techniques, and whether the department developed procedures for implementing the airway clearance technology. Nurses' attitudes were significantly associated with knowledge and practice, and there was no significant correlation between knowledge and practice. CONCLUSION: This study showed that age, work experience, highest educational attainment and training were related to knowledge, attitudes and practices. These findings suggest that nursing managers can conduct airway clearance training according to age group, working experience and education level of the nurses. PATIENT OR PUBLIC CONTRIBUTION: No patient or public contribution. IMPACT: The findings show that the level of knowledge, attitudes and practices related to airway clearance in neuroscience nursing among nurses were acceptable, which means that nurses can better perform airway management on patients. These findings serve as a significant reference for designing an airway clearance education for nurses and meet the needs of nurses in clinical nursing practice.

7.
BMC Pulm Med ; 22(1): 130, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35392885

RESUMEN

BACKGROUND: Pulmonary infection is common yet serious complication in patients with severe traumatic brain injury (STBI). We aimed to evaluate the predicators of pulmonary infection in STBI patients undergoing tracheostomy, to provide evidence for the clinical nursing care of STBI patients. METHODS: This study was a retrospective cohort design. STBI patients undergoing tracheostomy treatment from January 1, 2019 to August 31, 2021 in our hospital were included. The characteristics of pulmonary infection and no pulmonary infection patients were analyzed. RESULTS: A total 216 STBI patients undergoing tracheostomy were included, the incidence of pulmonary infection was 26.85%. Diabetes (r = 0.782), hypoproteinemia (r = 0.804), duration of coma(r = 0.672), duration of mechanical ventilation(r = 0.724) and length of hospital stay (r = 0.655), length of hospital stay post tracheostomy (r = 0.554), mortality (r = 0.598) were all correlated with pulmonary infection (all p < 0.05). Klebsiella pneumoniae (33.87%) and Staphylococcus aureus (29.03%) were the most commonly seen pathogens in the pulmonary infection of TBI patients. Logistic regression analyses indicated that diabetes (OR 2.232, 95% CI 1.215-3.904), hypoproteinemia with plasma total protein < 60 g/L (OR 1.922, 95% CI 1.083-3.031), duration of coma ≥ 22 h (OR 2.864, 95% CI 1.344-5.012), duration of mechanical ventilation ≥ 5 days (OR 3.602, 95% CI 1.297-5.626), length of hospital stay ≥ 21 days (OR 2.048, 95% CI 1.022-3.859) were the risk factors of pulmonary infection in TBI patients undergoing tracheostomy (all p < 0.05). CONCLUSIONS: Further investigations on the early preventions and treatments targeted on those risk factors are needed to reduce the pulmonary infection in clinical practice.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Hipoproteinemia , Neumonía , Lesiones Traumáticas del Encéfalo/complicaciones , Coma/etiología , Humanos , Hipoproteinemia/etiología , Tiempo de Internación , Neumonía/etiología , Respiración Artificial , Estudios Retrospectivos , Traqueostomía/efectos adversos , Resultado del Tratamiento
8.
Nat Chem Biol ; 13(10): 1088-1095, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28805804

RESUMEN

The redox coenzymes NADH and NADPH are broadly required for energy metabolism, biosynthesis and detoxification. Despite detailed knowledge of specific enzymes and pathways that utilize these coenzymes, a holistic understanding of the regulation and compartmentalization of NADH- and NADPH-dependent pathways is lacking, partly because of a lack of tools with which to investigate these processes in living cells. We have previously reported the use of the naturally occurring Lactobacillus brevis H2O-forming NADH oxidase (LbNOX) as a genetic tool for manipulation of the NAD+/NADH ratio in human cells. Here, we present triphosphopyridine nucleotide oxidase (TPNOX), a rationally designed and engineered mutant of LbNOX that is strictly specific to NADPH. We characterized the effects of TPNOX expression on cellular metabolism and used it in combination with LbNOX to show how the redox states of mitochondrial NADPH and NADH pools are connected.


Asunto(s)
NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , NADP/metabolismo , Ingeniería de Proteínas , Células HeLa , Humanos , NADH NADPH Oxidorreductasas/química , NADP/química , Oxidación-Reducción
9.
Mol Cell Proteomics ; 16(4): 512-523, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28122942

RESUMEN

The majority of mitochondrial proteins are encoded in the nuclear genome, translated in the cytoplasm, and directed to the mitochondria by an N-terminal presequence that is cleaved upon import. Recently, N-proteome catalogs have been generated for mitochondria from yeast and from human U937 cells. Here, we applied the subtiligase method to determine N-termini for 327 proteins in mitochondria isolated from mouse liver and kidney. Comparative analysis between mitochondrial N-termini from mouse, human, and yeast proteins shows that whereas presequences are poorly conserved at the sequence level, other presequence properties are extremely conserved, including a length of ∼20-60 amino acids, a net charge between +3 to +6, and the presence of stabilizing amino acids at the N-terminus of mature proteins that follow the N-end rule from bacteria. As in yeast, ∼80% of mouse presequence cleavage sites match canonical motifs for three mitochondrial peptidases (MPP, Icp55, and Oct1), whereas the remainder do not match any known peptidase motifs. We show that mature mitochondrial proteins often exist with a spectrum of N-termini, consistent with a model of multiple cleavage events by MPP and Icp55. In addition to analysis of canonical targeting presequences, our N-terminal dataset allows the exploration of other cleavage events and provides support for polypeptide cleavage into two distinct enzymes (Hsd17b4), protein cleavages key for signaling (Oma1, Opa1, Htra2, Mavs, and Bcs2l13), and in several cases suggests novel protein isoforms (Scp2, Acadm, Adck3, Hsdl2, Dlst, and Ogdh). We present an integrated catalog of mammalian mitochondrial N-termini that can be used as a community resource to investigate individual proteins, to elucidate mechanisms of mammalian mitochondrial processing, and to allow researchers to engineer tags distally to the presequence cleavage.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Proteómica/métodos , Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Línea Celular , Secuencia Conservada , Evolución Molecular , Humanos , Riñón/metabolismo , Hígado/metabolismo , Ratones , Mitocondrias/genética , Proteínas Mitocondriales/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Nat Methods ; 11(3): 281-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24441936

RESUMEN

Particle tracking is of key importance for quantitative analysis of intracellular dynamic processes from time-lapse microscopy image data. Because manually detecting and following large numbers of individual particles is not feasible, automated computational methods have been developed for these tasks by many groups. Aiming to perform an objective comparison of methods, we gathered the community and organized an open competition in which participating teams applied their own methods independently to a commonly defined data set including diverse scenarios. Performance was assessed using commonly defined measures. Although no single method performed best across all scenarios, the results revealed clear differences between the various approaches, leading to notable practical conclusions for users and developers.


Asunto(s)
Interpretación de Imagen Asistida por Computador , Microscopía Fluorescente/métodos , Interpretación de Imagen Asistida por Computador/normas , Microscopía Fluorescente/normas
11.
J Cell Sci ; 126(Pt 22): 5305-12, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24046449

RESUMEN

Dynamin, which is encoded by three genes in mammals, is a GTPase implicated in endocytic membrane fission. Dynamin 1 and 3 are predominantly expressed in brain, whereas dynamin 2 is ubiquitously expressed. With the goal of assessing the impact of the lack of dynamin on cell physiology, we previously generated and characterized dynamin 1 and 2 double knockout (DKO) fibroblasts. These DKO cells were unexpectedly viable in spite of a severe impairment of clathrin-mediated endocytosis. As low-level expression of the dynamin 3 gene in these cells could not be excluded, we have now engineered dynamin 1, 2 and 3 triple KO (TKO) fibroblasts. These cells did not reveal any additional defects beyond what was previously observed in DKO fibroblasts. Surprisingly, although fluid-phase endocytosis and peripheral membrane ruffling were not impaired by the lack of all three dynamins, two structurally similar, widely used dynamin inhibitors, dynasore and Dyngo-4a, robustly inhibited these two processes both in wild-type and TKO cells. Dynamin TKO cells will be useful tools for the further exploration of dynamin-dependent processes and the development of more specific dynamin inhibitors.


Asunto(s)
Dinamina III/metabolismo , Dinamina II/metabolismo , Dinamina I/metabolismo , Sinapsis/metabolismo , Animales , Células Cultivadas , Dinamina I/genética , Dinamina II/genética , Dinamina III/genética , Endocitosis/genética , Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , Hidrazonas/farmacología , Ratones , Naftoles/farmacología
12.
Proc Natl Acad Sci U S A ; 109(12): 4419-24, 2012 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-22371560

RESUMEN

The role of endocytosis in the control of EGF receptor (EGFR) activation and cell signaling was explored by using mouse fibroblasts in which dynamin was conditionally depleted. Dynamin is a GTPase shown to play an important role in the control clathrin mediated endocytosis of EGFR and other cell surface receptors. In this report, we demonstrate that EGF binding activity and the display of high and low affinity EGFRs on the cell surface are not affected by dynamin depletion. By contrast, dynamin depletion leads to a strong inhibition of EGFR endocytosis, robust enhancement of EGFR autophosphorylation and ubiquitination, and slower kinetics of EGFR degradation. Surprisingly, MAPK stimulation induced by either low or high EGF concentrations is not affected by dynamin depletion. While a similar initial Akt response is detected in control or dynamin depleted fibroblasts, a somewhat more sustained Akt stimulation is detected in the dynamin depleted cells. These experiments demonstrate that dynamin-mediated endocytosis leads to attenuation of EGFR activation and degradation and that stimulation of the MAPK response and Akt activation are primarily mediated by activated EGFR located in the plasma membrane.


Asunto(s)
Membrana Celular/metabolismo , Dinaminas/metabolismo , Receptores ErbB/metabolismo , Animales , Clatrina/metabolismo , Endocitosis , Factor de Crecimiento Epidérmico/genética , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/genética , Fibroblastos/citología , GTP Fosfohidrolasas/metabolismo , Ligandos , Ratones , Ratones Noqueados , Ratones Transgénicos , Modelos Biológicos , Fosforilación , Transducción de Señal
13.
PLoS One ; 19(6): e0304453, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38923974

RESUMEN

Hirudo nipponia is an important medicinal animal in China. Its salivary gland secretions contain a variety of protein bioactive substances. Investigations of its salivary glands are of great significance in the study of the medicinal value and mechanism of leech secretions. Illumina RNA-Seq technology was used to perform transcriptome sequencing of salivary gland tissue of H. nipponia under starvation (D30) and fed (D0) states. A total of 2,650 differentially expressed genes (DEGs) were screened. Using the label-free protein quantification technique and bioinformatics analysis, the expression of differentially expressed proteins (DEPs) in the salivary gland tissue of H. nipponia was compared. A total of 2,021 proteins were identified, among which 181 proteins were differentially expressed between the starvation and fed states, with 72 significantly upregulated and 109 significantly downregulated. The salivary glands of H. nipponia synthesized protein-based active substances after 30 days of starvation and adapted to the starvation environment by weakening respiratory activity and reducing metabolic activity to reduce energy expenditure. Energy was produced by glycolysis and the tricarboxylic acid cycle for the synthesis of substances such as antibiotics. This study combined transcriptome and proteome sequencing data to provide a data reference for an in-depth study of the regulatory mechanism of salivary gland secretions of H. nipponia under starvation stress by analyzing DEGs and DEPs.


Asunto(s)
Sanguijuelas , Proteoma , Glándulas Salivales , Inanición , Transcriptoma , Animales , Glándulas Salivales/metabolismo , Proteoma/metabolismo , Inanición/metabolismo , Inanición/genética , Sanguijuelas/genética , Sanguijuelas/metabolismo , Perfilación de la Expresión Génica
14.
Biomolecules ; 13(9)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37759714

RESUMEN

Homology search and phylogenetic analysis have commonly been used to annotate gene function, although they are prone to error. We hypothesize that the power of homology search in functional annotation depends on the coupling of sequence variation to functional diversification, and we herein focus on the SoLute Carrier (SLC25) family of mitochondrial metabolite transporters to survey this coupling in a family-wide manner. The SLC25 family is the largest family of mitochondrial metabolite transporters in eukaryotes that translocate ligands of different chemical properties, ranging from nucleotides, amino acids, carboxylic acids and cofactors, presenting adequate experimentally validated functional diversification in ligand transport. Here, we combine phylogenetic analysis to profile SLC25 transporters across common eukaryotic model organisms, from Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, to Homo sapiens, and assess their sequence adaptations to the transported ligands within individual subfamilies. Using several recently studied and poorly characterized SLC25 transporters, we discuss the potentials and limitations of phylogenetic analysis in guiding functional characterization.

15.
Nat Commun ; 14(1): 1790, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36997516

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent potentially lethal monogenic disorder. Mutations in the PKD1 gene, which encodes polycystin-1 (PC1), account for approximately 78% of cases. PC1 is a large 462-kDa protein that undergoes cleavage in its N and C-terminal domains. C-terminal cleavage produces fragments that translocate to mitochondria. We show that transgenic expression of a protein corresponding to the final 200 amino acid (aa) residues of PC1 in two Pkd1-KO orthologous murine models of ADPKD suppresses cystic phenotype and preserves renal function. This suppression depends upon an interaction between the C-terminal tail of PC1 and the mitochondrial enzyme Nicotinamide Nucleotide Transhydrogenase (NNT). This interaction modulates tubular/cyst cell proliferation, the metabolic profile, mitochondrial function, and the redox state. Together, these results suggest that a short fragment of PC1 is sufficient to suppress cystic phenotype and open the door to the exploration of gene therapy strategies for ADPKD.


Asunto(s)
NADP Transhidrogenasa AB-Específica , Riñón Poliquístico Autosómico Dominante , Canales Catiónicos TRPP , Humanos , Animales , Ratones , Modelos Animales de Enfermedad , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/patología , Riñón Poliquístico Autosómico Dominante/terapia , Riñón/patología , Riñón/fisiología , NADP Transhidrogenasa AB-Específica/metabolismo , Proteínas Mitocondriales/metabolismo
16.
Nat Metab ; 5(5): 765-776, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37198474

RESUMEN

Glucose is vital for life, serving as both a source of energy and carbon building block for growth. When glucose is limiting, alternative nutrients must be harnessed. To identify mechanisms by which cells can tolerate complete loss of glucose, we performed nutrient-sensitized genome-wide genetic screens and a PRISM growth assay across 482 cancer cell lines. We report that catabolism of uridine from the medium enables the growth of cells in the complete absence of glucose. While previous studies have shown that uridine can be salvaged to support pyrimidine synthesis in the setting of mitochondrial oxidative phosphorylation deficiency1, our work demonstrates that the ribose moiety of uridine or RNA can be salvaged to fulfil energy requirements via a pathway based on: (1) the phosphorylytic cleavage of uridine by uridine phosphorylase UPP1/UPP2 into uracil and ribose-1-phosphate (R1P), (2) the conversion of uridine-derived R1P into fructose-6-P and glyceraldehyde-3-P by the non-oxidative branch of the pentose phosphate pathway and (3) their glycolytic utilization to fuel ATP production, biosynthesis and gluconeogenesis. Capacity for glycolysis from uridine-derived ribose appears widespread, and we confirm its activity in cancer lineages, primary macrophages and mice in vivo. An interesting property of this pathway is that R1P enters downstream of the initial, highly regulated steps of glucose transport and upper glycolysis. We anticipate that 'uridine bypass' of upper glycolysis could be important in the context of disease and even exploited for therapeutic purposes.


Asunto(s)
Ribosa , Uridina , Ribosa/metabolismo , Uridina/metabolismo , ARN/metabolismo , Glucólisis , Humanos , Línea Celular Tumoral , Fosforilación Oxidativa , Medios de Cultivo , Glucosa , Células K562 , Proliferación Celular , Vía de Pentosa Fosfato
17.
Nat Commun ; 13(1): 7226, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36433969

RESUMEN

Protein phosphorylation is a ubiquitous post-translational modification used to regulate cellular processes and proteome architecture by modulating protein-protein interactions. The identification of phosphorylation events through proteomic surveillance has dramatically outpaced our capacity for functional assignment using traditional strategies, which often require knowledge of the upstream kinase a priori. The development of phospho-amino-acid-specific orthogonal translation systems, evolutionarily divergent aminoacyl-tRNA synthetase and tRNA pairs that enable co-translational insertion of a phospho-amino acids, has rapidly improved our ability to assess the physiological function of phosphorylation by providing kinase-independent methods of phosphoprotein production. Despite this utility, broad deployment has been hindered by technical limitations and an inability to reconstruct complex phopho-regulatory networks. Here, we address these challenges by optimizing genetically encoded phosphothreonine translation to characterize phospho-dependent kinase activation mechanisms and, subsequently, develop a multi-level protein interaction platform to directly assess the overlap of kinase and phospho-binding protein substrate networks with phosphosite-level resolution.


Asunto(s)
Aminoacil-ARNt Sintetasas , Proteoma , Humanos , Fosfotreonina , Proteoma/genética , Proteómica , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , ARN de Transferencia/metabolismo
18.
Nat Commun ; 13(1): 2483, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513392

RESUMEN

The SLC25 carrier family consists of 53 transporters that shuttle nutrients and co-factors across mitochondrial membranes. The family is highly redundant and their transport activities coupled to metabolic state. Here, we use a pooled, dual CRISPR screening strategy that knocks out pairs of transporters in four metabolic states - glucose, galactose, OXPHOS inhibition, and absence of pyruvate - designed to unmask the inter-dependence of these genes. In total, we screen 63 genes in four metabolic states, corresponding to 2016 single and pair-wise genetic perturbations. We recover 19 gene-by-environment (GxE) interactions and 9 gene-by-gene (GxG) interactions. One GxE interaction hit illustrates that the fitness defect in the mitochondrial folate carrier (SLC25A32) KO cells is genetically buffered in galactose due to a lack of substrate in de novo purine biosynthesis. GxG analysis highlights a buffering interaction between the iron transporter SLC25A37 (A37) and the poorly characterized SLC25A39 (A39). Mitochondrial metabolite profiling, organelle transport assays, and structure-guided mutagenesis identify A39 as critical for mitochondrial glutathione (GSH) import. Functional studies reveal that A39-mediated glutathione homeostasis and A37-mediated mitochondrial iron uptake operate jointly to support mitochondrial OXPHOS. Our work underscores the value of studying family-wide genetic interactions across different metabolic environments.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Galactosa , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Glutatión , Homeostasis , Hierro , Proteínas de Transporte de Membrana/genética
19.
J Cell Biol ; 220(5)2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33891013

RESUMEN

Mitochondria, which are excluded from the secretory pathway, depend on lipid transport proteins for their lipid supply from the ER, where most lipids are synthesized. In yeast, the outer mitochondrial membrane GTPase Gem1 is an accessory factor of ERMES, an ER-mitochondria tethering complex that contains lipid transport domains and that functions, partially redundantly with Vps13, in lipid transfer between the two organelles. In metazoa, where VPS13, but not ERMES, is present, the Gem1 orthologue Miro was linked to mitochondrial dynamics but not to lipid transport. Here we show that Miro, including its peroxisome-enriched splice variant, recruits the lipid transport protein VPS13D, which in turn binds the ER in a VAP-dependent way and thus could provide a lipid conduit between the ER and mitochondria. These findings reveal a so far missing link between function(s) of Gem1/Miro in yeast and higher eukaryotes, where Miro is a Parkin substrate, with potential implications for Parkinson's disease pathogenesis.


Asunto(s)
Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Peroxisomas/metabolismo , Proteínas/metabolismo , Animales , Transporte Biológico/fisiología , Células COS , Línea Celular , Línea Celular Tumoral , Chlorocebus aethiops , Eucariontes/metabolismo , GTP Fosfohidrolasas/metabolismo , Células HeLa , Humanos , Dinámicas Mitocondriales/fisiología , Enfermedad de Parkinson/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
20.
Forensic Sci Res ; 5(4): 292-299, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33457047

RESUMEN

This article describes a newly devised autosomal short tandem repeat (STR) multiplex polymerase chain reaction (PCR) system for 19 autosomal loci (D12S391, D13S317, D16S539, D18S51, D19S433, D2S1338, D21S11, D3S1358, D5S818, D6S1043, D7S820, D8S1179, CSF1PO, FGA, TH01, TPOX, vWA, Penta D and Penta E), 27 Y-chromosome STR loci (DYS19, DYS385, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438, DYS439, DYS448, DYS449, DYS456, DYS458, DYS460, DYS481, DYS518, DYS533, DYS570, DYS576, DYS635, DYS627, YGATAH4 and DYF387S1) and amelogenin with six-colour fluorescent labelling. Various parameters were evaluated, such as its accuracy, sensitivity, specificity, stability, ability to analysis of mixtures and effects of changes in the PCR-based procedures. All of the 47 selected STR loci were accurately and robustly amplified from 282 bloodstain samples. The species-specificity was high and some ability to inhibit Hematin was identified. The lowest detectable DNA amount was ≥0.125 ng. All of the male loci of the secondary component were revealed precisely when the control DNA was mixed at male/female and male/male ratios of 1:4 or more. We conclude that the present 19-plex autosomal STR and 27 Y-STR assay is both accurate and sensitive. It constitutes an additional powerful tool for forensic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA