Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biomed Inform ; 111: 103565, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32980530

RESUMEN

OBJECTIVE: To develop an effective and scalable individual-level patient cost prediction method by automatically learning hidden temporal patterns from multivariate time series data in patient insurance claims using a convolutional neural network (CNN) architecture. METHODS: We used three years of medical and pharmacy claims data from 2013 to 2016 from a healthcare insurer, where data from the first two years were used to build the model to predict costs in the third year. The data consisted of the multivariate time series of cost, visit and medical features that were shaped as images of patients' health status (i.e., matrices with time windows on one dimension and the medical, visit and cost features on the other dimension). Patients' multivariate time series images were given to a CNN method with a proposed architecture. After hyper-parameter tuning, the proposed architecture consisted of three building blocks of convolution and pooling layers with an LReLU activation function and a customized kernel size at each layer for healthcare data. The proposed CNN learned temporal patterns became inputs to a fully connected layer. We benchmarked the proposed method against three other methods: (1) a spike temporal pattern detection method, as the most accurate method for healthcare cost prediction described to date in the literature; (2) a symbolic temporal pattern detection method, as the most common approach for leveraging healthcare temporal data; and (3) the most commonly used CNN architectures for image pattern detection (i.e., AlexNet, VGGNet and ResNet) (via transfer learning). Moreover, we assessed the contribution of each type of data (i.e., cost, visit and medical). Finally, we externally validated the proposed method against a separate cohort of patients. All prediction performances were measured in terms of mean absolute percentage error (MAPE). RESULTS: The proposed CNN configuration outperformed the spike temporal pattern detection and symbolic temporal pattern detection methods with a MAPE of 1.67 versus 2.02 and 3.66, respectively (p < 0.01). The proposed CNN outperformed ResNet, AlexNet and VGGNet with MAPEs of 4.59, 4.85 and 5.06, respectively (p < 0.01). Removing medical, visit and cost features resulted in MAPEs of 1.98, 1.91 and 2.04, respectively (p < 0.01). CONCLUSIONS: Feature learning through the proposed CNN configuration significantly improved individual-level healthcare cost prediction. The proposed CNN was able to outperform temporal pattern detection methods that look for a pre-defined set of pattern shapes, since it is capable of extracting a variable number of patterns with various shapes. Temporal patterns learned from medical, visit and cost data made significant contributions to the prediction performance. Hyper-parameter tuning showed that considering three-month data patterns has the highest prediction accuracy. Our results showed that patients' images extracted from multivariate time series data are different from regular images, and hence require unique designs of CNN architectures. The proposed method for converting multivariate time series data of patients into images and tuning them for convolutional learning could be applied in many other healthcare applications with multivariate time series data.


Asunto(s)
Costos de la Atención en Salud , Redes Neurales de la Computación , Estudios de Cohortes , Humanos
2.
J Biomed Inform ; 91: 103113, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30738188

RESUMEN

OBJECTIVE: To design and assess a method to leverage individuals' temporal data for predicting their healthcare cost. To achieve this goal, we first used patients' temporal data in their fine-grain form as opposed to coarse-grain form. Second, we devised novel spike detection features to extract temporal patterns that improve the performance of cost prediction. Third, we evaluated the effectiveness of different types of temporal features based on cost information, visit information and medical information for the prediction task. MATERIALS AND METHODS: We used three years of medical and pharmacy claims data from 2013 to 2016 from a healthcare insurer, where the first two years were used to build the model to predict the costs in the third year. To prepare the data for modeling and prediction, the time series data of cost, visit and medical information were extracted in the form of fine-grain features (i.e., segmenting each time series into a sequence of consecutive windows and representing each window by various statistics such as sum). Then, temporal patterns of the time series were extracted and added to fine-grain features using a novel set of spike detection features (i.e., the fluctuation of data points). Gradient Boosting was applied on the final set of extracted features. Moreover, the contribution of each type of data (i.e., cost, visit and medical) was assessed. We benchmarked the proposed predictors against extant methods including those that used coarse-grain features which represent each time series with various statistics such as sum and the most recent portion of the values in the entire series. All prediction performances were measured in terms of Mean Absolute Percentage Error (MAPE). RESULTS: Gradient Boosting applied on fine-grain predictors outperformed coarse-grain predictors with a MAPE of 3.02 versus 8.14 (p < 0.01). Enhancing the fine-grain features with the temporal pattern extraction features (i.e., spike detection features) further improved the MAPE to 2.04 (p < 0.01). Removing cost, visit and medical status data resulted in MAPEs of 10.24, 2.22 and 2.07 respectively (p < 0.01 for the first two comparisons and p = 0.63 for the third comparison). CONCLUSIONS: Leveraging fine-grain temporal patterns for healthcare cost prediction significantly improves prediction performance. Enhancing fine-grain features with extraction of temporal cost and visit patterns significantly improved the performance. However, medical features did not have a significant effect on prediction performance. Gradient Boosting outperformed all other prediction models.


Asunto(s)
Costos de la Atención en Salud/tendencias , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Estados Unidos , Adulto Joven
3.
JMIR Med Inform ; 8(3): e14272, 2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32181753

RESUMEN

BACKGROUND: More than 20% of patients admitted to the intensive care unit (ICU) develop an adverse event (AE). No previous study has leveraged patients' data to extract the temporal features using their structural temporal patterns, that is, trends. OBJECTIVE: This study aimed to improve AE prediction methods by using structural temporal pattern detection that captures global and local temporal trends and to demonstrate these improvements in the detection of acute kidney injury (AKI). METHODS: Using the Medical Information Mart for Intensive Care dataset, containing 22,542 patients, we extracted both global and local trends using structural pattern detection methods to predict AKI (ie, binary prediction). Classifiers were built on 17 input features consisting of vital signs and laboratory test results using state-of-the-art models; the optimal classifier was selected for comparisons with previous approaches. The classifier with structural pattern detection features was compared with two baseline classifiers that used different temporal feature extraction approaches commonly used in the literature: (1) symbolic temporal pattern detection, which is the most common approach for multivariate time series classification; and (2) the last recorded value before the prediction point, which is the most common approach to extract temporal data in the AKI prediction literature. Moreover, we assessed the individual contribution of global and local trends. Classifier performance was measured in terms of accuracy (primary outcome), area under the curve, and F-measure. For all experiments, we employed 20-fold cross-validation. RESULTS: Random forest was the best classifier using structural temporal pattern detection. The accuracy of the classifier with local and global trend features was significantly higher than that while using symbolic temporal pattern detection and the last recorded value (81.3% vs 70.6% vs 58.1%; P<.001). Excluding local or global features reduced the accuracy to 74.4% or 78.1%, respectively (P<.001). CONCLUSIONS: Classifiers using features obtained from structural temporal pattern detection significantly improved the prediction of AKI onset in ICU patients over two baselines based on common previous approaches. The proposed method is a generalizable approach to predict AEs in critical care that may be used to help clinicians intervene in a timely manner to prevent or mitigate AEs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA