Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Chem Phys ; 160(5)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38310470

RESUMEN

We present a robust strategy to numerically sample the Coulomb potential in reciprocal space for periodic Born-von Karman cells of general shape. Our approach tackles two common issues of plane-wave based implementations of Coulomb integrals under periodic boundary conditions: the treatment of the singularity at the Brillouin-zone center and discretization errors, which can cause severe convergence problems in anisotropic cells, necessary for the calculation of low-dimensional systems. We apply our strategy to the Hartree-Fock and coupled cluster (CC) theories and discuss the consequences of different sampling strategies on different theories. We show that sampling the Coulomb potential via the widely used probe-charge Ewald method is unsuitable for CC calculations in anisotropic cells. To demonstrate the applicability of our developed approach, we study two representative, low-dimensional use cases: the infinite carbon chain, for which we report the first periodic CCSD(T) potential energy surface, and a surface slab of lithium hydride, for which we demonstrate the impact of different sampling strategies for calculating surface energies. We find that our Coulomb sampling strategy serves as a vital solution, addressing the critical need for improved accuracy in plane-wave based CC calculations for low-dimensional systems.

2.
J Phys Chem A ; 127(32): 6842-6856, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37535315

RESUMEN

We use full configuration interaction and density matrix quantum Monte Carlo methods to calculate the electronic free energy surface of the nitrogen dimer within the free-energy Born-Oppenheimer approximation. As the temperature is raised from T = 0, we find a temperature regime in which the internal energy causes bond strengthening. At these temperatures, adding in the entropy contributions is required to cause the bond to gradually weaken with increasing temperature. We predict a thermally driven dissociation for the nitrogen dimer between 22,000 to 63,200 K depending on symmetries and basis set. Inclusion of more spatial and spin symmetries reduces the temperature required. The origin of these observations is explored using the structure of the density matrix at various temperatures and bond lengths.

3.
J Chem Phys ; 158(21)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37265216

RESUMEN

We present a machine learning approach to calculating electronic specific heat capacities for a variety of benchmark molecular systems. Our models are based on data from density matrix quantum Monte Carlo, which is a stochastic method that can calculate the electronic energy at finite temperature. As these energies typically have noise, numerical derivatives of the energy can be challenging to find reliably. In order to circumvent this problem, we use Gaussian process regression to model the energy and use analytical derivatives to produce the specific heat capacity. From there, we also calculate the entropy by numerical integration. We compare our results to cubic splines and finite differences in a variety of molecules in which Hamiltonians can be diagonalized exactly with full configuration interaction. We finally apply this method to look at larger molecules where exact diagonalization is not possible and make comparisons with more approximate ways to calculate the specific heat capacity and entropy.

4.
J Chem Phys ; 156(20): 204109, 2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35649840

RESUMEN

We introduce a straightforward Gaussian process regression (GPR) model for the transition structure factor of metal periodic coupled cluster singles and doubles (CCSD) calculations. This is inspired by the method introduced by Liao and Grüneis for interpolating over the transition structure factor to obtain a finite size correction for CCSD [K. Liao and A. Grüneis, J. Chem. Phys. 145, 141102 (2016)] and by our own prior work using the transition structure factor to efficiently converge CCSD for metals to the thermodynamic limit [Mihm et al., Nat. Comput. Sci. 1, 801 (2021)]. In our CCSD-FS-GPR method to correct for finite size errors, we fit the structure factor to a 1D function in the momentum transfer, G. We then integrate over this function by projecting it onto a k-point mesh to obtain comparisons with extrapolated results. Results are shown for lithium, sodium, and the uniform electron gas.

5.
J Chem Phys ; 156(18): 184107, 2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35568531

RESUMEN

The density matrix quantum Monte Carlo (DMQMC) set of methods stochastically samples the exact N-body density matrix for interacting electrons at finite temperature. We introduce a simple modification to the interaction picture DMQMC (IP-DMQMC) method that overcomes the limitation of only sampling one inverse temperature point at a time, instead allowing for the sampling of a temperature range within a single calculation, thereby reducing the computational cost. At the target inverse temperature, instead of ending the simulation, we incorporate a change of picture away from the interaction picture. The resulting equations of motion have piecewise functions and use the interaction picture in the first phase of a simulation, followed by the application of the Bloch equation once the target inverse temperature is reached. We find that the performance of this method is similar to or better than the DMQMC and IP-DMQMC algorithms in a variety of molecular test systems.

6.
Chemistry ; 27(42): 10839-10843, 2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34137084

RESUMEN

The facile production of ArCF2 X and ArCX3 from ArCF3 using catalytic iron(III)halides is reported, which constitutes the first iron-catalyzed halogen exchange for non-aromatic C-F bonds. Theoretical calculations suggest direct activation of C-F bonds by iron coordination. ArCX3 and ArCF2 X products of the reaction are synthetically valuable due to their diversification potential. In particular, chloro- and bromodifluoromethyl arenes (ArCF2 Cl, ArCF2 Br respectively) provide access to a myriad of difluoromethyl arene derivatives (ArCF2 R). To optimize for mono-halogen exchange, a statistical method called Design of Experiments was used. Optimized parameters were successfully applied to electron rich and electron deficient aromatic substrates, and to the late stage diversification of flufenoxuron, a commercial insecticide. These methods are highly practical, being run at convenient temperatures and using inexpensive common reagents.


Asunto(s)
Halógenos , Hierro , Catálisis , Electrones , Indicadores y Reactivos
7.
J Chem Phys ; 154(2): 024113, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33445909

RESUMEN

We recently developed a scheme to use low-cost calculations to find a single twist angle where the coupled cluster doubles energy of a single calculation matches the twist-averaged coupled cluster doubles energy in a finite unit cell. We used initiator full configuration interaction quantum Monte Carlo as an example of an exact method beyond coupled cluster doubles theory to show that this selected twist angle approach had comparable accuracy in methods beyond coupled cluster. Furthermore, at least for small system sizes, we show that the same twist angle can also be found by comparing the energy directly (at the level of second-order Moller-Plesset theory), suggesting a route toward twist angle selection, which requires minimal modification to existing codes that can perform twist averaging.

8.
J Chem Phys ; 153(3): 034107, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32716189

RESUMEN

We present NECI, a state-of-the-art implementation of the Full Configuration Interaction Quantum Monte Carlo (FCIQMC) algorithm, a method based on a stochastic application of the Hamiltonian matrix on a sparse sampling of the wave function. The program utilizes a very powerful parallelization and scales efficiently to more than 24 000 central processing unit cores. In this paper, we describe the core functionalities of NECI and its recent developments. This includes the capabilities to calculate ground and excited state energies, properties via the one- and two-body reduced density matrices, as well as spectral and Green's functions for ab initio and model systems. A number of enhancements of the bare FCIQMC algorithm are available within NECI, allowing us to use a partially deterministic formulation of the algorithm, working in a spin-adapted basis or supporting transcorrelated Hamiltonians. NECI supports the FCIDUMP file format for integrals, supplying a convenient interface to numerous quantum chemistry programs, and it is licensed under GPL-3.0.

9.
Inorg Chem ; 58(19): 12756-12774, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31490065

RESUMEN

The continued development of redox-active ligands requires an understanding as to how ligand modifications and related factors affect the locus of redox activity and spin density in metal complexes. Here we describe the synthesis, characterization, and electronic structure of nickel complexes containing triaryl NNNN (1) and SNNS (2) ligands derived from o-phenylenediamine. The tetradentate ligands in 1 and 2 were investigated and compared to those in metal complexes with compositionally similar ligands to determine how ligand-centered redox properties change when redox-active flanking groups are replaced with redox-innocent NMe2 or SMe. A derivative of 2 in which the phenylene backbone was replaced with ethylene (3) was also prepared to interrogate the importance of o-phenylenediamine for ligand-centered redox activity. Cyclic voltammograms collected for 1 and 2 revealed two fully reversible ligand-centered redox events. Remarkably, several quasi-reversible ligand-centered redox waves were also observed for 3 despite the absence of the o-phenylenediamine subunit. Oxidizing 1 and 2 with silver salts containing different counteranions (BF4-, OTf-, NTf2-) allowed the electrochemically generated complexes to be analyzed as a function of different oxidation states using single-crystal X-ray diffraction (XRD), EPR spectroscopy, and S K-edge X-ray absorption spectroscopy. The experimental data are corroborated by DFT calculations, and together, they reveal how the location of unpaired spin density and electronic structure in singly and doubly oxidized salts of 1 and 2 varies depending on the coordinating ability of the counteranions and exogenous ligands such as pyridine.

10.
J Chem Phys ; 150(19): 191101, 2019 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-31117769

RESUMEN

We explore an alternative to twist averaging in order to obtain more cost-effective and accurate extrapolations to the thermodynamic limit (TDL) for coupled cluster doubles (CCD) calculations. We seek a single twist angle to perform calculations at, instead of integrating over many random points or a grid. We introduce the concept of connectivity, a quantity derived from the nonzero four-index integrals in an MP2 calculation. This allows us to find a special twist angle that provides appropriate connectivity in the energy equation, which yields results comparable to full twist averaging. This special twist angle effectively makes the finite electron number CCD calculation represent the TDL more accurately, reducing the cost of twist-averaged CCD over Ns twist angles from Ns CCD calculations to Ns MP2 calculations plus one CCD calculation.

11.
Phys Rev Lett ; 117(11): 115701, 2016 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-27661699

RESUMEN

The density matrix quantum Monte Carlo (DMQMC) method is used to sample exact-on-average N-body density matrices for uniform electron gas systems of up to 10^{124} matrix elements via a stochastic solution of the Bloch equation. The results of these calculations resolve a current debate over the accuracy of the data used to parametrize finite-temperature density functionals. Exchange-correlation energies calculated using the real-space restricted path-integral formalism and the k-space configuration path-integral formalism disagree by up to ∼10% at certain reduced temperatures T/T_{F}≤0.5 and densities r_{s}≤1. Our calculations confirm the accuracy of the configuration path-integral Monte Carlo results available at high density and bridge the gap to lower densities, providing trustworthy data in the regime typical of planetary interiors and solids subject to laser irradiation. We demonstrate that the DMQMC method can calculate free energies directly and present exact free energies for T/T_{F}≥1 and r_{s}≤2.

12.
J Chem Phys ; 145(3): 031104, 2016 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-27448865

RESUMEN

Basis set incompleteness error and finite size error can manifest concurrently in systems for which the two effects are phenomenologically well-separated in length scale. When this is true, we need not necessarily remove the two sources of error simultaneously. Instead, the errors can be found and remedied in different parts of the basis set. This would be of great benefit to a method such as coupled cluster theory since the combined cost of nocc (6)nvirt (4) could be separated into nocc (6) and nvirt (4) costs with smaller prefactors. In this Communication, we present analysis on a data set due to Baardsen and co-workers, containing 2D uniform electron gas coupled cluster doubles energies for rs = 0.5, 1.0, and 2.0 a.u. at a wide range of basis set sizes and particle numbers. In obtaining complete basis set limit thermodynamic limit results, we find that within a small and removable error the above assertion is correct for this simple system. We then use this method to obtain similar results for the 3D electron gas at rs = 1.0, 2.0, and 5.0 a.u. and make comparison to the Ceperley-Alder quantum Monte Carlo results. This approach allows for the combination of methods which separately address finite size effects and basis set incompleteness error.

13.
J Chem Phys ; 144(9): 094112, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26957162

RESUMEN

Over the past few years, pair coupled cluster doubles (pCCD) has shown promise for the description of strong correlation. This promise is related to its apparent ability to match results from doubly occupied configuration interaction (DOCI), even though the latter method has exponential computational cost. Here, by modifying the full configuration interaction quantum Monte Carlo algorithm to sample only the seniority zero sector of Hilbert space, we show that the DOCI and pCCD energies are in agreement for a variety of 2D Hubbard models, including for systems well out of reach for conventional configuration interaction algorithms. Our calculations are aided by the sign problem being much reduced in the seniority zero space compared with the full space. We present evidence for this and then discuss the sign problem in terms of the wave function of the system which appears to have a simplified sign structure.

14.
J Chem Phys ; 143(4): 044116, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26233116

RESUMEN

The recently developed density matrix quantum Monte Carlo (DMQMC) algorithm stochastically samples the N-body thermal density matrix and hence provides access to exact properties of many-particle quantum systems at arbitrary temperatures. We demonstrate that moving to the interaction picture provides substantial benefits when applying DMQMC to interacting fermions. In this first study, we focus on a system of much recent interest: the uniform electron gas in the warm dense regime. The basis set incompleteness error at finite temperature is investigated and extrapolated via a simple Monte Carlo sampling procedure. Finally, we provide benchmark calculations for a four-electron system, comparing our results to previous work where possible.

15.
Phys Rev Lett ; 112(13): 133002, 2014 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-24745412

RESUMEN

We introduce a range-separation approximation to coupled cluster doubles (CCD) theory that successfully overcomes limitations of regular CCD when applied to the uniform electron gas. We combine the short-range ladder channel with the long-range ring channel in the presence of a Bruckner renormalized one-body interaction and obtain ground-state energies with an accuracy of 0.001 a.u./electron across a wide range of density regimes. Our scheme is particularly useful in the low-density and strongly correlated regimes, where regular CCD has serious drawbacks. Moreover, we cure the infamous overcorrelation of approaches based on ring diagrams (i.e., the particle-hole random phase approximation). Our energies are further shown to have appropriate basis set and thermodynamic limit convergence, and overall this scheme promises energetic properties for realistic periodic and extended systems which existing methods do not possess.

16.
J Chem Phys ; 140(12): 124102, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24697419

RESUMEN

We discuss diagrammatic modifications to the coupled cluster doubles (CCD) equations, wherein different groups of terms out of rings, ladders, crossed-rings, and mosaics can be removed to form approximations to the coupled cluster method, of interest due to their similarity with various types of random phase approximations. The finite uniform electron gas (UEG) is benchmarked for 14- and 54-electron systems at the complete basis set limit over a wide density range and performance of different flavours of CCD is determined. These results confirm that rings generally overcorrelate and ladders generally undercorrelate; mosaics-only CCD yields a result surprisingly close to CCD. We use a recently developed numerical analysis [J. J. Shepherd and A. Grüneis, Phys. Rev. Lett. 110, 226401 (2013)] to study the behaviours of these methods in the thermodynamic limit. We determine that the mosaics, on forming the Brueckner one-body Hamiltonian, open a gap in the effective one-particle eigenvalues at the Fermi energy. Numerical evidence is presented which shows that methods based on this renormalisation have convergent energies in the thermodynamic limit including mosaic-only CCD, which is just a renormalised MP2. All other methods including only a single channel, namely, ladder-only CCD, ring-only CCD, and crossed-ring-only CCD, appear to yield divergent energies; incorporation of mosaic terms prevents this from happening.

17.
J Chem Phys ; 141(24): 244117, 2014 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-25554143

RESUMEN

Properties that are necessarily formulated within pure (symmetric) expectation values are difficult to calculate for projector quantum Monte Carlo approaches, but are critical in order to compute many of the important observable properties of electronic systems. Here, we investigate an approach for the sampling of unbiased reduced density matrices within the full configuration interaction quantum Monte Carlo dynamic, which requires only small computational overheads. This is achieved via an independent replica population of walkers in the dynamic, sampled alongside the original population. The resulting reduced density matrices are free from systematic error (beyond those present via constraints on the dynamic itself) and can be used to compute a variety of expectation values and properties, with rapid convergence to an exact limit. A quasi-variational energy estimate derived from these density matrices is proposed as an accurate alternative to the projected estimator for multiconfigurational wavefunctions, while its variational property could potentially lend itself to accurate extrapolation approaches in larger systems.

18.
Phys Rev Lett ; 110(22): 226401, 2013 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-23767737

RESUMEN

We investigate the accuracy of a number of wave function based methods at the heart of quantum chemistry for metallic systems. Using the Hartree-Fock wave function as a reference, perturbative (Møller-Plesset) and coupled cluster theories are used to study the uniform electron gas model. Our findings suggest that nonperturbative coupled cluster theories are acceptable for modeling electronic interactions in metals while perturbative coupled cluster theories are not. Using screened interactions, we propose a simple modification to the widely used coupled cluster singles and doubles plus perturbative triples method that lifts the divergent behavior and is shown to give very accurate correlation energies for the homogeneous electron gas.

19.
J Chem Phys ; 139(8): 084112, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-24006979

RESUMEN

We present an investigation into the use of an explicitly correlated plane wave basis for periodic wavefunction expansions at the level of second-order Møller-Plesset (MP2) perturbation theory. The convergence of the electronic correlation energy with respect to the one-electron basis set is investigated and compared to conventional MP2 theory in a finite homogeneous electron gas model. In addition to the widely used Slater-type geminal correlation factor, we also derive and investigate a novel correlation factor that we term Yukawa-Coulomb. The Yukawa-Coulomb correlation factor is motivated by analytic results for two electrons in a box and allows for a further improved convergence of the correlation energies with respect to the employed basis set. We find the combination of the infinitely delocalized plane waves and local short-ranged geminals provides a complementary, and rapidly convergent basis for the description of periodic wavefunctions. We hope that this approach will expand the scope of discrete wavefunction expansions in periodic systems.

20.
J Chem Theory Comput ; 19(6): 1686-1697, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36918372

RESUMEN

Finite size error is commonly removed from coupled cluster theory calculations by N-1 extrapolations over correlation energy calculations of different system sizes (N), where the N-1 scaling comes from the total energy rather than the correlation energy. However, previous studies in the quantum Monte Carlo community suggest an exchange-energy-like power law of N-2/3 should also be present in the correlation energy when using the conventional Coulomb interaction. The rationale for this is that the total energy goes as N-1 and the exchange energy goes as N-2/3; thus, the correlation energy should be a combination of these two power laws. Further, in coupled cluster theory, these power laws are related to the low G scaling of the transition structure factor, S(G), which is a property of the coupled cluster wave function calculated from the amplitudes. We show here that data from coupled cluster doubles calculations on the uniform electron gas fit a function with a low G behavior of S(G) ∼ G. The prefactor for this linear term is derived from the exchange energy to be consistent with an N-2/3 power law at large N. Incorporating the exchange structure factor into the transition structure factor results in a combined structure factor of S(G) ∼ G2, consistent with an N-1 scaling of the exchange-correlation energy. We then look for the presence of an N-2/3 power law in the energy. To do so, we first develop a plane-wave cutoff scheme with less noise than the traditional basis set used for the uniform electron gas. Then, we collect data from a wide range of electron numbers and densities to systematically test five methods using N-1 scaling, N-2/3 scaling, or combinations of both scaling behaviors. We find that power laws that incorporate both N-1 and N-2/3 scaling perform better than either alone, especially when the prefactor for N-2/3 scaling can be found from exchange energy calculations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA